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This study evaluates SMOS (soil moisture and ocean salinity) soil moisture products against a newly established
soil moisture network in the central Tibetan Plateau. Based on the results, the validity of assimilating the SMOS
soil moisture retrievals into a land surface model is further evaluated. The ground truth is obtained by spatial
upscaling from the network measurements within an area of approximately 10,000 km2. Results show that
both SMOS L2 and the preliminary version of L3 soil moisture products have large biases at the SMOS node scales
(15 and 25 km), but they can reflect the surfacewetness conditionswellwhen averaged at a 100-km scale during
the unfrozen season (June to October). This finding indicates the applicability of SMOS retrievals is scale-
dependent. Meanwhile, very few retrievals are available in winter due to the presence of frozen soil and snow
cover, and the accuracy of ascending retrievals degrades during transition when diurnal freezing–thawing
cycle occurs. Considering the SMOS L2 product has a better accuracy than that of L3, we assimilate it into a
land surface model using a dual-pass land data assimilation scheme. The data assimilation estimate without in-
situ tuning proves superior to either remote sensing or land surface modeling in estimating surface soil moisture
for the unfrozen season, and its accuracy fulfills the SMOS measurement requirements (RMSD ≤ 0.04 m3 m−3).
Thus, the assimilation of SMOS retrievals holds promise to produce regional soil moisture dataset with acceptable
accuracy for the Tibetan Plateau semi-arid region.
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1. Introduction

As a critical component in the terrestrial water cycle, soil moisture
controls a variety of the hydro-meteorological and biogeochemical
processes, which is even more evident in semiarid areas where strong
coupling between soil moisture and precipitation occurs (Koster et al.,
2004). Microwave remote sensing (Bartalis et al., 2007; Kerr et al.,
2001; Njoku, Jackson, Lakshmi, Chan, & Nghiem, 2003) and land surface
modeling (Entin et al., 1999; Henderson-Sellers, Yang, & Dickinson,
1993) are possibleways to obtain surface soil moisture (SSM) at region-
al or global scales. However, the accuracy ofmicrowave satellite product
is often not satisfactory for many research and application purposes
(Chen et al., 2013; dall'Amico, Schlenz, Loew, & Mauser, 2012). Mean-
while, the SSM estimated by land surface modeling strongly depends
on the model structure and parameters as well as the accuracy of
input forcing data (Henderson-Sellers et al., 1993).

It is commonly recognized that the low-frequencymicrowave emis-
sions are highly related to SSM (Njoku & Entekhabi, 1996; Schmugge,
1978). For the past decades, various SSM products have been developed
with the launch of several microwave sensors, such as AMSR-E (Ad-
vanced Microwave Scanning Radiometer for Earth Observing System)
(Koike et al., 2004; Njoku & Chan, 2006; Owe, de Jeu, & Holmes, 2008)
and ASCAT (METOP-A Advanced Scatterometer) (Bartalis et al., 2007).
The newly launched SMOS satellite works at L-band (1.4 GHz) which
is considered ideal for retrieving SSM (Kerr et al., 2001). Prior to this
mission and up to present, several validations of SMOS SSM against
intensive groundmeasurements have been conducted and obtained dif-
ferent biases, with most of them beyond the anticipation of themission
(Al Bitar et al., 2012; Albergel et al., 2012; dall'Amico et al., 2012; Dente,
Su, & Wen, 2012; Gherboudj et al., 2012; Pan et al., 2012; Sanchez,
Martinez-Fernandez, Scaini, & Perez-Gutierrez, 2012). The aforemen-
tioned evaluations are mainly conducted in Europe (Albergel et al.,
2012; dall'Amico et al., 2012; Dente et al., 2012; Sanchez et al., 2012)
and North America (Al Bitar et al., 2012; Gherboudj et al., 2012;
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Jackson et al., 2012; Pan et al., 2012). Yet, twomajor issues remain to be
considered for further evaluation and utilization of SMOS SSM data.

The first one is about the spatial representativeness. The original
spatial resolution of SMOS brightness temperature (TB) varies with in-
cidence angles and has a nominal resolution of about 43 km. Taking
the L2 data, for example, SSM is first obtained by minimizing the differ-
ences between observed andmodeled TB atmulti-viewing angleswith-
in a working area of 123 km× 123 km, and then oversampled to 15-km
node scales (Kerr, Waldteufel, Richaume, et al., 2010). In previous eval-
uations, some simply conducted the node-to-site validation (Albergel
et al., 2012), or averaged the closest in-situ point measurements within
a SMOS node (dall'Amico et al., 2012; Gherboudj et al., 2012), and all
found the SMOS data with large biases. However, Jackson et al. (2012)
implemented evaluations at watershed scale by averaging both SMOS
and in-situ measurements within a 600-km2 area and found the SMOS
data can approach the expected accuracy. Sanchez et al. (2012) consid-
ered different scale-matching strategies when evaluating SMOS L2 SSM
data within a 1,300-km2 area, and found the average-to-average (both
SMOS L2 SSM and in-situ data are averaged in spatial) evaluation
shows slightly better accuracy than at a single SMOS node scale. Never-
theless, in an even larger scale (40 km × 90 km), Dente et al. (2012)
found the SMOS data failed in capturing the ground truth. Therefore,
the impact of spatial scale on the oversampled L2 data still needs to be
investigated in great detail.

The second issue is the low temporal resolution of SMOS SSM data
(~3 days globally, if available). Due to the severe contamination of RFI
at L-band (Oliva et al., 2012), SMOS retrievals are unavailable in quite
a few regions over the world (Dente et al., 2012). A possible way to
overcome this problem is by using land data assimilation,which is capa-
ble to take the advantage of continuous land surface model-output and
make use of satellite observations (Crow & Wood, 2003; Houser et al.,
1998; Li et al., 2007; Tian et al., 2009; Yang et al., 2007). In fact, great
efforts have beenmade to directly assimilate the SMOS brightness tem-
perature to estimate soil moisture within the framework of weather
forecast (Kerr, Waldteufel, Wigneron, et al., 2010; Sabater, Fouilloux, &
de Rosnay, 2011).

In this study, we evaluate the SMOS SSM data, investigate its scale-
dependence, and conduct land data assimilation to explore the optimal
utilization of SMOS soil moisture products for the Tibetan Plateau,
where land–atmosphere interaction greatly impacts the energy and
water cycle of the Asian monsoon system. We first evaluate the SMOS
L2 and L3 SSM data within a newly established soil moisture network
located in the central Tibetan Plateau. Evaluations at the SMOS node
scale and at a coarser scale (~100 km) are conducted to study the
Fig. 1. (a) Spatial distribution of theCTP-SMTMNstations (black triangles). The basemap shows
obtained through the upscaling with the aid of MODIS-observed apparent thermal inertia (ATI
diamonds denote the L2 (ISEA) and L3 (ESEA) node centers, respectively.
scale-dependence of the SMOS product applicability. Then the selected
SMOS SSMdata are assimilated into a land surfacemodel to achieve bet-
ter temporal resolution and accuracy. Details about the network data,
SMOS SSM data, and descriptions on evaluation strategy and the land
data assimilation system are provided in Section 2. Evaluation and
data assimilation results are presented in Section 3. Finally, all the
analyses are summarized in Section 4.
2. Data and method

2.1. Ground data

The ground truth is collected within a recently established Central
Tibetan Plateau Soil Moisture and Temperature Monitoring Network
(CTP-SMTMN) within a spatial coverage of about 100 km × 100 km
that matches a typical GCM (Global Climate Model) grid (Fig. 1a). This
area has a generally slowly-varying terrain with rolling hills. Nearly
94% of the area is covered by alpine meadows, with very small water
bodies at thewest edge. High elevation and low temperature conditions
are associated with very low biomass on the ground and less water
vapor in the atmosphere, making this area an ideal place for microwave
remote sensing of soil moisture. Besides, seasonal freezing–thawing
processes are typical phenomenon within this area. The annual precip-
itation is approximately 400–500 mm, with three quarters during
the monsoon season. Started from August 2010, the network was
established through six field campaigns. Up to now, there are 56
stations in total (Fig. 1a shows the spatial distribution), each of which
measures soil moisture and soil temperature at four layers (0–5 cm,
10 cm, 20 cm, and 40 cm). The ECH2O EC-TM/5TMprobes are deployed,
and the measured soil moisture data are calibrated to account for the
impact of soil texture and organic carbon content. Note that the first
layer soil moisture is measured by probes that are obliquely (approxi-
mately 45° slanted upward) inserted into the topsoil (0–5 cm). More
details about the network construction and configuration can be
found in Yang et al. (2013). This network is complementary to the
existing Tibetan Plateau observatory that monitors plateau–scale soil
moisture and soil temperature (Tibet-Obs) (Su et al., 2011). The data
have been used to evaluate AMSR-E products and modeled soil mois-
ture (Chen et al., 2013) and to analyze the spatiotemporal variability
of soil moisture (Zhao, Yang, Qin, Chen, Tang, et al., 2013). The data
are now available online (http://dam.itpcas.ac.cn/rs/?q=data) and
archived in the database of the International Soil Moisture Network
(Dorigo et al., 2011).
the elevations. (b) Temporally averaged SSM for 2011 summer (June, July andAugust) that
). (c) Spatial distribution of SMOS DGG nodes within the study area, where red and black
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Because of the mismatch between a station and a satellite pixel, the
upscaling of ground-based soil moisture observations is required (Crow
et al., 2012). Based on the network measurements, Qin et al. (2013)
developed a new upscaling scheme by introducing MODIS-derived
apparent thermal inertia (ATI) as an extra data source to represent the
SSM spatial variability. A function is first developed to link all station-
averaged SSM and MODIS pixel-averaged ATI over the network, and
then used to estimate SSM at finer scales. However, this pure ATI-
based estimatemay contain uncertainties because of the empirical func-
tion. Thus the final SSM estimate at a targeted scale is obtained by a
weighted linear combination of station observations, and the weight
numbers are optimized through Bayesian linear regression which min-
imizes the difference between the linear combination estimated and
ATI-based SSMs. A demo for the Bayesian regression in the upscaling
scheme is available online (http://dam.itpcas.ac.cn/rs/?q=prog). As an
example, Fig. 1b shows the spatial variation of upscaled SSM with a
0.05° resolution (approximately 5 km). Note that there are several
wetter cells at the western edge due to the existing of water bodies. In
this study, the SSM estimated by the upscaling scheme is used as the
ground truth.

2.2. SMOS data

Launched onNovember 2, 2009, the SMOS satellitewas injected into
a low-earth, polar sun-synchronous orbit at 750 km mean altitude.
The onboard microwave radiometer deploys a Y-shaped antenna in
compromising between the efficiency of soil moisture retrieving and
the feasibility in engineering. According to its design, the microwave
sensor can provide pixel brightness temperatures over different polari-
zations and multi-incidence angles (from 0° to 55°) across a 900-km
swath. Generally the spatial resolution is within 30–50 km. The globe
can be fully imaged twice every 3 days at 6:00 am (ascending) and
6:00 pm (descending) Local Solar Time (LST) (McMullan et al., 2008).
The SMOS satellite provides L-bandmicrowave brightness temperature,
and it is expected to retrieve SSMwith 0.04 m3m−3 accuracy over land
(Kerr, Waldteufel, Wigneron, et al., 2010).

The SMOS group is now delivering two sets of SMOS SSM data,
namely, the L2 and L3 soil moisture data that processed and delivered
by ESA (European SpaceAgency) and CATDS (Centre Aval de Traitement
des Données SMOS), respectively. Note that the L2 data are a mature
product while the L3 data are currently a preliminary version and has
just been released. For L2 data, asmentioned before, SSM and other sur-
face variables are obtained by using an iterative scheme to minimize
cost function that counts for the difference between model simulated
and SMOS observed multi-angular TB data (Kerr et al., 2012). An
L-bandMicrowave Emission of the Biosphere (L-MEB) model devel-
oped byWigneron et al. (2007) is used to calculate brightness temper-
ature based on initial SSM and auxiliary data in this process. The L3 SSM
retrieval processor is based on the one developed in L2, with added abil-
ity on multi-orbit retrieving. This coherence between the ESA L2 and
CATDS L3processorsmakes it possible to take advantages of the twode-
velopments. Both two datasets use Discrete Global Grid (DGG) gridding
systemwith a slight difference in projection. For ESAprocessors, it is the
Icosahedral Snyder Equal Area Earth fixed grid (ISEA; ~15 km); for CATDS
processors, it is the Equal-Area Scalable Earth Grid (EASE; 25 km).
Comprehensive descriptions on the L2 and L3 soil moisture retrieval
algorithm are provided in the ATBD document of Kerr, Waldteufel,
Richaume, et al. (2010) and Kerr et al. (2013), respectively. The L2 oper-
ational data are available through EOLi-SA (http://earth.esa.int/EOLi/
EOLi.html) and the L3 SSM data can be obtained from CATDS (http://
catds.ifremer.fr/Products/Available-products-from-CPDC). In the CTP-
SMTMN network, there are 56 and 16 of SMOS L2 and L3 grid nodes,
respectively (see Fig. 1c for the spatial distribution of SMOS nodes).

To our knowledge, previous evaluations are mainly focused on the
L2 data, and very few on the L3 data (Al-Yaari et al., 2014) due to the
time lagging in data publicizing. In addition, the difference between
ascending and descending retrievals remains unclear (Dente et al.,
2012; Jackson et al., 2012; Rowlandson, Hornbuckle, Bramer, Patton, &
Logsdon, 2012; Sanchez et al., 2012). Therefore, the SMOS L2 and L3
SSMdata of both ascending anddescending overpasses are investigated.

2.3. Evaluating SMOS retrieved SSM

For both SMOS L2 and L3 soil moisture products, the ascending and
descending overpasses are assessed separately to investigate the possi-
ble influence of different temperature gradient within the topsoil on
the retrieval algorithm. The analyzed period is from August 1, 2010 to
October 1, 2012, including both frozen and non-frozen periods. Ob-
served surface soil temperature and MODIS derived Snow Cover Frac-
tion (SCF) data are jointly used to distinguish the snow cover and
frozen conditions, as their existence may introduce additional uncer-
tainties in SMOS soil moisture retrieving. Fig. 2 shows the observed
hourly minimum surface soil temperature of all stations (LSTmin) and
Terra/Aqua satellite retrieved MODIS SCF (Hall, Salomonson, & Riggs,
2006a,b) within the CTP-SMTMN area. First, LSTmin of 0 °C is used to ap-
proximately diagnose the soil frozen status. Second, considering part of
the network area with extremely higher elevation may always have
snow cover during the whole summer (Fig. 1a), SCF of 2% is used to in-
dicate snow cover condition. Finally, based on criterions of LSTmin≥0 °C
and SCF b 2%, the period from June 1 to October 1 in both year 2011 and
2012 is identified to be unfrozen and snow-free (hereafter referred to as
“unfrozen” period for simplicity), and the period beyond this unfrozen
period is identified to be frozen or snow-covered (hereafter referred
to as “frozen” period). Note that June 8, 2011 has SCF of 23%, yet there
are no SSM retrievals within neither L2 nor L3 products at all SMOS
nodes on this date, and thus the selected unfrozen period is still valid.

To investigate the scale-dependence of the accuracy of SMOS SSM
products, we conducted two evaluations. The first is a node-to-
average evaluation at SMOS node scale (15 km for SMOS L2 data and
25 km for L3 data). It compares the SMOS data with the ground truth
of SSM derived from the algorithm of Qin et al. (2013) (Fig. 1b). The
5-km grids (shown in both Fig. 1b and c) are first assigned to a certain
SMOS node by considering their distances to the node center, then a
spatial average is made among grids that “belong to” the same SMOS
node. The second evaluation is an average-to-average evaluation at a
coarser scale (100 km). It is a comparison between average of all
SMOS data and average of all the 5-km gridded SSM within this area.
Each SMOS SSM at the node scale, including its average at the 100-km
scale, is hereafter referred to as an “Effective Retrieval” (ER). The corre-
lation coefficient (R), BIAS (SMOS retrievalsminus upscaled in-situ SM),
and root mean square difference (RMSD) are calculated as performance
metrics to describe the evaluation results.

2.4. The dual-pass land data assimilation scheme

To improve the accuracy and overcome the low temporal resolution
of SMOS retrievals, we assimilate the SMOS SSMdata into a land surface
model under the framework of the Dual-pass Land Data Assimilation
Scheme of University of Tokyo (LDASUT) developed by Yang et al.
(2007).

The essence of the LDASUT is the differentiating time scales used
for the estimation of model parameters (%sand, %clay, and soil porosity)
and state variables (SSM). Model parameters are usually time-invariant
and have a long-term effect on model state variables, and thus they are
estimated within a relatively long time window (months), which is so-
called Pass 1 or optimization pass. By contrast, SSM changes rapidly
with precipitation, and thus is estimated within a relatively short time
window (1 day), which is so-called Pass 2 or assimilation pass. To
apply this framework, a time-split approach is adopted. The flowchart
for assimilating SMOS soil moisture product is shown in Fig. 3.

The model operator in this assimilation system is the Simple
Biosphere scheme version 2 (SiB2) (Sellers et al., 1996), which has

http://dam.itpcas.ac.cn/rs/?q=prog
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Fig. 2. (a) Observed hourlyminimum surface soil temperature of all stations. (b) Spatially averaged time series of Terra and Aqua retrieved 0.05°MODIS snow fraction data within the soil
moisture network area; note that only the data with “good” quality is used.

Fig. 3. Flowchart of the dual-pass scheme for assimilating SMOS soil moisture data.
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Fig. 4. Time series of mean, maximum, and minimum SSM among all SMOS nodes within the CTP-SMTMN area.
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been revised to adapt the Tibetan Plateau environment (Yang et al.,
2007). The thickness of surface soil layer in SiB2 is set to 5 cm to
match the SMOS penetrating depth (first several cm). In addition, in
each assimilation cycle, only surface soil moisture is updated. The soil
moistures at deeper layers (root zone of 5–25 cm and recharge zone
25–150 cm) are impacted by the change of the topsoil moisture through
soil water flow dynamics but are not directly modified by the assimila-
tion. In both passes, the model operator is initialized with either default
parameters (in Pass 1) or surface soil moisture (in Pass 2), and it simu-
lates SSM at hourly time step with input forcing data and vegetation
dynamic parameters. When SMOS retrieval is available, the difference
between modeled and remotely sensed soil moisture is accumulated
in a cost function. At the end of each assimilation window, a Shuffled
Complex Evolution (SCE) approach (Duan, Gupta, & Sorooshian, 1993)
is used to minimizing the cost function to find either the optimal
model parameter values (in Pass 1) or initial soil moisture (in Pass 2).
Specifically, in Pass 1, only soil clay content, sand content, and soil
porosity are optimized. Other parameters (e.g., soil water retention
parameters and hydraulic conductivity) are calculated from these opti-
mized parameters based on empirical pedotransfer equations (see de-
tails in Yang et al., 2007). The optimized parameters in Pass 1 are then
fed to Pass 2 for soil moisture optimization. In Pass 2, at the beginning
of each assimilation cycle, soil moisture is initialized with the one
inherited from last assimilation cycle and then updated through SCE.
The difference between initial and updated soil moisture values further
forms the background error term. The cost functions defined in the two
passes are as follows:

Pass 1 F ¼
Xtpass1

t¼0

wsmos−wlsmð Þ2 ð1Þ

Pass 2 F ¼ α
Xtpass2

t¼0

wsmos−wlsmð Þ2 þ 1−αð Þ wbg−w0

� �2 ð2Þ

where wsmos is SMOS retrieved SSM, and wlsm is SiB2 simulated SSM at
the SMOS observing time. wbg is the initial background value at the
beginning of each assimilation cycle, andw0 is the renewedone after as-
similating SMOS SSM. The first part in Eq. (2) is the observation error
term and the second part is the background error term. Note that the
background error term is only calculated once, while the observation
error term is calculated every time when SMOS SSM is available in
each assimilation cycle. α (0–1.0) is the weighting number to balance
the two terms in Eq. (2). Since both the land surface model and satellite



Fig. 5. (a) Time series of spatially averaged SMOS SSMretrievals (greendots: L2 ascending product) and ground truth (blue curve) at the 100-km scale, where the vertical range of the error
bars are proportional to the number of SMOS nodes available for averaging. (b–d) Same as (a), but for SMOS L2 descending, L3 ascending, and L3 descending products, respectively.
(e) Observed 6:00 am (blue) and 6:00 pm (red) minimum surface soil temperatures of all stations from August 1, 2010 to October 1, 2012.

Table 1
Evaluation results of SMOS L2 and L3 soil moisture products during unfrozen and snow-free period (from June 1st to October 1st in both year 2011 and 2012) within the CTP-SMTMN
network.

Orbits SMOS
SM

Scale
(km)

No. R BIAS RMSD

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Ascending L2 15 2 98 47 −0.34 0.77 0.41 −0.102 0.060 −0.021 0.089 0.150 0.114
100 / / 103 / / 0.68 / / 0.012 / / 0.060

L3 25 31 152 97 −0.10 0.48 0.26 −0.144 0.031 −0.056 0.156 0.275 0.206
100 / / 122 / / 0.30 / / −0.008 / / 0.117

Descending L2 15 1 70 27 −0.19 0.77 0.41 −0.150 0.106 0.005 0.081 0.179 0.133
100 / / 97 / / 0.39 / / 0.014 / / 0.088

L3 25 0 126 61 0.02 0.36 0.17 −0.111 0.108 0.027 0.199 0.311 0.260
100 / / 115 / / 0.25 / / 0.046 / / 0.158

(No.: number of effective retrievals; units for BIAS and RMSD: m3 m−3).
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Fig. 6. Scatter plot between ground truth and spatially averaged SMOS SSM for the unfrozen and snow-free period (from June 1st to October 1st in both year 2011 and 2012).
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observationsmay have errors,α can be considered to reflect error trade-
off between these two error sources. The smaller value of α means the
estimation of soil moisture will trust more on land surface model, and
vice versa. Here we assign α=0.5 as the default value, and a sensitivity
analysis in Section 3.3.1 will show its validity.

This dual-pass scheme is distinct from other methods that esti-
mate state variables and parameters by state augmentation under
the framework of Kalman filter (Young, 2002) and particle filter
(Qin et al., 2009), or methods that deploy an ensemble of model
replicates to represent the model uncertainties and errors through
ensemble Kalman filter (Margulis, McLaughlin, Entekhabi, & Dunne,
2002; Pan & Wood, 2006). Meanwhile, the dual-pass concept used
in this assimilation system also differs from the ones in which both
parameters and state variables (Montzka et al., 2011; Moradkhani,
Sorooshian, Gupta, & Houser, 2005) or both model and observation
error parameters (Reichle, Crow, & Keppenne, 2008) are interactive-
ly estimated in an ensemble Kalman/particle filter-based sequential
assimilation framework.

3. Result and discussion

3.1. SMOS Evaluation results

Fig. 4 shows the statistics of all SMOS retrievals at the node scale for
the whole evaluation period. Generally, all retrievals show great spatial
variations, and this is more evident for the descending overpass. Never-
theless,when averaged at a 100-kmgrid (Fig. 5a–d), the SMOSSSMdata
can follow the seasonal variations of ground truth much better. Mean-
while, there are fewer (for descending overpass; Fig. 4b and d) or
even no (for ascending overpass; Fig. 4a and c) retrievals at all nodes
during the winter when the topsoil became frozen and the land was
occasionally covered by snow. This phenomenon is not surprising as it
is still challenging to account for the impacts of snow cover and frozen
soil in the soil moisture retrieval (Kerr, Waldteufel, Wigneron, et al.,
2010).

An issue for the unfrozen season (from June 1st to October 1st in
2011 and 2012) is the shortage of ERs. To quantify the evaluation result,
we counted the number of ERs for all nodes during the unfrozen season,
and calculated the statistical indices (R, BIAS, and RMSD) against the
ground truth when at least 10 ERs were available. Table 1 shows the
minimum, maximum, and mean values of ERs, as well as the statistical
metrics for both L2 and L3 retrievals. The evaluation results at the
100-km scale are also presented in Table 1 and Fig. 6. Several findings
can be obtained, as follows.

First, the errors in the retrievals are scale-dependent. As men-
tioned before, the available ERs are limited during unfrozen periods.
For instance, among all the 56 L2 SMOS nodes, the minimum and the
maximum number of ERs are 2 and 98, respectively, with an average
of 47. However, when averaged at the 100-km scale, the ER number
increased up to 103. In terms of accuracy in capturing the ground
truth, SMOS retrieval at the SMOS node scale has large biases,
while it performs much better when averaged over the 100-km
scale (i.e., the second evaluation) (see the higher correlation coeffi-
cient, smaller BIAS and RMSD values in Table 1 and Fig. 6). Particu-
larly, RMSD values for L2 retrievals are over 0.100 m3 m−3 in
ascending overpass at a 15-km scale, but within 0.060 m3 m−3

when averaged at the 100-km scale. The latter is much closer to
the anticipated accuracy of SMOS mission (0.040 m3 m−3). Similar
results are obtained for all evaluations for both L2 and L3 data, and
both overpasses, except for evaluation on SMOS L2 descending over-
pass, which obtained a correlation coefficient slightly lower at the
100-km scale (R = 0.39) than at the 15-km scale (R = 0.41). From
this point of view, the SMOS retrievals can be directly used for
large-scale drought monitoring for this region.



Fig. 7. Comparison of the in-situ daily SSM (obs) with the LDASUT (DA_A, DA_D, DA_AD) and LSM estimation (LSM). (a–c) Refer to the results of assimilating the ascending, descending,
and both of the two passes products. SMOS_A and SMOS_D are the remote sensing retrieved SMOS L2 SSM.
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Second, the L2 SSM data seem better than L3 data. L3 has more
ERs than L2 during the unfrozen period, and as a consequence,
more ERs in L3 than in L2 at the 100-km scale. Despite this, the L3
retrievals do not show a better accuracy than that of L2 (Fig. 6),
but exhibit a larger spatial divergence (Fig. 4) and a greater tempo-
ral variation (Fig. 5), as indicated by the statistic indices in Table 1
(at the 25-km scale: RMSD N 0.200 m3 m−3; at the 100-km scale:
RMSD N 0.100 m3 m−3). A further investigation on this degraded
performance of L3 product needs to go back to the SMOS soil mois-
ture retrieval algorithm. Yet this is beyond the scope of this study.
Table 2
Performance of different approaches in estimating SSM through LDASUT, remote sensing,
and LSM. Analyzed period is from June 1, 2011 to October 1, 2011.

Data assimilation Remote sensing LSM

DA_A DA_AD DA_D SMOS_A SMOS_D

R 0.90 0.87 0.86 0.73 0.54 0.82
BIAS −0.012 −0.023 −0.037 −0.002 −0.035 −0.080
RMSD 0.027 0.036 0.047 0.071 0.096 0.084

Units for BIAS and RMSD: m3 m−3.
As the L2 SSM data seem to have a better accuracy, it is utilized in
the assimilation in Section 3.2.

Third, the diurnal cycles of soil freezing–thawing impact the per-
formance of the retrievals. It is noteworthy that the freeze–thaw
transition (see the shaded periods in Fig. 5) occurred when the
ascending and descending retrievals present different biases. Both
L2 and L3 ascending retrievals tend to have larger negative biases
than the descending retrievals. To investigate this issue, Fig. 5e
shows the observed minimum surface soil temperature of all CTP-
SMTMN stations at 6:00 am (close to ascending time) and 6:00 pm
(close to descending time). As aforementioned in Section 2.3, we
use 0 °C as threshold to estimate the topsoil freeze–thaw status. Ob-
viously, the minimum morning soil temperature during the shaded
periods is below or equal to zero, indicating that the topsoil at one
location at least was frozen, whereas the minimum evening soil
temperature is always above or equal to zero, indicating the whole
area was very likely unfrozen. Based on these analyses, we believe
that the presence of frozen soil may have introduced uncertainties
in the SMOS soil moisture retrievals. As such, a better consideration
of soil freezing–thawing process is expected in the development of
future retrieval algorithms.



Fig. 8. Performance metrics (BIAS and RMSD) of LDASUT in estimating SSM by using different cost function forms. The number after “DA_” denotes the weight assigned to the observed
error term in Eq. (2).
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Last, the ascending retrieval has a better accuracy than the descend-
ing retrieval during the unfrozen period. Similar results are obtained by
Dente et al. (2012) and Al-Yaari et al. (2014), inwhich the ascending re-
trieval has relative higher correlation coefficient than the descending
one for either the SMOS L2 or L3 data, respectively. The ascending
tends to havemore ERs and behave better in capturing the SSMdynam-
ics (Fig. 4), especially when averaged at the 100-km scale (Fig. 6). The
degraded performance of the descending retrieval is very likely caused
by the larger temperature gradient within the soils, as has been
analyzed in detail by (Zhao, Yang, Qin, & Chen, 2013).

In a previous study, Chen et al. (2013) conducted an evaluation of four
AMSR-E soil moisture products against the same dataset from this area,
and found that their RMSDvalues range over 0.1–0.26m3m−3. According
to the evaluation, the SMOS L2 retrieval can capture the temporal change
well and it performs superior to any of those AMSR-E retrievals, so the
SMOS L2 soil moisture products can be recommended for further applica-
tions in the Tibetan Plateau semi-arid region. This data is also further
assimilated into a land surface model to explore the optimal utilization
of SMOS SSM product.

3.2. Assimilation of SMOS L2 soil moisture

The land data assimilation is implemented at a single grid (CTP-
SMTMN area of 1°) and only over the unfrozen season (June 1, 2011
to October 1, 2011). The assimilated SMOS SSM is the L2 data that spa-
tially averaged over 56 nodes within the CTP-SMTMN network area
(~100 km). Three assimilation cases were conducted, including the
assimilation of only ascending, only descending, and simultaneously
both two overpasses of retrievals. Default SiB2 parameterswere derived
Fig. 9. Time series of daily SSM estimate based on different sets of model parameters for the un
and the ones optimized by using 2011 data, respectively. The table shows the performance of
from several datasets. Soil thermal and hydraulic parameters and vege-
tation type/coverage were specified from the 1° × 1° ISLSCP (Interna-
tional Satellite Land Surface Climatology Project) dataset (Loveland
et al., 2000; Task, 2000). Leaf area index (LAI) was originated
from MODIS 0.25° × 0.25° gridded 8-day leaf area index products
(Knyazikhin et al., 1999) and then interpolated to daily time series.
Forcing data was obtained from the 3-hourly GLDAS-1 (the Global
Land Data Assimilation System version 1) (Rodell et al., 2004) product,
which was then linearly interpolated into hourly time series to match
the SiB2 time step. Both the 0.25° MODIS LAI and GLDAS forcing were
then spatially averaged into the 1° network area.

The daily time series of SSM estimated through three assimilation
cases and open-loop land surface modeling are shown in Fig. 7. Table 2
lists the performance of different approaches, including data assimilation,
remote sensing, and land surface modeling, in estimating SSM for the
unfrozen season of year 2011.

The LDASUT estimate is much better than either the open-loop
SiB2 simulation or remote sensing retrieving. The LSM estimate
follows the trends of surface soil wetness well due to its strong re-
sponse to rainfall events, but it significantly underestimates SSM
(BIAS = −0.080 m3 m−3). Meanwhile, in the pure remote sensing
case, the number of SMOS retrievals is not sufficient and the data
contains a considerable uncertainty (RMSD N 0.070 m3 m−3). Neverthe-
less, by assimilating the SMOS L2 soil moisture data, all the three assimi-
lation cases greatly improve the SSM estimation with correlation
coefficient over 0.85 and RMSD within 0.050 m3 m−3.

Among the three assimilates cases, the assimilation of the
ascending retrieval performs the best, with the highest correlation coef-
ficient (R = 0.90) and the smallest error (BIAS = −0.012 m3 m−3,
frozen season of year 2012. LSM and DA_A_2011par refer to the use of default parameters
SSM estimation.



354 L. Zhao et al. / Remote Sensing of Environment 152 (2014) 345–355
RMSD = 0.027 m3 m−3). The assimilation that merely uses the de-
scending retrieval performs the worst among all three cases, and the
joint assimilation of both retrievals shows a moderate performance. This
is consistent with the fact that the descending retrieval has significant
dry biases for the unfrozen season (BIAS = −0.035 m3 m−3; Table 2)
as compared with the ground truth.

Although SMOS failed in providing reliable SSM through remote sens-
ing alone, LDASUT is capable of improving the estimate with both high
temporal resolution and acceptable accuracy (RMSD b 0.04 m3 m−3),
by assimilating the spatially averaged SMOS retrievals into SiB2. More-
over, no extra in-situ parameter data (e.g., soil porosity) are required in
the assimilation system, as they are optimized in LDASUT.

3.3. Discussions on the SMOS data assimilation

3.3.1. Sensitivity analysis to the weighting number
It is commonly recognized that both LSMs and satellite observations

may have uncertainties and thus can introduce biases in soil moisture
estimated within the land data assimilation system. In our assimilation,
we assume SiB2 and SMOS retrievals equally contribute to the estima-
tion error by assigning α = 0.5 in Eq. (2). However, these two terms
may have different impacts on the LDASUT output. Hence, we conduct
following sensitivity analysis to justify our choice.

The assimilation time window in the sensitivity study is the same
as the aforementioned assimilation cases. Fig. 8 shows the evolution
of BIAS and RMSD of SSM estimated through data assimilation
when α varies from 0.0 to 1.0. Clearly, nomatter what value is assigned
to α, all the assimilations cases outperform the open-loop run (LSM).
Meanwhile, α = 0 or α = 1.0 will lead to larger biases. By contrast,
there are only slight differences when both two sources of uncertainties
are considered (0 b α b 1.0), and the estimate reaches the best when
α = 0.4 or 0.5. Therefore, α = 0.5 seems a reasonable choice for the
regions of concern.

3.3.2. The role of parameter optimizations
Among the optimizedmodel parameters in LDASUT, soil porosity is a

key parameter to determine soilmoisture content, but it is not able to be
measured at a regional scale. Nevertheless, its value should be over 0.38
according to the observed in-situ SSM time series (see Fig. 5). Yet the
default value of soil porosity in SiB2 is 0.31, and the optimized value
based on the implementation of Pass 1 is 0.41. The latter is much higher
than the former but close to the “observed” one (N0.38). Therefore, the
LDASUT produces nearly unbiased SSM estimate.

To investigate the applicability of the optimized parameters, we
conducted the data assimilation Pass 2 for the year of 2012, with
model parameters pre-optimized (in Pass 1) in the year of 2011. Fig. 9
shows that the assimilation for 2012 produces SSM estimates very
close to the observations, which is much better than the open-loop
LSM simulation. This indicates that the model parameters optimized
for a period may be valid for another period in the area of interest,
and thus it is promising to reduce the computational load when doing
the long-time data assimilation.

4. Summary

The recently launched SMOS satellite provides a magnificent oppor-
tunity to monitor the ground surface soil moisture. Various evaluations
on the SMOS retrievals have been carried out worldwide, but mostly fo-
cused in Europe and America. Besides, the recently publicized SMOS L3
product is rarely evaluated. This study evaluates both SMOS L2 and L3
soil moisture products against a newly established Tibetan Plateau soil
moisture network, based on which the SMOS L2 data are selected to
be assimilated into a dual-pass land data assimilation system to explore
the feasibility of estimating SSM with high temporal resolution and
acceptable accuracy.
Both SMOS L2 and L3 products have large uncertainties at node
scales, while the average over a 100-km scale can reflect the surface
wetness well, and L2 data performs better than the preliminary version
of L3 data. The retrievals highly depend on the climate. During the
unfrozen season (June 1 toOctober 1), the ascending (morning) retriev-
al shows small biases than the descending (evening) one, perhaps due
to the large temperature gradient in the evening. After averaged at the
100-km scale, the SMOS L2 ascending retrieval can approach the antic-
ipationwith RMSD= 0.060m3m−3 during the unfrozen season.When
the diurnal freezing–thawing cycle occurs, the ascending retrieval
becomes degraded, due to the soil freezing in the morning. During the
winter, retrievals are rarely available due to the presence of frozen soil
and snow cover.

After the SMOS L2 ascending retrieval is assimilated into the dual-
pass data assimilation system, the soil moisture estimate evidently
outperforms the remote sensing alone or the open-loop land surface
modeling. Actually, the accuracy of the estimate fulfills the expectation
of the SMOS mission with RMSD ≤ 0.040 m3 m−3. This is attributed to
the dual-pass framework of LDASUT that may optimize model parame-
ters based on satellite data rather than in-situ data. Thus the SMOS L2
soil moisture assimilation scheme can be used to estimate the surface
soil moisture for the Tibetan Plateau semi-arid region.
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