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Satellite radar data has been employed extensively to monitor flood extents, where cloud cover often prohibits
the use of satellite sensors operating at other wavelengths. Where total inundation occurs, a low backscatter
return is expected due to the specular reflection of the radar signal on the water surface. However, wind-
induced waves can cause a roughening of the water surface which results in a high return signal. Additionally,
in arid regions, very dry sand absorbs microwave energy, resulting in low backscatter returns. Where such
conditions occur adjacent to open water, this can make the separation of water and land problematic using
radar. In the past, we have shown how this latter problem can be mitigated, by making use of the difference in
the relationship between the incidence angle of the radar signal, and backscatter, over land and water. The
mitigation of wind-induced effects, however, remains elusive. In this paper, we examine how the variability in
radar backscatter with incidence angle may be used to differentiate water from land overcoming, to a large
extent, both of the above problems.
We carry out regression over multiple sets of time series data, determined by a moving window encompassing
consecutively-acquired Envisat ASAR Global Monitoring Mode data, to derive three surfaces for each data set:
the slope β of a linear model fitting backscatter against local incidence angle; the backscatter normalised to
30° using the linear model coefficients (σ30

0 ), and the ratio of the standard deviations of backscatter and local
incidence angle over thewindow sample (SDR). The results are new time series data setswhich are characterised
by the moving window sample size.
A comparison of the threemetrics shows SDR to provide themost robust means to segregate land fromwater by
thresholding. From this resultant data set, using a single step water–land classification employing a simple (and
consistent) threshold applied to SDR values, we produced monthly maps of total inundation of the variable
south-western basin of the Aral Sea through 2011, with an average pixel accuracy of 94% (kappa=0.75) when
checked against MODIS-derived reference maps.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Mapping water using radar remote sensing

Themapping of water extents plays an important role across several
fields. In recent years, much attention has been paid to the monitoring
of wetland ecosystems, in which inundation patterns are formative
in the study of biodiversity and greenhouse gas emissions (Aires, Papa,
& Prigent, 2013; Bass et al., 2013; Bwangoy, Hansen, Roy, Grandi,
& Justice, 2010; Dronova, Gong, & Wang, 2011; Haas, Bartholomé,
Lambin, & Vanacker, 2011). Much research has turned to the use
of radar remote sensing to map inundation (Arnesen et al., 2013;
Frappart, Seyler, Martinez, León, & Cazenave, 2005; Gan, Zunic, Kuo,
& Strobl, 2012; Hostache et al., 2009; Mason, Davenport, Neal,
Schumann, & Bates, 2012; Schumann, Di Baldassarre, & Bates, 2009).
rady).

ghts reserved.
Radar has several advantages over visual-infra red (VIR) data — being
an active sensor system, it can acquire data independently from the
position of the sun. Perhaps most importantly, radar can penetrate the
cloud cover that prohibits, to varying degrees, the use of VIR data for
continuous flood monitoring, or for timely production of flood maps
for disaster response purposes. To take full advantage of radar data,
much research has been concerned with the task of overcoming some
difficulties in the interpretation of radar images. Flat, open water acts
as a specular reflector of radar energy away from the sensor. For
this reason, water under certain conditions is characterised by a low
backscatter return. However, where structures such as vegetation,
steep land forms and man-made features emerge through the surface
of the water, multiple interactions between such structures and the
surface of the water cause “double bounce” effects, which result in a
very high return signal. Depending on the relative scale and density of
these features with the pixel size of the data image, the result is either
a mixed pixel mid-value aggregate of low and high backscatter returns,
beinghard to distinguish fromdry land, or a very high backscatter value,
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which in turn can be very hard to distinguish from wet soil or
vegetation. Consequently, some research has focussed on overcoming
these effects, in terms of the optimal radar configuration (band,
polarisation orientation, incidence angle, resolution, time series and
data synergy) (Grings et al., 2009; Henderson & Lewis, 2008; Hess &
Melack, 2003; Hess, Melack, Filoso, & Wang, 1995; Marti-Cardona,
Lopez-Martinez, Dolz-Ripolles, & Bladè-Castellet, 2010; Martinez &
Letoan, 2007; Quegan, Le Toan, Yu, Ribbes, & Floury, 2000; Ribbes,
1999). Another common problem with the identification of open
water with radar data is caused by the waves induced on the surface
of the water by winds over a particular speed. The phenomenon is the
result of the roughenedwater surface reducing the proportion of energy
reflected away from the sensor.

Research has identified the particular wind speeds and relative
orientations that cause this effect, and the best radar configurations
that may be used to minimise it (Liebe, van de Giesen, Andreini,
Steenhuis, & Walter, 2009). However, the problem does persist, and in
certain regions, can narrow the opportunity for water classification
using radar data to an almost unusable level, as will be seen.

1.2. The use of multiple incidence angle, low spatial–high temporal-
resolution radar data

Backscatter values over multitemporal time series of satellite radar
data have been used as a tool to detect land use, by analysis of the
variation of backscatter with respect to time, and to changes in, for
example, plant phenology and biomass. Le Toan et al. (1997) model
the interaction of C-band radar with rice and water at various stages
of crop development, in order to monitor rice farming on a large
spatial scale. Their research is extended by Ribbes (1999), who analyse
observed backscatter values from RADARSAT against rice height,
biomass and age, for the same purpose. Quegan et al. (2000) recognised
the potential of using the relatively low temporal variability of
backscatter values in forest compared with other land cover types as a
forest segregation technique. Martinez and Letoan (2007) incorporated
Fig. 1. Map of regions under study: the Aral Sea in Kazakhstan/Uzbekistan, and Lakes Balkhas
Consortium for Spatial Information (Jarvis et al., 2008).
the temporal variation of L-band JERS-1 data into their classification
technique when mapping flood patterns and vegetation in the Amazon
floodplain. Their time series is used to increase the effective number of
looks in the calculation of a mean backscatter coefficient, which is
coupled with a temporal change estimate, derived over the time
series, to classify flood conditions as never, occasionally and always
flooded, together with broad vegetation types. Specific analysis of the
comparative response of C-band radar to water at low and high
incidence angles was made by Töyrä et al. (2001), who advise that at
high incidence angles, wave-induced effects are overcome, and that at
low angles, the return signal from water has similar values to those for
dry land. For our purposes, it is this very quality that offers a potential
means for better classification of water. The diffuse reflections from
dry land at low incidence angles are not expected to reduce significantly
at higher angles, and the low backscatter values returned from dry
sand are not expected to increase significantly at lower angles, thus
distinguishing both surface conditions from water. For this reason, a
time series of radar data acquired at multiple incidence angles is
desirable.

Some research has focussed on the advantages of the high temporal
frequency of the systematically-acquired C-band radar data from the
European Space Agency's (ESA) Advanced Synthetic Aperture Radar
(ASAR) on the Envisat satellite, operating from March 2002 until April
2012, when full operation of the satellite was lost (Baup et al., 2007;
Mladenova et al., 2010; O'Grady, Leblanc, & Gillieson, 2011; O'Grady,
Leblanc, & Gillieson, 2013; Park et al., 2011). In ASAR's Global
Monitoring (GM) mode, the sensor systematically acquired data at
times when the other modes were not required, providing high repeat
coverage (≈0−4 times per week) across much of the globe (O'Grady
et al., 2011). The data covered the full orbit width across the whole
swath of incidence angles (14–44°), with a pixel size of 500 m and a
nominal spatial resolution of 1 km. Such a coarse spatial resolution
obviously limits the scale of use to which GM data may be put. One
application, as was originally envisaged by ESA, is the monitoring of
sea ice (Zink et al., 2001). Others have drawn much information on
h and Zaysan in Kazakhstan. Map produced from an SRTM90 DEM downloaded from the



Fig. 2. Incidence angle θ, look angle Λ and local incidence angle, α. The blue polygon
represents the position of the target pixel with respect to the ellipsoid model, which is
calculated geometrically from the return-time of the radar signal, alongwith the incidence
angle θ. The red polygon represents the true position and orientation of the target, at a
particular height above the ellipsoid, andwith actual (local) incidence angle α. The terrain
displacement and α may be calculated using a Digital Elevation Model and satellite
configuration data.
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soil moisture from GM data, producing a systematically generated soil
moisture product (Bartsch et al., 2009; Mladenova et al., 2010; Pathe,
Wagner, Sabel, Doubkova, & Basara, 2009).

In pastwork, we have shown the value of GMdata in themapping of
large-scale flooding, such as the 2010 Indus floods in Pakistan (O'Grady
et al., 2011), and the inundation of the Flinders floodplain in Australia in
2009 (O'Grady& Leblanc, 2013). In the case of theflooding in Pakistan, it
was observed that absorption of the radar signal in very dry sand,
adjacent to the flooding, can add further complexity to the segregation
Fig. 3. Median backscatter values throughout the Aral Sea time series for land (red) and wate
However, we know from MODIS imagery that the sea was not frozen through October 2010. T
the water surface. The data between November and April (inclusive) were excluded from the
of land and water. This problem was mitigated to some extent by
image differencing techniques. Subsequently to this, we showed that
the rate of change of backscatter with respect to incidence angle was
sufficiently different between water and land, to be able to distinguish
the two, independently of absorption in dry sand. The technique
employed was to carry out pixel-wise regression, modelling radar
backscatter against incidence angle across a time series for a given
period, according to the model

σ0
α ¼ β � α þ A ð1Þ

where σα
0 is the backscatter, in decibels, at local incidence angle α, β is

the slope and A is the intercept at α=0.
The slope of the model, β, over water, was found to be

approximately double that over land. The separability between water
and land using β was seen to be far greater than that using backscatter
alone. The influence of wind-induced water surface roughening on the
outcome was one of chance coincidence between the incidence angles
and the timing of wave-inducing winds.

1.3. Research questions

There are several questions that remain to be explored in the
relationship between radar backscatter and incidence angle, for the
mapping of water extents. The regression methods described above
depend upon the temporal frequency of data coverage to determine
the temporal resolution and quality of land–water classification output.
The extent of this needs to be established, and this should enable us
to predict the potential use of such methods with new sensors on
anticipated satellite missions. The quantity of data available affords us
the ability to carry out multiple regression calculations on a large data
set in several different regions, to establish the relative stability of
thresholds using backscatter and β, providing a further measure of the
potential value of such methods in the future.

We targeted three lakes in Central Asia: The Aral Sea in Kazakhstan/
Uzbekistan, and Lakes Balkhash and Zaysan, both in Kazakhstan
(see Fig. 1). Each of the lakes is surrounded by landwhich demonstrates
absorption of GM radar energy, and each demonstrates the significant
presence of wind-induced roughening. The three lakes also have a
reasonable east–west (cross-orbit) spatial range, increasing the number
of orbit paths from which data may be drawn, thus ensuring good
availability of data acquired at the full range of incidence angles. The
Aral Sea region was given closer consideration, due to the variability
r (blue). The relatively higher values for water in the mid-winter months are due to ice.
he high median values through September and October are attributed to wind effects on
separability analysis to avoid ice.

image of Fig.�2
image of Fig.�3


Table 1
Bodies of water chosen for this study, and the bounds of their associated study regions.

Name Country South latitude North latitude West longitude East longitude

Aral Sea Kazakhstan/Uzbekistan 44°11′05″ N 46°53′07″ N 058°05′37″ E 062°27′44″ E
Lake Zaysan Kazakhstan 47°30′23″ N 48°44′42″ N 082°54′26″ E 085°18′27″ E
Lake Balkhask Kazakhstan 44°38′15″ N 47°03′27″ N 072°59′18″ E 079°25′37″ E
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of its extents (Breckle, Wucherer, Dimeyeva, & Ogar, 2012). We had
previously acquired GM data between September 2009 and December
2011. Given the potential presence of ice on the lakes between
November and April, these months were excluded from our regression
calculations. The resulting data set comprised 393 GM files.
2. Method

Radar backscatter returned to a satellite sensor is a function of,
among other things, the angle of orientation of the target surface with
respect to the satellite sensor, known as the local incidence angle, α
(see Fig. 2).

When using image data acquired over a wide swath, the returned
signal corresponds to varying incidence angle (θ), due to the differing
Look angle, Λ, and to the curvature of the ellipsoid. However, the actual
orientation and height of the target result in the local incidence
angle, α, influencing the scattering behaviour of the radar signal. The
relationship between the backscatter (σ0, usually converted to decibels)
and α for a given image pixel varies with the surface conditions (for
example ground cover and surface roughness) and with some average
of the orientation of the surfaces within the pixel area, in relation
to the sensor. Where an entire pixel represents surface water the
orientation is practically uniform, and the surface conditions, in the
absence of radar-visible waves, homogeneous. Due to the fact that
the water surface acts as a specular reflector of microwave signals,
the rate of reduction of σ0 with respect to α is higher for water than
for other surfaces. This has allowed us to successfully map the extents
of a water body, using a time series of radar data at multiple incidence
angles, to a much higher degree of accuracy than was possible with a
single radar image (O'Grady et al., 2013). The process allows the
complete distinction between water and land, including dry sand.
Certain wind conditions do disturb the water surface, returning a very
Fig. 4. The number of available GM data images intersecting the study regions per month,
between August 2009 and December 2011.
high signal instead of the low value associated with specular reflection
away from the sensor, which we expect from smooth water. For this
reason, the success of the regression model on a small time series
frequency (n) is unpredictable, with the sign and magnitude of β
depending on the timing of the adverse wind conditions within the
time series. One way to attempt to overcome this problem is to ignore
the sign of β, and base a classifier decision on the absolute slope
magnitude. In this research, we accept the possible presence of wind
effects as simply a further contributor to distinctly higher variability of
backscatter from water compared with land, and we measure this by
calculating the ratio of standard deviations (SDR) of the backscatter
σ0 and α at each pixel through the time series, such that

SDR ¼
sd σ0

� �

sd αð Þ ð2Þ

where sd is the standard deviation of values of a pixel across the time
series.

The denominator in Eq. (2) is essential, as values of σ0 at different
pixels across a time series may arise from different data frequencies
with quite different ranges of local incidence angle, depending on the
proximity of the pixel in relation to the various orbit tracks from
which the data was acquired. We would expect a much higher SDR
for water than for land. For the Aral Sea region, this is demonstrated
in Fig. 3, which plots median backscatter values of water and land
throughout the data set. However, it remains to be seen whether
this measure is an improvement over β or σ0 for automating the
classification of surface water.

Research in the field of radar remote sensing generally regards
incidence angle as a property which must be observed and optimised
for purpose (e.g. Grings et al. (2009), Lang, Townsend, and Kasischke
(2008)), or that must be corrected for (e.g. Menges, Van Zyl, Hill, and
Table 2
MODIS daily surface reflectance data used for this paper (USGS, 2013).

Terra/Aqua Date Tile

H V

T 2010–01–07 22 04
T 2010–01–18 22 04
T 2010–03–23 22 04
T 2010–04–01 23 04
T 2010–07–01 23 04
T 2010–07–02 22 04
T 2010–07–05 22 04
T 2011–01–07 22 04
T 2011–07–02 22 04
T 2011–07–05 23 04
T 2012–01–18 22 04
A 2010–05–18 22 04
A 2010–11–08 22 04
A 2011–03–17 22 04
A 2011–04–16 22 04
A 2011–05–17 22 04
A 2011–06–16 22 04
A 2011–07–16 22 04
A 2011–08–15 22 04
A 2011–09–15 22 04
A 2011–10–16 22 04
A 2011–11–09 22 04

image of Fig.�4


Fig. 5. (Top) Map showing transect and sample regions at the Aral Sea region of interest. The yellow line on the map shows the transect fromwhich the values of the MAXIMUMMODIS
SWIRwere extracted for the profile plotted below. Rather than using a single land–water threshold, two “safe” thresholds were drawn from the profile plot, allowing a buffer for uncertain
boundary conditions, and enabling a high degree of certainty for the classification of permanent land (shown on the upper map in grey) and water (shown as black). From these,
contiguous subregions were chosen for sampling, shown as green and red outlines.
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Ahmad (2001)). Herewe seek to draw the benefits of theuse ofmultiple
incidence angles by observation of the difference in response between
water and land at different angles of incidence.
2.1. Data acquisition and pre-processing

Regions of interest were defined for the three lake environs as
shown in Table 1.

Envisat ASAR Global MonitoringMode (GM) datawere downloaded
systematically from ESA's Earthnet Online Portal through a Category 1
Fast Registration agreement (ESA, 2009). All available files intersecting
the study regions between August 2009 and December 2011 were
processed (see Fig. 4 for quantities). The Next Esa Sar Toolbox (NEST)
was used to pre-process the data. NEST is open source (GNU GPL1)
software, developed for ESA and made available via its website (NEST,
2013). The Range-Doppler method (Small & Schubert, 2008) was
used to orthorectify the data with the SRTM 90 m void-filled
Digital Elevation Model (DEM) downloaded from the Consortium for
Spatial Information website (Jarvis, Reuter, Nelson, & Guevara, 2008).
1 http://www.gnu.org/copyleft/gpl.html
Radiometric normalisation was applied (Kellndorfer, Pierce, Dobson,
Member, & Ulaby, 1998), and the backscatter (σ0) and local incidence
angle (α) values were extracted as two image bands, masked to the
regions of interest.

Moderate Resolution Imaging Spectroradiometer (MODIS) imagery
was downloaded from the U.S. Geological Survey's GLOVIS website
(USGS, 2013). Aqua or Terra 500m daily surface reflectance products
MYD09GA or MOD09GA were selected as appropriate to minimise
cloud cover. These are listed in Table 2.

2.2. Regression procedure

Our taskwas to determine the relative separability of land andwater
using β and SDR, and to compare the results with what could be
achieved with standard backscatter values. To do this, groups of
consecutive data images were used to perform regression at various
temporal scales. Each regression resulted in three image files for the
region, from which statistics could be sampled from known water and
land regions, in order to determine the separability between them. In
the case of backscatter, we know this to be dependent on local incidence
angle. For this reason, the vales were normalised to a local incidence
angle of 30° prior to averaging over the group, giving us σ30

0 . The β

http://www.gnu.org/copyleft/gpl.html
image of Fig.�5


Fig. 6. The schematic density plots above demonstrate the consequences of separability (M) values of 1, 1.5 and 2 on resultant land-water classifications performed using thresholds on the
data value. Themodel is simplified, but it gives a general idea of themeaning ofM. The results assume an equal number of pixels of land andwater, and that the distribution of data values
for each follows a normal distribution. Assuming the chosen threshold in each plot was at the central data value, the shaded area beneath the plots represents themisclassified pixels. The
percentage of pixels misclassified where separability equals 1, 1.5 and 2 would then be 32%, 6.7% and 2.3% respectively.
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value used to do this was taken from the regression carried out over the
entire time series. The procedure was split into three parts:

1) Determining the relative land–water separability using σ30
0 , β and

SDR;
2) Analysis of optimum thresholds for each value; and
3) The creation of a monthly time series of water extents for the Aral

Sea through 2011.

For each location, MODIS images were reprojected and masked to
the region of interest. In order to establish sample regions of permanent
water, an image was computed as the maximum of MODIS Band 6
(SWIR) values across the full MODIS data set. A section through the
lakes was taken, and the profile of maximum SWIR values was plotted
and analysed (see Fig. 5). Conservative thresholds were established for
water and land, allowing room for uncertainty in the values between
the thresholds. From the resulting binary land–water image, core
polygons were created which were to form the regions from which
water and land pixel values were sampled throughout the analysis.

For the separability analysis, regression was carried out on
individual groups within time series, where group size (number of
images) = 2,4,8,16,32…N where N = total number of images for the
region of interest.

2.3. Relative separability analysis

The establishment of a value of β, by which to determine the
presence of water, requires a regression calculation. The integrity of
the result depends on the number of images contained within the
time series on which it is based. Radar data is quite noisy, and sufficient
backscatter values must be acquired over a broad enough range of
incidence angles to obtain a good model fit. We set out to determine
the number of consecutive data acquisitions required for segregation
methods using β and SDR to produce robust results. This, in turn,
would allow us to relate temporal frequency of radar data coverage to
the temporal precision by which we may be able to use this method
to monitor surface water extents.

To compare separability, the M-statistic has been used by others
(e.g. O'Grady et al. (2013), Smith et al. (2007), Lasaponara (2006),
Veraverbeke, Harris, and Hook (2011)), which is calculated as
|μ1 − μ2|/(σ1 + σ2), where μ1 and μ2 are the means and σ1 and σ2

are the standard deviations of values for the two categories being

image of Fig.�6


Fig. 8. Probability density functions showing the distribution of normalised backscatter values (top) and slope values (bottom), for pixels representing permanent land (red) and
permanent water (blue) at the Aral Sea study region. Slope values were taken from the full regression carried out over the whole time series for the Aral Sea region of interest. The
final slope values for each individual pixel were then used to normalise the backscatter values in the individual images to 30°. The separability indices (M-statistic) between land and
water were 0.84 and 2.36 for backscatter and slope, respectively.

Fig. 7. Scatter plot of radar backscatter valuesσ 0 against local incidence angle α for all pixels sampled from permanentwater (left) and permanent land (right), throughout the entire time
series. This involved 2,285,832 data pairs for water and 8,647,965 data pairs for land. The red lines show the linear fit, with slopes and intercepts as shown inset.
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compared. The M-statistic gives a measure of the separability of
values associated with separate means, in terms of their combined
standard deviation. This is explained graphically in Fig. 6.

2.4. Threshold analysis

In order to gauge the stability of thresholds for each of σ30
0 , β and

SDR, the data for each study region was arranged into groups, each
with 14 (or less) consecutive images. For each group, regression was
carried out to establish maps for σ30

0 , β and SDR. For each of these, an
optimised threshold was calculated and recorded. To achieve this, all
pixel values for each of permanent land and permanent water were
extracted. Starting with a threshold value t half way between the
mean values for land and water, the number of cells that would be
erroneously classified using a threshold of t was calculated. The
optimum threshold was then found by raising and lowering t and
repeating the process through binary tree iteration until the resultant
value converged to three decimal places. In this way, 20 optimised
threshold values for each of σ30

0 , β and SDR were established for
comparison.

To measure the accuracy corresponding to the established
thresholds, binary reference water–land maps were created for each of
the months March through to November 2011, using a 15% reflectance
threshold on MODIS Band 6 (SWIR) images acquired mid-way through
each of the corresponding months. Similar binary maps were then
produced using σ30

0 and SDR, by applying the median thresholds
established above for each. Accuracy of classification for each month
using σ30

0 and SDR was then gauged from contingency tables by
calculating Cowen's Kappa statistic for each (Hudson & Ramm, 1987).

2.5. Mapping of monthly maps of Aral Sea extents

Having established SDR as the measurable whose values were most
easily segregated between land and water, the task of producing a time
series of lake extent maps was undertaken for the Aral Sea. For this
purpose, a series of multiple aggregations was carried out, one for
every data image in the entire set (less 10), using a rolling stack of the
five preceding and four succeeding image files, ensuring that there
were always ten image files involved in each aggregation. Each
aggregation simply involved calculation of the standard deviations of
σ0 and α through the stack for each pixel, in order that the SDR could
Fig. 9. Separability index (M-statistic) between land pixels and water pixels in the three study r
(n). Comparisons are made in separability using the mean normalised backscatter values (σ3

Deviation Ratios (SDR, shownas green crosses). To the left of the plots, where fewdata valueswe
using SDR becomes quite clear above around n=5,where very high separability is achieved usin
be computed and a map created. Once the full set of SDR maps was
complete, the pixel-wise SDRmaximawere calculated for each calendar
month. The reason that the maximum was chosen, rather than the
mean or the median, was the decision to reflect, in the final product,
whether or not water had been detected in a pixel at any time during
that month, and also to mitigate any wind-induced effects. Next, the
SDR threshold of 0.349 dBdeg−1, determined in the threshold analysis
described above, was applied to the monthly SDR images. Finally, a
3×3 modal neighbourhood filter was applied in order to remove most
of the edge effects found at the extremities of the orbit tracks, to
produce monthly water maps.

3. Results & discussion

3.1. The use of backscatter variability to classify open water

Martinez and Letoan (2007) are able to classify regions according
to flood dynamics and vegetation classes, as a function of their
mean backscatter coefficient and their temporal variability, which is
attributed to soil moisture, vegetation state and flood progress. In
our case, we take a moving window of time series data to represent
a snapshot in time. Regression is used to derive a mean backscatter
coefficient and twomeasures of the variability of backscatter, specifically
with respect to the corresponding variation of incidence angle. The
results are the new time series sets (σ30

0 , β and SDR), with which there
is a trade-off between temporal resolution and regression correlation.
The land–water separability for each parameter surface is matched
against each other for multiple window sizes. Martinez and Letoan
(2007) use L-band JERS-1 data, which is less susceptible to wind-
induced effects on open water that cause the deviation from the low
backscatter values following specular reflection. In our case, we wish to
use multiple time series windows to produce pseudo-instantaneous
snapshots of water extents, and for this we have capitalised on the
availability of GM data. Being in the C-band spectral range, GM data is
far more susceptible to such wind effects, which therefore play an
important part in the classification results for the three result sets.

3.2. Distribution of backscatter values on water and land

Despite the comparative variability of land and water backscatter
values, the inter- and intra-location slope values resulting from the
egions, against the number of data instances involved in the linear regression calculations
0
0 , shown as blue triangles), the slope values (β, shown as red circles) and the Standard
re used to carry out the regression, separability varieswidely. The superiority in separation
g β and SDR, although the range of success is large. This range contracts after aboutn=10.
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linear regressions proved to be consistent for water, with a mean value
of β=−0.756 and a standard deviation of 0.013. For land, β had amean
of−0.281 and a standard deviation of 0.065. Scatter plots representing
the whole Aral Sea data set are shown in Fig. 7, along with their linear
model coefficients. The variability of the absolute water backscatter
values is reflected in the R2 value of 0.48.

3.3. Land–water separability analysis

For the regression over the full sets of data, land–water separability
(M-statistic) values usingmeanσ30

0 were 1.81, 0.91 and 1.40 for the Aral
Sea, Lake Zaysan and Lake Balkhash respectively. Using β, values
reached 2.73, 1.79 and 2.35. What this difference means for the Aral
Sea region can be seen in the density plots in Fig. 8. These plots show
the relative frequency of pixels against corresponding pixel values,
independently for water and land. The plot at the top, representing
normalised backscatter values, shows that land pixels cover the full
range of σ30

0 values. Very low values (σ30
0 between −19 and −16 dB)
Fig. 10. The Aral Sea between 8 and 23May 2010, as depicted by GM andMODIS data. Images A
Images D and E are produced from aMODIS Aqua image acquired on 18May 2010: D) NDVI; E)
theσ30

0 imageA, but only at one location in theβ imageB, and are almost absent from the SDR im
difficult in the σ30

0 image A, whilst this effect is not seen in images B and C. The very high (brig
(Breckle,Wucherer, & Dimeyeva, 2012a). Similar bright values (2) caused bymultiple reflection
β image (B) or the SDR image (C).
were returned from the very dry sand regions of the old lake bed
existing mostly between the 1960 and1990 shorelines of the original
lake, and the highest values (σ30

0 N −9 dB) were returned from salt
flats between the 1990 and present shorelines of the south-eastern
basin. The distribution of β values in the lower plot tells a very different
story, with the overlap of values (and therefore expected commission–
omission error) being less than 2%.

The separability seen in these density plots results from the
regression over the whole data set for the Aral Sea. As such, they are
not useful in terms of gaining a snapshot of the extents of water at
any one time.

In order to observe the relative performance of σ30
0 , β and SDR in the

potential mapping of surface water extents, the separability between
values of permanent water and permanent land was calculated using
sets of consecutive image data of various sizes, ranging from three
images to the full dataset. The results are shown in Fig. 9. As an
individual data image does not often cover an entire sample region
spatially, separability is plotted against the average data frequency per
, B and C are all produced from the same 7 GM data files: A)Mean σ30
0 ; B) Slope β; C) SDR.

5:2:3 Composite. Wind induced roughening effects (1) are present at various locations in
ageC.Absorption of the radar signal in dry sand (3)makes the separation ofwater and land
ht) values (4) in image A represent the barren salt flats west of the 1990 eastern coastline
s between vegetation andwater at the delta of the Syr Darya river are not seen in either the

image of Fig.�10


Table 3
Thresholds for values of σ30

0 , β and SDR, optimised for the separation of surfacewater from
land, based on regression calculations for the three regions combined. n is the mean data
frequency per pixel.

n Threshold

σ30
0 β SDR

11.1 −12.869 −0.607 0.318
11.0 −15.259 −0.512 0.369
10.8 −15.597 −0.596 0.350
9.7 −16.346 −0.400 0.305
10.5 −15.573 −0.627 0.379
10.5 −16.503 −0.548 0.371
10.0 −14.794 −0.712 0.378
7.0 −15.887 −0.574 0.341
8.0 −13.932 −0.625 0.370
8.7 −14.351 −0.516 0.318
7.7 −14.124 −0.604 0.338
8.3 −14.802 −0.633 0.372
7.8 −14.663 −0.508 0.311
7.7 −15.222 −0.553 0.356
8.0 −14.806 −0.551 0.293
6.8 −14.824 −0.638 0.340
3.8 −13.567 −0.727 0.368
7.8 −15.169 −0.502 0.346
12.7 −14.745 −0.651 0.401
12.0 −15.298 −0.443 0.336
Median −14.815 −0.586 0.349
Units dB dB/deg dB/deg
Robust Cν −0.047 −0.128 0.095

Table 4
Figures taken from contingency tables of classification accuracy tests done of monthly
Aral Sea extent maps using rolling SDR calculations and mean σ30

0 values, against MODIS
SWIR (Band 6) binary water maps. Fixed thresholds were used throughout for all of the
classification and reference maps: MODIS Band 6 reflection values below 15% were
matched against SDR values above 0.349 dB deg−1 and σ30

0 values below −14.815 dB.

Month 2011 σ30
0 SDR

% Obs. correct Kappa stat. % Obs. correct Kappa stat.

3 67.44 0.13 86.18 0.60
4 68.55 0.30 94.90 0.82
5 65.57 0.21 95.27 0.80
6 61.65 0.20 94.91 0.79
7 66.83 0.24 96.30 0.83
8 69.09 0.25 96.77 0.84
9 65.78 0.19 95.71 0.79
10 67.07 0.10 93.95 0.72
11 71.10 0.22 95.34 0.73
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pixel of the sample area (n). In the case of Lake Zaysan (the right-most
plot), having removed from the data set the months between April and
November (when the lake freezes), the sample size became quite small,
although the trends did follow those of the other two lakes.

3.3.1. Low n values
Where n ≤ 5, the relative separability between the measured

quantities depends greatly on chance outcomes. For β, the presence of
wind effects causing high values where incidence angles are large in
one image, and the subsequent absence of such effects (causing low
returns) where incidence angles are small, will result in a positive
regression slope, or a mid-range β value once averaged with more
characteristic low values. In such a case, the SDR value remains high,
indicating water, as this value reflects high variability irrespective of
direction.

This suggests the potential for the two data sets to complement each
other in the mapping of surface water. Where n=1, we are limited to
the use of σ0. This can be normalised to a mid-range incidence angle
using a prior established β value, but, as we know, β varies by a factor
of two, according to whether a particular pixel represents water or
land. As it is this distinction we are aiming to make, the merits of
carrying out such a correction on a single data image are limited.

3.3.2. High n values
Where n N = 10, relative land–water separability between the

methods is seen to stabilise. At this point, the clear potential to segregate
land fromwater using β or SDR, instead of themean σ30

0 image becomes
clear. Beyond n≈ 20, separability for SDR remains consistently higher
than for β and σ30

0 .

3.4. Integrity of resultant water maps

Fig. 10 shows the Aral Sea region inmidMay 2010. Inset images A, B
and C are all products of the same 7 GM images acquired between 8
and 23 May 2010. Image A values represent the mean normalised
backscatter, σ30

0 , in decibels. Various effects can be seen here. The
expected low (dark) backscatter values in image A are obscured by
wind-induced roughening effects in large parts of the North Aral Sea
and south-east basins (1). High value (white) backscatter returns at 2
are attributed to the “double-bounce” multiple reflections between
vertical components of vegetation and surface water in the wetlands
of the Syr Darya river delta. Very low (dark) backscatter returns are
observed where the former lake beds comprise sandy desert (3), due
to absorption of the radar signal. In contrast, where the former lake
bed comprises bare salt flats and swamps (Breckle, Wucherer, &
Dimeyeva, 2012), a very high (bright) backscatter response is observed
(4). Image B represents the slope β of the regression model. Wind-
induced roughening effects are still present in this image (1), though
to a much lesser degree than in the σ30

0 image. The extent of the effect
is not the same, as the orientation (sign) of the slope depends on the
timing of the wind conditions with respect to the relative incidence
angle values. In the SDR image (C), such wind effects have almost
disappeared completely. Locations 5 and 6 show areas where the extent
of water that can be discerned in image E appear reduced, due possibly
to wind effects or to the mixing of values from sub-pixel heterogeneity.

3.5. Relative performance of β and SDR

Results of the separability analysis described, and of the comparison
of resultant images produced using the β and SDR methods as seen in
Fig. 10, indicate the superiority of the simpler SDR method over the
use of β. This is attributed to the fact that the calculation of β depends
upon the adherence of the data to a linear model, and takes no account
of the variability of the backscatter values. A single coefficient is
calculated, which depends upon the quantity of backscatter values
returned by specular reflection from the relatively undisturbed water
surface having a greater influence than that returned via diffuse
scattering, or following multiple interaction. The former displays
a strong relationship with local incidence angle, giving us high
separability betweenwater and land using thismethod, whilst the latter
does not.

Given that the SDR method is indiscriminate with regard to the
drivers behind the level of variability of a backscatter signal, it is likely
that significant differences in surfacewetness on land across the sample
data of a particular period would produce SDR values similar to those
observed over water, although to what extent this might occur has
not been tested in this study. In such cases it is feasible to assume that
concurrent calculations of β could augment the SDR results and that
the two could be used together in a decision-tree analysis to optimise
the separation of water and land.

3.6. Comparison of stability of thresholds of β and σ0

The optimal threshold values of σ30
0 , β and SDR by which to

demarcate the division between land and water, calculated across
multiple data groups in the method described, are tabulated in Table 3.
Along with the median values, the robust coefficient of variation
Cν (Mean absolute deviation÷MEDIAN) is shown as a measure of
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relative distribution. Of the three measurables, β has by far the greatest
Cν, and would seem likely to require a case-by-case sensitivity analysis
to establish a threshold depending on the merits of the data set being
used. Optimal thresholds for both σ30

0 and SDR, on the other hand,
demonstrate low Cν values, suggesting the opportunity to be able to
apply the median threshold value more broadly in order to achieve
the best possible separation of land and water, with a single data
value. What remains to be seen is the possible spatial accuracy that
can be achieved with each.

The results of the accuracy tests on land–water maps created using
the above median thresholds for σ30

0 and β are shown in Table 4. The
relative percentages of pixels observed correctly are perhaps better
reflected by the Kappa statistics, which account for the proportion of
pixels belonging to each class in the reference image.

Cowen's kappa statistic has been used extensively in the past as a
measure of classification accuracy (Ban, Hu, & Rangel, 2010; Gray &
Song, 2013; Hudson & Ramm, 1987; Kellndorfer et al., 1998; Liebe
et al., 2009; Martinez & Letoan, 2007; Rignot, Salas, & Skole, 1997;
Töyrä & Pietroniro, 2005; Töyrä et al., 2001). In recent years there has
been discussion as to whether or not it is a good indicator of accuracy.
This discussion centres largely on what information is missing from
the single kappa value, and opponents to its use suggest that analysis
of the contingency table may be more useful for the analysis of
classification performance (Pontius & Millones, 2011). In our case,
kappa is useful. For the Aral Sea region, we are looking at a binary
classification, in which 89% of the pixels cover land. This means that if
our classification technique picked up no water at all, then 89% of our
pixels would be observed correctly.

This point is highlighted in Fig. 11, in which we see the spatial
distribution of classification errors for the month of August 2011 over
the Aral Sea, when using σ30

0 or SDR in the classification process.
White regions show where both methods are correct. In both cases,
this includes the majority of the area of the true lake extents. Blue
Fig. 11. Classification errors inσ30
0 and SDRwatermaps for themonth of August 2011. 69% of pix

spatial distribution of correct pixels would lead to a very poor result, which is reflected in the k
proportion of incorrect water pixels (shown in blue and red) with respect to their total is mor
regions show where the SDR method alone is incorrect. These are
confined mainly to the region of inflow from Uzbekistan via the Amu
Darya river, and some of this error may be attributed to the relative
timing of the snapshot MODIS reference image used in the kappa
test, when compared with the wider temporal range of acquisition of
GM data used in the SDR method. The grey regions are where only the
σ30

0 classification method produces incorrect results. Most of this
represents land incorrectly classified as water. The considerable extent
of these misclassified pixels in comparison to the size of the actual
lakes is the reason for the corresponding kappa statistic of 0.25. The
pixels in red were misclassified using both σ30

0 and SDR methods.
Discrepancies at the boundaries between land and water are to be
expected. Firstly they form a continuous region of values close to the
thresholds of the variable used in the classification as well as the
MODIS reflectance used for the reference map. Secondly, where water
represents a certain fraction of a pixel at the land–water boundary,
the coherent summation of the radar signals may produce a different
response to that of the SWIR MODIS signal, in terms of which side of
the threshold the value finally falls.

3.7. Aral Sea time series of spatial extents

The resulting maps of the spatial extents of the Aral Sea through
the non-frozen months of 2011 are shown overlain consecutively
onto a terrain relief map in Fig. 12. It must be remembered at this
point that the extents captured represent 100% water fraction—that is,
total inundation of each pixel. This arises from the method chosen. We
were using MODIS SWIR values as a baseline by which to validate our
classification methods. Determining the precise boundary between
water and land usingMODIS and thewithin-pixel water fraction is itself
complex (e.g. Li, Sun, Yu, et al. (2013), Li, Sun, Goldberg, and Stefanidis
(2013)), which led us to use a reflectance threshold at a level that
excluded boundary values, as discussed in the Method section above.
els in theσ30
0 classification are correct. However, as can be seen by the grey areas above, the

appa value of 0.25. Similarly, 97% of pixels in the SDR classification are correct, but as the
e significant, the kappa value only reaches 0.83.

image of Fig.�11


Fig. 12. Monthly spatial extents of the Aral Sea between March and November 2011, as determined using the SDR method.
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4. Conclusion

Access to high temporal frequency ScanSAR data acquired from
multiple incidence angles provides a means to increase the accuracy by
which we can segregate open water using radar data. Using these
methods, spatial accuracy and certaintymay be increased at the expense
of temporal precision. For the arid environment dominating our study
region, SDR provided the most accurate means of classification, and
both SDR and β were far more stable and accurate classifiers than
backscatter alone. It is reasonable to suppose that different surface
conditions may reverse the relative accuracy of SDR and β, but this
remains to be tested.

Current readily-available satellite C-band capabilities rest with the
Canadian Space Agency's Radarsat-2 mission, but ESA's next SAR-
enabled satellite constellation, Sentinel-1, is due to commence this
year with the planned launch of Sentinel-1A, with 1B scheduled for
2015. It is intended that the constellation, in its scanSAR modes, be
capable of daily coverage north of 45° and south of –45° (Fletcher,
2012). Capabilities will increase as new units are added to the
constellation, up to the target maximum of six. Meanwhile, the
Canadian Space Agency (CSA) is planning to launch the Radarsat
Constellation in 2018, which is forecast to provide “daily access to 95%
of the world” (CSA, 2013). In light of the fact that both systems are
being developed under the framework of mutual interoperability
agreements (Fletcher, 2012), it is not too optimistic to assume the
potential for global daily C-band radar coverage, at a resolution of at
least 500m (and possibly as little as 100m) by the end of the decade.

As the weekly coverage of C-band data increases from 7 to 10
instances and beyond, we can conclude from the work done here that
our ability to produce accurate global flood maps, independent of
cloud cover and with little interference fromwind-induced roughening
effects, will be greatly increased for open water in arid regions. When
coupled with the predicted water surface elevation measurement
capabilities of the Surface Water and Ocean Topography (SWOT)
mission, due for launch in 2019 (CNES, 2013; Durand et al., 2010), our
ability to monitor global surface water volumes, discharges and
dynamics will be greatly enhanced. However, this will be limited by
the remaining challenges to increasing the accuracy of classification of
smallerwater bodies, particularly where pixels aremixed at boundaries
and regions of partial inundation.
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