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Abstract 
Mapping the expansion of impervious surfaces in urbaniz-
ing areas is important for monitoring and understanding the 
hydrologic impacts of land development. The most common 
approach using spectral vegetation indices, however, is 
difficult in arid and semiarid environments where vegetation 
is sparse and often senescent. In this study object-oriented 
classification of high-resolution imagery was used to devel-
op a cost-effective, semi-automated approach for mapping 
impervious surfaces in Sierra Vista, Arizona for an individual 
neighborhood and the larger sub-watershed. Results from 
the neighborhood-scale analysis show that object-oriented 
classification of QuickBird imagery produced repeatable 
results with good accuracy. Applying the approach to a 1,179 
km2 region produced maps of impervious surfaces with a 
mean overall accuracy of 88.1 percent. This study demon-
strates the value of employing object-oriented classification 
of high-resolution imagery to operationally monitor urban 
growth in arid lands at different spatial scales in order to fill 
knowledge gaps critical to effective watershed management. 

Introduction and Background
Recent trends of population in-migration related to environ-
mental amenities in Arizona and many other parts of the 
Rocky Mountain region of the US have been associated with 
high rates of urbanization and land development (Vias and 
Carruthers, 2005). Impervious surfaces (materials that pre-
vent the infiltration of water into soil (Slonecker et al., 2001)) 
are created by construction activities, affecting land surface 
temperature, water quality, and watershed properties direct-
ly. Increases in the amount and distribution of impervious 
surfaces in rapidly urbanizing areas can produce potentially 
significant changes in hydrological processes in watersheds 
by altering runoff regimes, increasing peak flows, and degrad-
ing water resources (Arnold, Jr. and Gibbons, 1996; Kennedy 
et al., 2013; Shuster et al., 2005). Additionally, the spatial 
distribution of impervious areas is an important descriptor of 

the physical content of urban environments (Chormanski et 
al., 2008; Shuster et al., 2005). Mapping impervious surfaces 
with remote sensing techniques is an effective way to quantify 
impervious cover (Slonecker et al., 2001; Weng, 2007) and 
thereby improve understanding of the impacts of urbanization 
on runoff processes. The most common approach using spec-
tral vegetation indices, however, is problematic in arid and 
semiarid environments where vegetation is patchy and often 
senescent.

This paper describes a method for mapping impervious 
surfaces using supervised object-oriented classification of 
high-resolution imagery for an urbanizing semi-arid area. 
Insights are provided at the scale of an individual neighbor-
hood as well as the larger sub-watershed to show that despite 
utilizing high-resolution imagery, the method is not limited to 
only small geographical areas. The first section provides back-
ground on the use of object-oriented classification approaches 
for detecting impervious surfaces and identifies the need for 
applications to arid and semi-arid locations, followed by a 
description of the study areas and imagery used. The next 
section describes the methods and results from the neighbor-
hood scale classification (phase 1); then, the methods, results, 
and errors and limitations of the regional scale classification 
(phase 2) follow. The final section offers conclusions and rec-
ommendations for refining the classification method. 

Object-oriented Approaches to Mapping Impervious Surfaces
Earlier strategies for mapping impervious surfaces are based 
largely on user-guided, manual delineation (Lee and Heaney, 
2003; Shuster et al., 2005). The advantage of this method is its 
ability to distinguish between directly and indirectly con-
nected impervious areas, which is important information for 
hydrologic modeling. The major disadvantage, however, is the 
time and effort required to produce delineations, thus limit-
ing application to small areas (McMahon, 2007). A secondary 
drawback is that the digitization of impervious areas by hand 
can affect data consistency and accuracy.

Recent remote sensing approaches for automated mapping 
of urban impervious areas frequently use spectral vegetation 
indices as proxies for imperviousness, assuming for example 
that vegetated areas represent pervious surfaces (Bauer et al., 
2002; Sawaya et al., 2003; Thanapura et al., 2007). Proxies are 
thus based on indices such as Normalized Difference Vegeta-
tion Index (NDVI), where:

	 NDVI = (DNNIR – DNRED) / (DNNIR + DNRED)	 (1)
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and DNNIR = digital number of the near infrared (NIR) band, 
DNRED = digital number of the red spectral band, and NDVI 
is sensitive to vegetation cover. Approaches solely based 
on spectral vegetation indices and assumptions about the 
relation between vegetation and imperviousness, however, are 
not fully suitable for arid and semi-arid urban areas. This is 
because vegetation is sparse and often senescent and xeriscap-
ing is becoming more popular (Colby and Jacobs, 2007). This 
lack of suitability is due in part to an important limitation of 
NDVI: its sensitivity to soil background in sparsely vegetated 
areas (Huete, 1988). Pure spectral classification techniques 
appear least successful (50 percent) and spectral classification 
followed by contextual modeling provides higher accura-
cies (80 percent), but demands significant preparation time 
(Thomas et al., 2003). 

An alternative approach for detecting impervious surfaces 
is object-oriented analysis, which utilizes both the spectral 
characteristics of pixels and their spatial arrangement and 
context within an image (Weng, 2012). Although specific 
algorithms vary and many are proprietary, object-oriented im-
age analysis systems share at least two common mechanical 
bases: (a) image segmentation, i.e., the grouping of pixels into 
recognizable features, and (b) rule-based classifiers that assign 
meaningful labels to categories of features based on a variety 
of characteristics (Lang, 2008). This approach leads to a clear 
advantage of object-oriented classifiers for imagery with small 
ground sample distances (GSD) of one meter or less (Thomas et 
al., 2003). While a 15 m GSD represents a distribution of trees 
as one class, a 60 cm GSD produces 625 spectral samples of 
this class in the same area, including tree structures, shad-
ows, and soil. The much smaller GSD thus tends to yield high 
intra-class variances, suggesting traditional per-pixel classifi-
ers are not well suited for such images (Kressler et al., 2001; 
Thomas et al., 2003). Because a single pixel with small GSD 
represents a subset of a logical class and not several different 
classes, object-oriented classification includes information 
from surrounding pixels in the pattern recognition process, 
increasing achievable accuracies from high-resolution images 
(Thomas et al., 2003).

Unlike traditional pixel-based classifiers, these object-ori-
ented systems also allow for the incorporation of expert 
knowledge (Lang, 2008; Platt and Rapoza, 2008), e.g., through 
parameterization of classification rules based on the expertise 
of the analyst. A review of the multitude of applications of 
object-oriented analysis systems is not possible here, but see 
Blaschke et al. (2008) for a diverse compilation. Overall, stud-
ies have shown that the relative advantage of object-oriented 
classification is its ability to produce acceptable accuracies 
(70 percent) with a relatively low amount of analyst input 
(Thomas et al., 2003). 

Overwatch Systems LTD’s Feature Analyst®1 (FA) is a 
proprietary object-oriented classification software package 
that has been used to detect impervious surfaces with high 
accuracy using very high-resolution orthoimages (Miller et al., 
2007; Miller et al., 2009) and QuickBird imagery (Tsai et al., 
2011). While these recent studies demonstrate the high accu-
racies possible, they were all conducted in humid locales. It 
has not yet been demonstrated what kind of accuracies may 
be achieved in arid or semi-arid settings with much sparser 
vegetation cover using the combination of object-oriented 
classifiers and imagery with small GSD. 

Present Study: Applying Object-oriented Classification to a Semi-arid 
Location
Given the recent advances in object-oriented classification 
algorithms and the critical need to understand the eco-hydro-
logic impacts of increasing imperviousness in urban environ-
ments, this study used FA to develop a method for classifying 
impervious surfaces in the rapidly developing town of Sierra 
Vista in semiarid southeastern Arizona using QuickBird imag-
ery from 2007 and 2009. Sierra Vista is an ideal site for testing 
this method because of its location in a semiarid region. The 
physical complexity of urban areas makes high-resolution 
images especially useful because detailed urban structures 
can be resolved (Kressler et al., 2001; Thomas et al., 2003). 
The objectives of the study were to (a) develop semi-automat-
ed methods using imagery with small GSD and an object-ori-
ented classification for extracting impervious areas in arid 
environments from satellite images for a single subdivision; 
(b) adapt those methods to classify impervious surfaces to 
the larger sub-watershed; and (c) produce a high-resolution 
map of impervious surfaces for the Sierra Vista sub-watershed 
suitable for input to hydrologic models. The methods devel-
oped in this study could be used periodically (in conjunction 
with the releases of census data, for instance) to monitor the 
urbanization of the area and other rapidly growing arid lands 
in tandem with available hydrological data to fill knowledge 
gaps critical to the effective management of watersheds and 
riparian zones. For example, it will lead to a better under-
standing of how continued urban growth may affect storm 
water runoff and its utilization for groundwater recharge.

Study Sites and Imagery
Study Areas
In order to develop the classification approach and also de-
termine its effectiveness when applied to a larger region, this 
study proceeded in two phases at two geographic scales. The 
first phase was at the neighborhood level where the focus was 
on the La Terraza subdivision, a 13 ha gated community with 
homes on lots ranging from 1,600 to 2,600 m2. Homeown-
er association regulations mandate low water landscaping, 
producing a homogenous xeriscaped yard design with little 
vegetation. Gravel mulch covers most of the pervious areas 
(Figure 1) typical of neighborhoods in municipal Sierra Vista. 

The second phase of the study concentrated on a larger 
spatial scale consisting of a 1,179 km2 section of the Upper 
San Pedro Watershed, containing the developed areas of 
Sierra Vista and the Ft. Huachuca military installation (Figure 
2). This study area is bounded to the south by the US - Mexi-
co border and to the west, north, and east by the Sierra Vista 
sub-watershed boundary. The City of Sierra Vista has expe-
rienced unprecedented urbanization resulting in increasing 
land area developed for residential housing. The Upper San 
Pedro Watershed contains the last free-flowing desert river 
system in the United States and parts of the watershed are 
protected within the San Pedro Riparian National Conserva-
tion Area, which supports a large number of bird species and 
related nature-based tourism activities (Goodrich et al., 2000).

Imagery and Preprocessing
The local and regional scale analyses were based upon one 
QuickBird image acquired on 23 February 2007 and six im-
ages from 26 December 2009, respectively. The 2007 imagery 
was chosen because it was the latest available at the time that 
imaged the La Terraza development. The December 2009 ac-
quisition was timed to coincide closely with the 2010 census. 
All images include a panchromatic channel (445 - 900 nm) 
with a nominal GSD of 0.61 m and four multispectral chan-
nels (blue: 450 - 520 nm, green: 520 - 600 nm, red: 630 - 690, 

1 Use of a company or product name does not imply approval 
or recommendation of the product to the exclusion of other 
products which may also be suitable.
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NIR: 760 - 900 nm) with a GSD of 2.44 m. The 2007 image was 
rectified to sub-pixel accuracy, while the much larger 2009 
scenes were rectified to an accuracy below 1.5 pixels. For 
both the 2007 and 2009 images the multispectral bands were 
pan-sharpened using the high-pass filter sharpening algorithm 
in ERDAS Imagine® to improve their spatial resolution from 
2.4 m to 0.6 m. This ensured that all subsequently derived 
data sets were of the same resolution and provided better 
pattern information for the object-oriented classifier. The 2007 
image was cropped to the boundary of the La Terraza neigh-
borhood. The 2009 images were cropped to the boundary of 
the Sierra Vista sub-watershed. 

Phase 1: Neighborhood-scale Impervious Surface Classification for an 
Arid Locale
Feature Extraction Using Object-oriented Classification Software
Object-oriented classification software is available from several 
vendors. As with other object-oriented image classification 
products, FA automates the extraction of features from remotely 
sensed imagery in order to overcome the problems associated 
with manual delineation, i.e., that it is laborious and time con-
suming, which can impose high labor costs and varying levels 
of accuracy (Blundell and Opitz, 2006). FA is an extension 
within commercial GIS software with a user interface in which 
“[t]he user gives the system (computer program) a sample of 
extracted features from the image. The system then automat-
ically develops a model that correlates known data (such as 
spectral or spatial signatures) with targeted outputs (i.e., the 
features or objects of interest). The learned model then classi-
fies and extracts the remaining targets or objects (Blundell and 
Opitz, 2006, p. 1).” FA learns inductively using an ensemble 
approach featuring different algorithms based on variants of 
artificial neural networks, decision trees, Bayesian learning, 
and K-nearest neighbor (Opitz and Blundell, 2008). As this 
software package is proprietary, details of mathematical and al-
gorithmic background are unavailable for presentation herein. 
This multi-algorithm approach is thought to produce better re-
sults than the individual algorithms alone (Blundell and Opitz, 
2006; Opitz and Maclin, 1999). FA outputs a classified vector 
layer that the analyst may then use to improve the model by 
selecting correctly classified features, false positives (clutter), 
and missed features. This information is used to re-train the 
model in a hierarchical fashion, meaning that classification 
problems are iteratively divided into increasingly smaller and 
more specific sub-problems (Blundell and Opitz, 2006). Initial 
classification errors are corrected with each subsequent itera-
tion of this process until the analyst is satisfied with the results 
based on accuracy measures and visual inspection.

Neighborhood Scale Classification Methods
Xeriscaping is an increasingly popular landscaping style in 
the southwestern United States and other semi-arid and arid 
areas around the world with rapid population growth and 
limited water supplies. Xeric landscaping in the study area 
is composed mostly of gravel mulch in the front and back 
yards, and thus appears very similar spectrally to roads, roofs, 
and other impervious surfaces surrounding it. Consequently, 
NDVI and an edge-enhanced image were created from the four 
QuickBird bands as additional inputs to facilitate object-ori-
ented classification (Figure 3). These derived products provid-
ed the object-oriented classifier with contextual information 
about the neighborhood of a specific pixel. However, NDVI 
(Equation 1) could not be used as the sole proxy for pervious 
areas because the spatial resolution of the QuickBird imagery 
was high enough to resolve single plants and small patches 
of turf in the otherwise gravel-covered yards. However, NDVI 
was still a valuable contribution to the classification process 
because vegetated pixels were detected by the classifier as 

Figure 1. QuickBird image of La Terraza neighborhood in Sierra 
Vista, Arizona. Single-home lots exhibit xeriscape landscaping char-
acterized by gravel cover and drought-tolerant plants that are often 
senescent. Inset adapted from Kennedy et al. (2013).

Figure 2. Sierra Vista sub-watershed boundary shown in black. Area 
covered by the six 2009 QuickBird images outlined in white. 
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pervious areas. Principal components analysis (PCA) of the 
four QuickBird bands was used to create four PC images. The 
PC bands contain the vast majority of spectral information of 
the sensor, thus they were included as one option to find the 
best possible dataset for the classification.

In order to help the classifier discriminate between imper-
vious and pervious features in the neighborhood, an edge-en-
hanced image was created using the Sobel method (Kittler, 
1983; Leica Geosystems, 2005), which generates horizontally 
and vertically edge-enhanced images before combining them 
into one non-directional edge-enhanced image. The Sobel 
filter helps to visualize the sharp linear edges of impervious 
features such as houses and driveways at the same time that 
pervious front and back yards appear with a less defined edge 
pattern with irregular shape. The Sobel operator is one of sev-
eral edge detection algorithms such as Frei-Chen (Park, 1990 
and 1999); see Davies (1984) for a survey of techniques and 
Sharifi et al. (2002) for a more recent comparison. 

Three training classes, “impervious,” “pervious,” and “shad-
ow” were created as vector files in an iterative process. The 
three vector files were combined into one training vector file. 

Following preparations for the classification process, the 
object-oriented approach was defined by selection of which 
neighboring pixels are considered in the classification. 
Commonly, image classifiers classify a pixel based on a local 
window (or neighborhood), e.g., 6 × 6, of the surrounding pix-
els. One limitation of this approach is that it is hard to factor 

in the broader spatial context. In contrast, FA uses a “foveal” 
representation where “a learning algorithm is given a region of 
the image with high spatial resolution at the center (where the 
prediction is being made) and lower spatial resolution away 
from the center (Opitz and Blundell, 2008; p. 159).” By taking 
only the “gist” of pixels further away from the center pixel 
being classified, the system has less data to process and incor-
porates spatial context in a way more similar to human vision 
(Opitz and Blundell, 2008). The analyst’s task is to select the 
particular representation (pattern of pixels) that FA will use 
to recognize features. There are a number of preconfigured 
pixel patterns in FA that work well for detecting small objects, 
linear objects or natural objects. However, impervious areas in 
La Terraza are a mix of shapes and sizes. We used FA to create 
a single custom pixel pattern to detect both linear features 
(roads and sidewalks) and smaller, compact features (houses 
and driveways) (Figure 4a). The inner shape of pixels was 
designed to discriminate compact objects, such as houses or 
yards. The outer points were intended to detect linear features 
in multiple directions. Point patterns with a higher number of 
points than the selected pattern, as well as patterns with fewer 
points and simpler patterns were less effective at discriminat-
ing features in the study area based on trial and error testing.

Three datasets were selected for the classification trials 
(Table 1) with the goal of determining the accuracy that could 
be achieved with a minimum of inputs and which combina-
tions of inputs would yield the most accurate classification. 

	 	

	 (a)	 (b)
Figure 3. (a) ndvi, and (b) edge-enhanced images of typical single-home lots in the La Terraza urban watershed. These two derived input 
layers improved classification of impervious features relative to the panchromatic and four multispectral bands alone.

	 	

	 (a)	 (b)
Figure 4. (a) Custom pixel pattern used by the object-oriented classification software to capture linear structures as well as smaller compact struc-
tures in the La Terraza neighborhood, and (b) “Bull’s Eye 4” pixel pattern used for the regional-scale classification after it was found effective at 
capturing linear and square impervious features without a high amount of confusion with pervious features with similar shapes and reflectances. 
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	 (a)	 (b)	 (c)
Figure 5. (a) Classification results for the Vis dataset, (b) PCA-Plus dataset, and (c) Pan/Vis/NIR-Plus dataset, where light gray = impervious, 
middle gray = pervious, and dark gray = shadow.

The Vis dataset resembles a basic set of high spatial resolution 
imagery without near infrared information, which is often 
available for larger areas at low cost. The other two datasets 
both include near infrared data as well as the additional 
bands in an effort to maximize the accuracy of the classifica-
tions. Although the three multispectral bands were already 
pan-sharpened, the panchromatic band was included in the 
Pan/Vis/NIR-Plus data set, because it covers a wide spectral 
range, likely enhancing patterns in the image and improving 
the classifier’s ability to detect features.

Table 1. Overview of the Three Combinations of Input Datasets Used in the 
Classification Process
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The three input data set combinations were evaluated using 
a transformed divergence statistical separability technique to es-
timate which was most likely to produce the best classification. 
For all possible pairs of ith and jth training classes within each 
of the three groups of input data sets, a transformed divergence 
score (TD) is computed by comparing the degree of overlap be-
tween the probability distributions of the spectral classes of all 

available input bands (Richards, 2013; Singh, 1984). The score 
increases exponentially with increasing class distance and has 
a scale of 0 to 2000. TDij >1,900 represents good separability of 
classes i and j, scores of 1,700 to 1,900 indicate fair separabili-
ty; scores below 1,700 are poor, with zero meaning classes are 
inseparable. The highest mean overall divergence score deter-
mines the most effective combination of inputs (Singh, 1984).

Qualitative visual analysis of classification performance was 
followed with statistical accuracy tests. Two hundred test points 
were placed using a stratified random distribution in the study 
area, using the manually derived pervious and impervious areas 
for stratification. The number of test points was determined to 
produce an expected classification accuracy of 85 percent and 
an allowable error of ±5 percent using a binomial probability 
approach (Jensen, 2004; Snedecor and Cochran, 1989). Based on 
the small GSD of the satellite imagery, photographs, and exten-
sive knowledge of the area from fieldwork, we identified ground 
reference test points as pervious, impervious, or shadow. 
Ground reference labels and classification labels were exported 
into an accuracy matrix to determine total accuracy as well as 
errors of omission and commission and Kappa values. 

Neighborhood Scale Classification Results
Based on high transformed divergence values, the Pan/
Vis/NIR-Plus data set produced the highest separability of 
impervious and pervious classes (Table 2). Accordingly, the 
classification based on the Pan/Vis/NIR-Plus dataset showed 
the highest accuracy based on visual inspection (Figure 
5c). Roads and houses were well defined and there were 
no substantial misclassified areas, though some clutter was 
still present. Misclassified areas were in the same general 
locations for all classifications, due likely to the variability 
in roof colors. The results in Table 2 show that the inclusion 

Table 2. Results of the Transformed Divergence Separability Analysis, Showing How Well Input Datasets can Distinguish  
the Classes in the Trainings Dataset: Maximum Separability is Indicated by a Score of 2,000; Separability is Poor Below a Score of 1,700

Input Dataset Impervious:Pervious Impervious:Shadow Pervious:Shadow

Vis 851 1899 1829

PCA-Plus 1618 2000 2000

Pan/Vis/NIR-Plus 1654 2000 2000
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of the NIR band is crucial to the classification results under 
the specified circumstances. It also shows the usefulness of 
including derived layers, such as NDVI and edge-enhance-
ments for object oriented classifications. Although a principal 
component analysis captures the vast majority of information 
of the available imagery, the addition of seemingly redundant 
layers (NDVI, edge-enhancement, and panchromatic) improved 
classification results. 

Statistical tests supported both separability analyses and 
the visual inspection of classified imperviousness maps (Fig-
ure 6). The map created from the Pan/Vis/NIR-Plus dataset 
produced the highest overall accuracy (0.83) and Kappa value 
(0.68) of the three combinations of input data layers.

Figure 6. Comparison of total classification accuracy including confi-
dence intervals and Kappa for all three input datasets, where a = Vis 
dataset, b = PCA-Plus dataset, and c = Pan/Vis/NIR-Plus dataset. 

The manual classification result, which was used as a base-
line scenario, was considered 100 percent accurate. This as-
sumption only applies to the limited extent of the La Terraza 
study area, because the analyst was able to spend significant 
time and effort on delineating pervious and impervious areas. 
Applying manual delineation methods to larger areas would 
likely result in reduced accuracy and consistency caused 
by analyst fatigue, multiple analysts involved, and time and 
budget resource limitations.

Phase 2: Expansion of Classification Scheme to the Regional Scale
Regional Scale Classification Methods 
Based on neighborhood scale classification results described 
in the previous section, the input data layers for the regional 
scale consisted of the four QuickBird multispectral bands, 
NDVI, edge-enhanced images, and the panchromatic band. 
Initial testing of the FA classifier using the seven data layers re-
sulted in very long processing times (8 to 12 hours per scene). 
To make processing manageable, the images were subdivided 
or “diced” into smaller tiles. Dicing the QuickBird scenes 
resulted in a total of 21 individual image tiles to classify. 

The same classification scheme of pervious, impervious, 
and shadow for the local scale was used to represent the 
regional scale as well. Two sets of training polygons were 
created for each image tile: impervious and shadow. Training 
data sets for pervious features were not created for reasons 
explained below. 

Features considered impervious were all paved or sealed 
surfaces that could be discerned from inspection of the 
images, including parking lots, sidewalks, airport runways, 
buildings, residences, driveways, and recreational areas with 
sealed surfaces such as running tracks. A few basic types 
of roads could be distinguished using contextual clues and 
ancillary data such as Google™ StreetView street-level photo-
graphs: dark asphalt roads, non-asphalt paved roads, graded 
but unpaved roads, and dirt roads. The classifier was trained 
to recognize the first two types as impervious. Everything that 

was not paved or sealed was considered pervious. Pervious 
land-covers consisted mostly of desert scrub vegetation, unde-
veloped bare soil, unpaved roads and trails, agricultural plots, 
trees, playing fields, lawns, parks, and road medians. 

The training polygons for shadows were designed primari-
ly to capture the shadows cast by buildings and structures and 
shadows associated with natural surfaces, e.g., from tall trees 
in forested areas. In the southwestern portion of the study 
area with a relatively high amount of relief, large areas were 
cast in shadow by ridgelines. However, these areas of rugged 
topography were clearly undeveloped, so we generally limited 
the final training data sets to those shadows cast by individual 
features only, and not entire areas of pervious cover. 

Extensive testing and examination of the results of differ-
ent combinations of classifier settings and training data sets 
helped determine an effective classification model that could 
be applied across all tiles. This process retained most of the 
settings used for the neighborhood scale but also deviated in 
some ways due to the far greater spatial extent and diversity 
of features that had to be accounted for in order to optimize 
the accuracy of results.

Initial classification trials using the same settings as the 
neighborhood scale analysis resulted in confusion of certain 
bare natural surfaces with impervious surfaces that had very 
similar shapes and reflectances. The result was the erroneous 
detection or “false positives” of impervious shapes in natural 
areas with bare patches, which littered the undeveloped areas 
of the images. This effect was minimized by altering the clas-
sification method such that rather than using a “wall-to-wall” 
classification that classifies all pixels into three input training 
data classes (shadow, impervious, and pervious) as for La Ter-
raza, only two were used (shadow and impervious), leaving 
the remainder of the image temporarily unclassified back-
ground pixels. Testing results indicated that the use of two 
training layers minimized the confusion between pervious 
and impervious training polygons, which seemed to be the 
primary source of this type of error. The reasoning behind the 
altered classification scheme was that pixels that were neither 
shadow nor impervious (the “background” pixels) were 
pervious, therefore the two input training classes were used 
to extract just those two classes initially, and the unclassified 
background areas (the pervious areas) could then be classified 
in a later step and renamed “pervious.” 

The input representation settings determine the pattern 
used by the classifier to detect impervious features. We found 
based on trial and error testing that the “Bull’s Eye 4” pix-
el pattern with a width of 17 pixels (Figure 4b) was more 
consistently effective than others at detecting a wide range of 
both linear and rectangular/square impervious features with 
relatively low amounts of misclassified false positive clutter 
in pervious areas. The minimum object size was set to 100 
pixels so that objects smaller than 100 pixels would be ag-
gregated with neighboring features after classification. As for 
Miller et al. (2009), this setting seemed to produce the most 
optimal balance of omission and commission errors.  

The classifier model was applied to 18 of the 21 tiles using 
two-class (impervious and shadow) training polygon sets. 
Three tiles (321, 411, and 6) contained so few impervious sur-
faces that it made more sense to classify them manually. The 
output from the classification process for each image tile was 
a two-class vector layer of impervious and shadow. 

One of the main advantages of the FA classifier is the 
array of tools used to iteratively refine the classifier until the 
desired result is achieved. This process involved splitting 
the classified output vector layer into separate layers to be 
cleaned up individually as necessary based on visual inspec-
tion of the results. One set of tools works by selecting poly-
gons and digitizing portions of features that were correctly 
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and incorrectly classified in order to re-train the classifier 
more precisely. Another set of tools requires the user to draw 
polygons to capture examples of missing features. These tools 
were used to iteratively retrain the classifier until a satisfac-
tory classification was produced, i.e., based on visual confir-
mation of a relatively minimal amount of clutter, no obvious 
systematic or major misclassifications, and generally good 
capturing of impervious objects throughout the image.

Finally, the cleaned-up impervious and shadow layers were 
recombined, with settings adjusted such that any pixels not 
included in either of the two classes during the union of layers 
are classified into polygons. These now-classified “back-
ground” polygons, i.e., the remainder of the image that was ini-
tially left unclassified, formed the pervious class. The resulting 
three-class polygon layer was converted to raster format and 
pixel values were reclassified as necessary into 1 (impervious), 
2 (pervious), and 3 (shadow) for consistency across tiles. 

The accuracy of each classified image tile was assessed 
using a stratified random sampling approach with a minimum 
per-class sample size of 50 points. The impervious class was 
intentionally over-sampled because discriminating impervi-
ous surfaces was the primary goal of the classification. Since 
the small impervious areas in the three manually classified 
tiles were easily digitized and all remaining area was impervi-
ous, it was not necessary to create a shadow class. 

In-field validation of sample points was not feasible due 
to the large number of points needed to evaluate the accuracy 
of all 21 tiles. Instead a combination of aerial photos, field 
photographs of locations on the ground, and experiential 
knowledge from visits to the La Terraza subdivision was used. 
These ancillary data helped distinguish similar surfaces such 
as pervious gravel and xeriscaped yards from fully impervi-
ous roads, parking lots, and roofs. There were 5,257 sample 
points total for all 21 scenes combined, a much larger sample 
than a recent study using a similar amount of QuickBird data 
and 1,735 validation points (Campos et al., 2010).  

Error matrices were computed for each classified image tile 
(example shown in Table 3) and used to calculate overall ac-
curacy and producer’s and user’s accuracies of each individu-
al class (Table 4). The Kappa coefficient of agreement was also 
calculated for each overall classification and for individual 
classes (Table 5).

Table 3. Sample Error Matrix for Classified Image Tile 221. Error Matrices 
were Used to Derive Accuracy Assessments for Each Tile

Predicted Class

Actual Class Impervious Pervious Shadow Row Total

Impervious 75 25 0 100

Pervious 2 96 2 100

Shadow 10 0 65 75

Column Total 87 121 67 236

In order to produce a final classified image compatible 
with hydrologic modeling applications, all shadow pixels 
were reclassified as either pervious or impervious. A neigh-
borhood analysis tool was used to reassign the value of all 
shadow pixels based on the majority value of the surrounding 
pixels in the 3 × 3 “neighborhood.” This process was run on 
every classified image that had any shadow pixels, i.e. not 
classified manually, producing a reclassified set of image tiles 
with only two classes, impervious and pervious. Finally, the 
21 classified image tiles were mosaicked together. 

Regional Scale Classification Results
The final regional mosaicked image had a total area of 1,179 
km2. Based on this image, the study area contains an estimat-
ed 18.6 km2 of impervious surfaces, or 1.6 percent of the total 
area, mainly concentrated in the highly developed core of 
Sierra Vista, and to a lesser extent Ft. Huachuca.

Table 4. Per-class Classification Accuracies Grouped by Degree of Imperviousness as a Percentage of Total Area of the Image Tile: N/A indicates tile was 
classified manually and no shadow pixels were classified

Imperviousness 
Grouping

Image Tile 
ID

Overall  
Accuracy  
(%)

Impervious 
Producer’s  
Accuracy  
(%)

Impervious 
User’s  
Accuracy  
(%)

Pervious  
Producer’s  
Accuracy 
(%)

Pervious 
User’s  
Accuracy  
(%)

Shadow  
Producer’s  
Accuracy  
(%)

Shadow  
User’s  
Accuracy  
(%)

Most Developed  
(3-7% Impervious)

211 91.2 88.4 95.0 92.2 94.0 98.2 73.3

221 85.8 86.2 75.0 79.3 96.0 97.0 86.7

512 89.1 94.6 87.0 84.6 93.0 89.0 86.7

212 88.4 91.0 81.0 87.4 90.0 86.8 96.0

More Developed 
(1-2% Impervious)

422 91.3 90.0 90.0 87.6 99.0 100.0 82.7

222 83.6 91.4 74.0 72.4 97.0 98.3 78.7

312 89.8 87.1 88.0 86.5 96.0 100.0 84.0

121 90.9 91.6 87.0 85.8 97.0 98.5 88.0

412 87.3 96.2 75.0 76.3 100.0 98.5 86.7

311 82.9 91.0 71.0 73.3 96.0 92.4 81.3

322 86.6 87.1 81.0 80.5 99.0 98.3 77.3

Least Developed 
(<1% Impervious)

111 89.8 98.8 82.0 79.4 100.0 98.5 86.7

112 84.4 91.5 72.0 77.5 100.0 97.3 72.0

421 85.8 100.0 74.7 76.3 100.0 97.4 74.0

511 89.0 100.0 70.0 84.8 95.0 90.6 96.0

411 99.4 100.0 98.7 99.0 100.0 n/a n/a

122 96.0 100.0 96.0 92.6 100.0 100.0 88.0

522 89.0 93.6 88.0 87.9 94.0 87.0 80.0

521 85.0 100.0 74.0 84.3 86.0 77.1 94.0

321 100.0 100.0 100.0 100.0 100.0 n/a n/a

6 99.4 100.0 98.7 99.0 100.0 n/a n/a
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Mean overall classification accuracy for the 21 individual 
tiles was 89.7 percent with a range of 82.9 to 100 percent (Ta-
ble 4). 100 percent accuracy was associated only with those 
images that were classified manually. Excluding those three 
images, the mean overall accuracy was 88.1 percent, which 
was not significantly lower (t = 1.213; p >0.05; df = 34). Mean 
producer’s accuracy for the impervious class (94 percent) was 
higher than for the pervious class (85 percent) (t = 4.344; p 
<0.05; df = 33). Mean user’s accuracy for the impervious class 
was accurate at 84 percent, but significantly lower than the 
pervious class (97 percent) (t = -5.568; p <0.05; df = 26). The 
mean Kappa coefficient was higher for the pervious class than 
the impervious class (t = -5.087; p <0.05; df = 31). 

Limitations of the Regional Scale Classification
Limitations of computing power necessitated subdividing the 
original images into separate tiles. Although the classification 
accuracies were satisfactory, the fact that each image tile was 
classified based on different training data unavoidably result-
ed in some discrepancies in accuracy among the tiles, which 
was evident from visual inspection. For example, roads in one 
image tile may be more conservatively classified than in another, 
resulting in edge effects in the final mosaic where the road is 
wider on one side of a cutline than on the other. Had it been pos-
sible to classify the entire study area at once, only one training 
data set would have been used and edge effects would not have 
resulted. Inconsistencies among classifications such as edge 
effects thus stem in part from limitations of processing power. 

In each classified image tile, the goal was to strike a 
balance between accuracy and efficiency in terms of user 
time spent (e.g., preparing and iteratively revising training 
polygons) and computer processing time. With the iterative 
revising tools within FA it is possible to eventually achieve a 
high level of accuracy. This often required a significant time 

investment by the user, though it should be noted that during 
the regional scale phase a newer version of FA was released 
with the capability of running test classifications on any por-
tion of a scene in a matter of minutes. This likely did not have 
a meaningful impact on classification accuracy compared to 
the previous version, but did significantly speed up testing 
of the effectiveness of training polygons. Further, after a few 
iterations of re-training the classifier, a point of diminishing 
returns was reached where the gains in additional accuracy 
(based on visual inspection and comparison) were relatively 
small compared to the amount of time required to achieve 
them. Each image tile had its own unique set of features, and 
consequently this point of diminishing returns was differ-
ent for each tile. Since a perfect classification is impossible, 
in each tile some tradeoffs had to be made. For instance, in 
several cases achieving an extremely high degree of accuracy 
for roads in a given tile was not possible without producing 
a large number of false positives for those natural surfaces 
with similar spectral and shape characteristics to impervious 
roads, which would lead to lower user’s accuracy (greater 
errors of commission). In this case, creating a classification 
model that produced a balance between the two, i.e., adequate 
classification of roads without a high amount of false posi-
tives in pervious areas, meant necessarily sacrificing some 
accuracy for roads. Discrepancies that were apparent from 
visual inspection in the final image are the result of these 
unique tradeoffs that had to be made in each tile based on the 
variety of features that it contained. In sum, each classified 
tile reflects the best effort of the user to achieve a satisfactory 
level of accuracy based on error matrices within a reasonable 
amount of time invested in refining the initial classification. 

Table 5. Overall and Per-class Kappa Coefficients (k) with Confidence Intervals for Overall k: N/A indicates tile was classified manually and no shadow pixels 
were classified

Imperviousness  
Grouping Image Tile ID Overall k Impervious k Pervious k Shadow k 95 % C.I. upper 95 % C.I. lower

Most Developed        
(3-7 % Impervious)

211 0.86 0.91 0.89 0.70 0.90 0.81

221 0.78 0.63 0.93 0.82 0.83 0.74

512 0.83 0.80 0.88 0.82 0.89 0.78

212 0.82 0.72 0.84 0.94 0.88 0.77

 More Developed            
(1-2 % Impervious)

422 0.87 0.84 0.98 0.78 0.92 0.82

222 0.75 0.63 0.94 0.73 0.82 0.69

312 0.85 0.81 0.93 0.79 0.90 0.79

121 0.86 0.80 0.95 0.84 0.91 0.81

412 0.81 0.65 1.00 0.82 0.86 0.75

311 0.74 0.60 0.92 0.75 0.81 0.67

322 0.79 0.71 0.98 0.71 0.85 0.74

Least Developed  
(< 1 % Impervious)

111 0.85 0.74 1.00 0.82 0.90 0.79

112 0.75 0.62 1.00 0.66 0.81 0.69

421 0.77 0.66 1.00 0.69 0.84 0.70

511 0.82 0.64 0.89 0.95 0.89 0.75

411 0.99 0.98 1.00 n/a 1.07 0.91

122 0.94 0.95 1.00 0.85 1.00 0.87

522 0.82 0.84 0.87 0.74 0.89 0.75

521 0.76 0.68 0.71 0.91 0.84 0.68

321 1.00 1.00 1.00 n/a 1.08 0.92

6 0.99 0.98 1.00 n/a 1.07 0.91
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Sources of Confusion between Classes and Discrepancies in Accuracy in 
the Regional Scale Classification
After examining the initial classification result, an important 
source of confusion was found between rectangular build-
ing structures with high reflectances and pervious (although 
likely highly compacted) natural surfaces with similar 
reflectances and shapes. In many cases, it was evident from 
ancillary data that the natural surfaces were impervious rock. 
In this case, during accuracy assessment we counted it as 
correct if it was classified as impervious. There were also 
instances, however, where the surface was not rock, but rather 
brightly-reflecting bare soil or a graded unpaved road with 
similar rectangular shape to buildings. When these areas were 
classified as impervious, they were considered a misclassi-
fication. Cleanup tools in FA were useful for removing this 
misclassification to a significant degree. Additionally, roads 
and other surfaces are not spectrally homogeneous, and a 
training polygon in one part of a road may not be adequate 
to make the classifier capture all parts of a road feature. 
Training data sets took this into consideration, but could not 
always prevent gaps in road features. In many cases, creating 
a training polygon around one portion of a road led to more 
false positives in other spectrally similar non-road objects. 
When this limitation was found, we generally tried to find an 
optimal balance between errors of omission and commission. 
Some amount of this type of error was virtually unavoidable, 
but could be improved using the hierarchical iterative learn-
ing tools described previously. 

Kappa values (Table 5) indicate that the classifier was more 
accurate for the pervious classes than the impervious classes, 
although impervious Kappa values were mostly very good, 
with a mean value of 0.77. In all tiles, the Kappa values show 
that overall and per-class accuracies were not due to chance. 
Percentage accuracy results show that while producer’s accu-
racy was quite high for impervious classes, the main source of 
error was found in the user’s accuracy. In other words, sample 
pixels that were actually impervious were classified at a high 
level of accuracy, while those pixels that were not impervious 
were more frequently classified incorrectly as impervious. 
Visual inspection of the classified results showed that this 
is to some degree related to the inability of the classifier to 
distinguish boundaries and edges between certain adjacent 
features. For example, in many cases the roads outside of the 
highly developed core of Sierra Vista appeared in the imagery 
to have a somewhat fuzzy gradient from the paved surface to 
the shoulder to the undeveloped ground. This is related to the 
lack of vegetation along the sides of roads and in medians, 
which is typical for this region but less common in humid 
regions where grass and trees often create distinct boundaries 
between paved surfaces. Another source of error stemmed 
from confusion between bright road stripes and unpaved, 
non-vegetated medians. These two types of features are some-
times very similar in shape and spectral signature in this re-
gion, posing a challenge to creating training datasets that can 
produce a separation of these features in the classification.

Finally, this study required the classification of all imper-
vious features, regardless of shape. This required a pixel pat-
tern that was effective for detecting a wide variety of features. 
Had the task been to classify only a subset of impervious 
features, e.g., roads, a more specialized pixel pattern could 
have been used, likely improving accuracy. 

Conclusions and Recommendations
Typical methods for detecting and mapping impervious sur-
faces in arid and semiarid environments using only vegetation 
indices are not ideal due to sparseness of green vegetation cov-
er and the presence of xeriscaping and senescent, non-green 
vegetation, making detecting impervious surfaces in arid and 

semi-arid environments challenging. Object-oriented classifi-
cation algorithms in combination with carefully selected input 
data offer a solution by incorporating not only spectral data, 
but also information about the pixel environment, such as 
patterns and neighborhood relations. This study demonstrated 
at the scale of an individual neighborhood that the automated, 
object-oriented classification of QuickBird data to create im-
perviousness maps of semi-arid urban areas produced results 
with reasonable accuracy that can be obtained much more 
efficiently and in an objectively repeatable manner than using 
traditional manual delineation techniques. The approach used 
for the neighborhood classification was then adapted to pro-
duce a map of impervious surfaces in the entire city of Sierra 
Vista, Arizona and the surrounding sub-watershed.

This method demonstrated a common limitation of high 
spatial resolution imagery, which is that broad spatial cover-
age can be difficult due to the high amount of data per image. 
Using multiple QuickBird images created a very large amount 
of data to process. If the images must be subdivided and 
classified individually for this reason, achieving a high level 
of consistency from tile to tile may present a challenge for the 
user and likely increases the chances of user error associated 
with performing many classifications.

Three recommendations are made for using the impervious 
surface classification method reported here. 

	 1.	 This study presents the difficulties involved in map-
ping impervious areas in semi-arid and arid urban 
environments using currently available sensor and 
classification technology. A key finding is the impor-
tance of NIR information to conduct this classification. 
Aerial imagery without NIR bands is frequently avail-
able for urban areas; however, this type of imagery 
would not be suited to classify impervious areas using 
the proposed approach. 

	 2.	 The proposed method should be applied to areas with 
uniform land-cover. Conducting the classification for 
the whole Sierra Vista watershed, including urban, 
rural, and mountainous areas, resulted in decreased 
efficiency of the training algorithm. Based on this 
study, we recommend applying the proposed method 
to urban areas, where imagery with small GSD is most 
beneficial to capture the rapid succession of pervious 
and impervious areas. Imagery from sensors with larger 
GSD, which typically have more spectral information 
appear more suitable for less populated areas.

	 3.	 While object-oriented classification using high-resolu-
tion data was labor- and cost-effective when applied at 
the scale of a relatively small region (less than 1,200 km2 
in this case), it would be increasingly less so the larger 
the region. Coarser resolution imagery such as Landsat 
would still be more appropriate for assessing impervi-
ousness for bigger regions such as the Baltimore, Mary-
land - Washington, D.C. metro corridor (Sexton et al., 
2013). Although it was not a goal of this study, it would 
be a worthwhile future task to quantify more precisely 
the size area at which the use of high-resolution imagery 
for mapping impervious surfaces becomes prohibitive 
and more appropriate for coarser-resolution imagery.

Despite its limitations, this classification approach should 
enable users to match acquisition and analysis of satellite data 
to census numbers and thus repeat the method in synchrony 
with future censuses or soil and land surveys in order to track 
increases in impervious surfaces associated with the growth 
of the area over time. Relating impervious surface changes 
to longitudinal hydrologic data will lead to a more accurate 
holistic understanding of the potential impacts of continued 
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growth on storm water runoff and utilization of this water re-
source for groundwater recharge. We suggest that the methods 
described here be further developed through application in 
other rapidly growing areas in the Western US and other arid 
and semiarid environments. 
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