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ABSTRACT

Scarcity or unavailability of precipitation observation creates difficulties in hydrologic modeling of

mountainous sections of the arid region of northwest China (348–508N, 728–1078E). Tropical Rainfall Mea-

suring Mission (TRMM) precipitation products may be a potential substitute, but they should be evaluated

and corrected with ground observation data before application. In this paper, two TRMM Multisatellite

Precipitation Analysis (TMPA) precipitation products were evaluated by gauge observations, using indices

such as frequency bias index, probability of detection, false alarm ratio, relative mean bias, Nash–Sutcliffe

efficiency, and correlation coefficient. Terrain variables were extracted from a digital elevation model, and

their rotated principal components were determined to establish a stepwise regressionmodel to adjust TMPA

precipitation. Additionally, a back-propagation (BP) neural network was established to correct TMPA

precipitation. The results showed that TMPAhad an unsatisfactory detection ability in the study area for both

precipitation occurrence and amount. TMPAprecipitation corrected by a stepwise regressionmethod showed

some improvement, but only the results for TRMM3B43 on a subregion scale were acceptable. TheBP neural

network method showed better results than the stepwise regression method, and both TRMM 3B42 and

TRMM 3B43 corrected by the former method on a subregion scale could be acceptable. Both methods were

spatial-scale dependent and showed better results on a subregion scale than on a larger scale.

1. Introduction

Precipitation is a major component of water resources

and is of great importance in studying hydrology, me-

teorology, and agriculture (Li and Shao 2010). The hy-

drologic cycle begins with the amount of precipitation

in one area. Accurate precipitation input is the basic

precondition for reliable hydrologic simulation, and pre-

cipitation accuracy affects the predictive ability of rainfall–

runoff models (Duncan et al. 1993). Precipitation input,

which is often more critical to the success of a model

application than the choice of hydrologicmodel complexity

(Gan et al. 1997), must therefore be as reliable as

possible.

It is generally impracticable to establish a rain gauge

network in mountainous regions or remote areas be-

cause of the high cost of establishing and maintaining

the equipment. These two factors lead to an uneven

distribution of gauges, both horizontally and vertically.

Furthermore, the catch of conventional rain gauges is

only a small radius around the instrument (Collischonn

et al. 2008); scarce point observations are often not rep-

resentative over large regions with complex topography,

thereby resulting in unsatisfactory performance of a

rainfall–runoff model.

Precipitation products with wide coverage and high

temporal–spatial resolution are obtained from analyzing

cloud layers by combining geostationary satellite data

and low-orbit satellite information (Boushaki et al. 2009)

and may be a potential substitute for precipitation data.

Corresponding author address: Yi Luo, Key Laboratory of

Ecosystem Network Observation and Modeling, Institute of

Geographic Sciences and Natural Resources Research, Chinese

Academy of Sciences, 11A, DatunRoad, ChaoyangDistrict, Beijing

100101, China.

E-mail: luoyi.cas@hotmail.com

FEBRUARY 2014 YANG AND LUO 459

DOI: 10.1175/JHM-D-13-041.1

� 2014 American Meteorological Society

mailto:luoyi.cas@hotmail.com


Examples of such products are Tropical Rainfall Mea-

suring Mission (TRMM; Huffman et al. 2003), Precip-

itation Estimation from Remotely Sensed Information

usingArtificial Neural Networks (PERSIANN; Sorooshian

et al. 2000), Climate Prediction Center’s morphing tech-

nique (CMORPH; Joyce et al. 2004), and others. How-

ever, satellites observe cloud layers, rather than direct

precipitation (Xie and Arkin 1995). Additionally, sam-

pling error (Bowman 2005) and uncertainty of retrieval

algorithms (Kummerow 1998) result in error and bias for

satellite precipitation observations. Therefore, a series of

studies were conducted with focus on quantifying error in

satellite precipitation estimates.

Results show that TRMM precipitation is more reli-

able than other satellite data (Nicholson et al. 2003b).

Nevertheless, the performance of the TRMM is criti-

cally dependent on the sensor limitation (Huffman and

Bolvin 2013), quality of the input datasets, spatial and

time scale, precipitation rate (Huffman et al. 2010), and

sampling errors (Bowman 2005). Previous studies in-

dicate that TRMM performs differently by region and

season (Dinku et al. 2007, 2008; Scheel et al. 2010).

TRMM shows better performance over ocean than land

because the primary task of TRMM is to measure rain-

fall in tropical and subtropical regions, and TRMM

Microwave Imager (TMI) is less effective over land

surfaces because of variations in the surface emissivity

(Bowman 2005). Barros et al. (2006) indicate that TRMM

has difficulty detecting precipitation in high-altitude

areas because there is a strong effect of the relief itself

on the microwave signal in mountainous terrain (M€atzler

and Standley 2000). Seasonally, TRMM tends to show

better performance in warm/convective conditions and

vice versa in cool-season stratiform conditions, resulting

from infrared (IR) estimates that are better correlated

to short-interval precipitation in convective conditions

(Ebert et al. 2007;Huffman et al. 2010).More specifically,

TRMM shows various performances all over the world.

For example, TRMM 3B42 overestimates rainfall over

the Zambezi River basin (Cohen Liechti et al. 2012) and

the Tibetan Plateau (Yin et al. 2008) and underestimates

rainfall onmost days inNepal (Islam 2009). TRMM3B43

shows excellent agreement with gauge measurements on

monthly to seasonal time scales forWestAfrica (Nicholson

et al. 2003b), but there is lower linear correlation for

areas around large continental water bodies, such as Lake

Issyk-Kul in eastern Kyrgyzstan (Karaseva et al. 2012).

Several methods have been developed to correct sat-

ellite precipitation data for practical use. Microwave

(MW) and IR sensor data may be merged to increase

reliability and accuracy of rainfall estimation in areas

with no gauge data (Hong et al. 2007; Joyce et al. 2004),

or satellite precipitation and ground-based data may be

merged using statistical or regression methods in areas

with available rain gauge data (Boushaki et al. 2009;

Huffman et al. 2007; Janowiak et al. 2009; Morrissey and

Greene 1993; Tian et al. 2010; Tobin and Bennett 2010;

Yan and Gebremichael 2009; Yin et al. 2004, 2008).

MW gives an accurate instantaneous rain rate, but with

poor sampling in space and time. IR estimates have good

coverage in space and frequent sampling in time, but

with significant systematic errors. Combining MW and

IR may compensate for the shortcomings of each, pro-

ducing more accurate rainfall estimates with wide cov-

erage and high resolution. However, there remains

precipitation retrieval algorithm uncertainty in this type

of method. Statistical correction approaches, such as

adjusting the probability distribution function of satel-

lite rainfall to actual rainfall (Tobin and Bennett 2010)

or taking the maximum likelihood value of measured

rainfall for given satellite data as the corrected value (Tian

et al. 2010), rely on both satellite estimates and rain

gauge data. Nevertheless, these methods lack physical

meaning because there may be not a simple statistical

relationship between the two when considering the im-

pact of terrain on precipitation. The stepwise regression

method (Yin et al. 2008) establishes regression models

by taking satellite rainfall and terrain variables as in-

dependent and rain gauge data as dependent, and these

models are used to correct rainfall estimates. Drawbacks

remain in this method because terrain variables have

complex effects on precipitation, and the regression

equations are often linear models that cannot describe

these effects well. Therefore, a new method is needed

to correct satellite precipitation estimates and achieve

higher precision. The method must account for the non-

linear relationship between rain gauge precipitation and

terrain variables.

The arid region of northwest China (348–508N, 728–
1078E) is extensive and of complex topography. Eleva-

tion ranges from 2214 to 8366m MSL. Only 80 rain

gauges are available in this large area, with altitudes of

the lowest and highest stations at 37.2 and 3507.2m

MSL, respectively. Most gauges are below 2000mMSL,

and there are a few at high elevations above 3510m

MSL. This scarce and uneven distribution of gauges

results in very deficient or insufficient representation of

precipitation and causes difficulties in hydrologic simu-

lation of this area. Therefore, TRMM products represent

a potential substitute for precipitation data. However, the

accuracy of TRMM in this area must be evaluated, and

precipitation should be corrected for reliable application.

Therefore, this paper focuses on 1) evaluating the detection

ability of TRMM precipitation product in the arid zone of

northwest China and 2) developing a method for correct-

ing TRMMprecipitation datawith limited rain gauge data.
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2. Materials and methods

a. Description of study area

The study area has an area of 2.27 million km2, con-

stituting 23.6% of the total area of China. The area in-

cludes Xinjiang province and parts of Gansu, Inner

Mongolia, Qinghai, and Ningxia provinces (Fig. 1).

The area is characterized by mountains and basins. In

Xinjiang, mountains and basins are arranged in a stag-

geredmanner, with theAltaiMountains in the north and

the Kunlun Mountains in the south. The Tian Shan

spans the middle and divides Xinjiang into two parts,

southern Xinjiang and northern Xinjiang (Chen et al.

2012; Zhang et al. 2012). These high-elevation moun-

tains block atmospheric circulations and create two vast

desert basins in the rain shadows between the moun-

tains. These are the Tarim Basin in the south and

Junggar Basin in the north (Shi et al. 2007). Another

part of the study area features the Qilian Shanmountain

range in Gansu province and the relatively moderate

terrain of Inner Mongolia. To analyze the spatial het-

erogeneity of meteorological factors in the region, Zhao

et al. (2011) divided Xinjiang into six subregions. We

followed this delineation of subregions in our study, and

areas outsideXinjiang provincewere considered a single

subregion (Fig. 1).

As shown in Table 1, a large proportion of the area is

located at 500–2000 and 3510–6000m MSL. There is

a typical inland arid climate with unevenly distributed

precipitation, most of which falls in themountains, where

long-term average annual precipitation reaches 400mm

ormore. Junggar Basin, Gansu, and InnerMongolia have

average annual precipitation from 100 to 200mm, while

Tarim Basin only receives 20–80mm. This precipitation

for the entire study area is less than 200mm (Su et al.

2007; Zhang et al. 2011).

b. Data sources

1) GROUND DATA

(i) Rain gauge data

Observed daily precipitation of the 80 rain gauges in

the region was from the China Meteorological Data

Sharing Service System. The precipitation data record is

from 1 January 1951 to the present. Four gauges were

excluded, owing to their mismatched time span with

TRMMdata.Daily precipitation data from the remaining

76 gauges were rigorously quality controlled. The gauges

are unevenly distributed both vertically and horizontally.

FIG. 1. Study area and locations of rain gauges.

TABLE 1. Distribution of area and number of rain gauges along the

elevations of the arid region of northwest China.

Elevation

band (m MSL)

Medium

elevation

(m MSL) Area (km2) Area ratio

No. rain

gauges

2214–0 2107 3615 0.002 0

0–500 250 103 764 0.046 6

500–1000 750 442 114 0.195 18

1000–1500 1250 790 371 0.349 29

1500–2000 1750 253 473 0.112 16

2000–2500 2250 117 101 0.052 2

2500–3000 2750 89 997 0.040 1

3000–3510 3255 96 521 0.043 4

3510–6000 4755 366 309 0.162 0

6000–8366 7183 4540 0.002 0

Total 2 267 805 1 76
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Most are between 500 and 2000m MSL, and there are

none above 3510m MSL (Table 1).

(ii) DEM

We also used Advanced Spaceborne Thermal Emis-

sion and Reflection Radiometer (ASTER) digital ele-

vation model (DEM) data, with coverage from 838N to

838S and resolution of 1 arc s (30-m horizontal spacing at

the equator). The data were available from the National

Aeronautics and Space Administration (NASA) Ware-

house Inventory Search Tool (WIST).

2) TMPA DATA

TRMM is a joint U.S.–Japan satellite mission to

monitor tropical and subtropical precipitation. It was

launched in late November 1997 into circular orbit, at

approximately 350-km altitude (elevated to 420 km in

2001) and 358 inclination from the equatorial plane.

The spacecraft takes about 91min to complete one orbit

(Collischonn et al. 2008). The TRMM project provides

various products through a combination of different

satellite sensors, among which level 3 are gridded pre-

cipitation products, including 3A11, 3A25, 3B31, and

TMPA (3B42 and 3B43). The first three kinds of prod-

ucts have a resolution of at least 0.58 3 0.58 and have a

spatial coverage of 408N–408S [see http://mirador.gsfc.

nasa.gov/cgi-bin/mirador/presentNavigation.pl?tree5
project&project5TRMM&dataGroup5Gridded&

CGISESSID5ba7d85e288dffc92426ab7c45d23ca30&

location5(-90,-180),(90,180)], which could not meet

our needs because the study area covered 348–508N.

The latest TMPA version 7 products, which have finer

resolution of 0.258 3 0.258 and cover 508N–508S, were
therefore adopted in this study.

c. Data analysis

1) DATA PREPROCESSING

We analyzed precipitation data from 1 January 1998

to 31 December 2010. Daily precipitation from rain

gauges and TRMM 3B42 were aggregated to monthly

temporal resolution. Point data of observed precipita-

tion were processed by generating a buffer of 25 km in

diameter for each rain gauge, matching the 0.258 3 0.258
TMPA pixel data. Precipitation in the buffer is approxi-

mately equal to that of gauge data. Universal kriging with

a linear drift trend was used to interpolate TMPA pre-

cipitation, producing a smooth precipitation surface,

from which TMPA was extracted for each buffer, es-

tablishing one-to-one correspondence between the TMPA

and rain gauge data (Yin et al. 2008).

Correction factors, including location and terrain vari-

ables, were determined for each buffer so that precipitation

could be corrected with the aid of the topographic fea-

tures. The location variables referred to longitude and

latitude of the rain gauge, and the terrain variables were

factors such as elevation, relative relief, slope, and as-

pect for each buffer. These were extracted from the

DEM using ArcGIS tools (Yin et al. 2008). In total, 21

factors were extracted (Table 2). Correlation between

the correction factors and rain gauge precipitation was

analyzed using Statistical Package for the Social Sciences

(SPSS) statistical software. Factors with a significance level

greater than 0.01 were retained for subsequent rotated

principal component (RPC) analysis (Yin et al. 2008).

Factors that had a similar effect on precipitation were

classified as one RPC. RPC scores for each rain gauge

were calculated to prepare for further correction.

2) STEPWISE REGRESSION APPROACH

Stepwise regression analysis was conducted using SPSS

to establish a regression equation by taking monthly

TMPAprecipitation, location variables, andRPC scores

as independent variables and monthly rain gauge pre-

cipitation as a dependent variable. The corrected pre-

cipitation could then be determined according to the

equationwith the givenTMPAprecipitation and correction

TABLE 2. Terrain variable definitions and their descriptions.

Variable name Description

minelev Minimum elevation inside 25-km buffers

maxelev Maximum elevation inside 25-km buffers

rangelev Range of elevation inside 25-km buffers

meanelev Mean elevation inside 25-km buffers

stdelev Std dev of elevation inside 25-km buffers

meanslp Mean slope angle inside 25-km buffers

meanhshd Mean lighting condition inside 25-km buffers

sumelev Sum of all elevation inside 25-km buffers

medelev Median elevation inside 25-km buffers

min_h Minimum relative relief inside 25-km buffers

max_h Maximum relative relief inside 25-km buffers

mean_h Mean relative relief inside 25-km buffers

std_h Std dev of relative relief inside 25-km buffers

n1_asp Proportion of area with north-facing slopes

inside 25-km buffers

ne2_asp Proportion of area with northeast-facing

slopes inside 25-km buffers

e3_asp Proportion of area with east-facing slopes

inside 25-km buffers

se4_asp Proportion of area with southeast-facing

slopes inside 25-km buffers

s5_asp Proportion of area with south-facing slopes

inside 25-km buffers

sw6_asp Proportion of area with southwest-facing

slopes inside 25-km buffers

w7_asp Proportion of area with west-facing slopes

inside 25-km buffers

nw8_asp Proportion of area with northwest-facing

slopes inside 25-km buffers
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factors (Yin et al. 2008). We considered stepwise re-

gression a more reasonable method than the others

mentioned in section 1 since it uses terrain variables as

correction factors andmay therefore bemore applicable

to our study area with complex topography. However,

corrected TMPA precipitation was simply linearly sum-

med by geolocation and topographic variables. There-

fore, we tried the back-propagation (BP) neural network

approach, which corrected TMPA data bias by including

the correction factors nonlinearly.

3) BP NEURAL NETWORK APPROACH

The BP neural network approach was proposed by a

scientific team led by Rumelhart and McCelland (1986)

and has been widely used (Chang and Chao 2006; Moisen

and Frescino 2002). The BP neural network structure

contains three layers: input, hidden, and output (Fig. 2).

Each layer contains at least one node. Nodes are con-

nected by links, each of which represents a numerical

weight.

The BP neural network algorithm consists of two

procedures, feed forward of input signals and back

propagation of errors. In the feed forward, variables

enter the network from the input layer, are then pro-

cessed by the hidden layer, and are finally transmitted to

the output layer. In this process, previous node values

and their specific weights were multiplied and followed

by summing; the summation was then used as an in-

put variable of activity function fy 5 1/[1 1 exp(2x)];

Chiang et al. 2006; Liu and Yang 2007;Wang et al. 2013g
so that the current node value could be determined. In

case the network error between the actual and expected

output is unsatisfactory, the errors are used as adjusted

signals and propagated from the output layer to the

hidden layer and finally to the input layer. By doing this,

weights between the nodes are adjusted to more rea-

sonable values and error can be reduced (Wu and Li

2007). Feed forward and back propagation are repeated

until the error between actual and expected output is

reduced to within an acceptable range.

In this work, the BP neural network approach was

realized in the matrix laboratory (MATLAB) environ-

ment. The network contained one input layer, one hidden

layer, and one output layer, and each layer contained 7,

10, and 1 nodes, respectively. Monthly TMPA pre-

cipitation, location variables, and RPC scores were used

as input variables. The expected output was rain gauge

precipitation, and actual output of the BP neural net-

work was bias-corrected TMPA precipitation. Seven

input variables were processed by the hidden and output

layers using the active function; therefore, corrected

precipitation was not a simple linear combination of

input variables. This was the most important improve-

ment over the stepwise regression method.

FIG. 2. Structure of the BP neural network.
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4) INDICES FOR EVALUATING TMPA
AND CORRECTED TMPA DATA

Original TMPA precipitation and that corrected by

stepwise regression were evaluated on the basis of ob-

served precipitation data. TMPA precipitation cor-

rected by the BP neural network was compared with

both observed precipitation data and results from step-

wise regression for evaluating performance of that net-

work approach.

The frequency bias index (FBI), probability of de-

tection (POD), and false alarm ratio (FAR) were defined

for evaluating precipitation occurrence (Barros et al.

2000; Su et al. 2008). Relative mean bias (bias), Nash–

Sutcliffe efficiency (NSE), correlation coefficient (R2),

and determination coefficient of regression equation (r2)

were used to assess precipitation amount (Vila et al.

2009).

The FBI indicates any tendency to underestimate

(FBI , 1) or overestimate (FBI . 1) precipitation oc-

currence, with 1 being a perfect estimate. POD indicates

the fraction of precipitation occurrences that are cor-

rectly detected, again with 1 being a perfect value. The

FAR measures the fraction of precipitation detections

that are false alarms, with 0 being a perfect value. Overall

differences of precipitation were measured by bias and

R2. TMPA precipitation is approximately equal to the

gauge value if bias is between 210% and 110%. Bias

greater than 110% or lower than 210% means over-

estimated or underestimated precipitation, respectively

(Islam 2009). The degree of linear correlation be-

tween the two sets of precipitation is measured by R2;

the higher the R2, the higher the degree of correla-

tion. There is significant correlation for R2 greater

than 0.7 (Condom et al. 2011). NSE and r2 measure

strength of the linear relationship, with a perfect value

being 1:

FBI5
a1 b

a1 c
, (1)

POD5
a

a1 c
, (2)

FAR5
b

a1 b
, (3)

NSE5 12

�
n

i51

(Oi 2Pi)
2

�
n

i51

(Oi 2O)
2
, (4)

and

bias5

�
n

i51

(Pi 2Oi)

�
n

i51

Oi

3 100%, (5)

where a is the number of hits, b is the number false

alarms, c is the number misses, and d is the number of

zeros. The variable Oi is observed monthly precip-

itation, Pi is TRMM monthly precipitation, and O is

observed mean monthly precipitation.

3. Results

a. Performance of TMPA precipitation

Precipitation detective ability of TRMM 3B42 and

TRMM 3B43 showed regional differences, as shown in

Fig. 3. TRMM 3B42 underestimated precipitation occur-

rences, while FBIs in most buffers of TRMM 3B43 ach-

ieved optimal value in the north of the Tian Shan

mountain range. Both TRMM 3B42 and TRMM 3B43

overestimated precipitation occurrences for the rest of the

study area (Figs. 3a,b). The two precipitation products

have the same FBI values on the northward slope of the

Kunlun Mountains and Qilian Mountains; TRMM 3B43

gave better FBIs than TRMM 3B42 in the north of the

Tian Shan, while TRMM 3B42 gave better FBIs for the

rest of the regions (Fig. 3c). PODs of TRMM 3B42 were

all higher than 0.85, with 27 buffers achieving optimal

value, mainly distributed on the northward slope of the

KunlunMountains andQilianMountains (Fig. 3d). There

were no detection errors for TRMM 3B43, and all of the

PODs achieved optimal value (not shown). The two pre-

cipitation products showed little difference about FARs,

which valued from 0 to 0.54, and most buffers in the

north of the Tian Shan achieved optimal value (Fig. 3e).

Biases of TRMM 3B42 and TRMM 3B43 were258%

to 498% and 230% to 674%, respectively, and both of

them overestimated precipitation in most buffers, as

shown in Figs. 3f and 3g. TRMM 3B43 gave a larger

number of buffers in which biases achieved an accept-

able range than that of TRMM 3B42, as well as number

of buffers in which precipitation was overestimated.

Biases higher than 10% and smaller than 210% aver-

aged 55.4% and 230.7% for TRMM 3B42 and 73.6%

and 219.2% for TRMM 3B43, respectively, which in-

dicated that the overestimation degree of TRMM 3B43

was higher than that of TRMM 3B42 and vice versa for

underestimation degree. Additionally, correlation co-

efficients of TRMM 3B43 were higher than those of

TRMM 3B42, and there were 64 and 32 buffers in which

precipitation was significantly correlated with observed

values for TRMM 3B43 and TRMM 3B42, respectively.
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The above analysis showed that both TRMM 3B42

and TRMM 3B43 overestimated precipitation occur-

rences and amounts in most buffers, and both of them

gave a large proportion of false alarms. TRMM 3B43

gave better PODs, higher correlation coefficients, and

lower underestimation degrees than TRMM3B42, but it

also gave higher overestimation degrees.

On the other hand, correlation coefficients were 0.35

to 0.75 and 0.71 to 0.84, NSEs were 20.31 to 0.53 and

0.01 to 0.70, and determination coefficients were 20.06

to 0.53 and 0.40 to 0.63 from January to December for

TRMM 3B42 and TRMM 3B43, respectively. There are

only two months (July and September) in which TRMM

3B42 was significantly correlated with observed precip-

itation, and NSEs were higher than 0.5. Comparatively,

TRMM 3B43 gave a better performance because cor-

relation coefficients were all higher than 0.7, NSEs were

higher than 0.5 from June to October, and determination

coefficients were higher than TRMM 3B42, except in

February. However, biases for TRMM 3B42 were ac-

ceptable in 6 months (January, June–September, and

December), while biases for TRMM 3B43 were higher

than 10% and overestimated precipitation for all months.

Combining the above two aspects, overall, two TMPA

products tended to overestimate precipitation in most

cases and could not be fully accepted. Besides the limi-

tations mentioned in section 1, there are some other

causes for the unsatisfactory performance and over-

estimation of TMPA. The environmental condition is

very important in the study area; perennial and seasonal

snow–ice cover in the study area could be misclassified

as rain clouds by passive microwave sensors (Hirpa et al.

2010), which may result in false alarms and precipitation

overestimation. Also, a fraction of precipitation evapo-

rates before it reaches the ground (Ferraro et al. 1998;

McCollum et al. 2002; Rozante and Cavalcanti 2008),

FIG. 3. Distribution of evaluating indices for original TMPA precipitation: (a) FBI of TRMM 3B42, (b) FBI of

TRMM 3B43, (c) FBI comparison between TRMM 3B42 and TRMM 3B43, (d) POD of TRMM 3B42, (e) FAR of

TRMM 3B42, (f) bias of TRMM 3B42, and (g) bias of TRMM 3B43.
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which may cause overestimation. In addition, the eval-

uation results showed that TRMM 3B43 performed bet-

ter than TRMM 3B42, although TRMM 3B43 showed

a larger bias. In fact, the algorithms between TRMM

3B42 and TRMM 3B43 are very similar; the difference is

that there is a certain amount of spatial smoothing in the

3B43-to-3B42 ratios. More seriously, there are limits on

the ratios, approximately 0.2–3, so that large mismatches

do not do too much damage to the histogram of 3B42

precipitation rates, and the ratios limitations may cause

difference between accumulatedTRMM3B42 in amonth

and corresponding monthly TRMM3B43. (G. J. Huffman

2013, personal communication). From this perspective,

TRMM 3B43 performed better than TRMM 3B42, and

TABLE 3. Results of rotated principal component analysis.

RPCs RPC1 RPC2 RPC3 RPC4

Eigenvalues 8.616 4.303 2.571 2.191

Represented

variables

Variable Loading value Variable Loading value Variable Loading value Variable Loading value

min_h 0.979 stdelev 0.91 s5_asp 0.786 w7_asp 20.8

minelev 0.978 std_h 0.91 sw6_asp 0.671 e3_asp 0.7

meanhshd 0.957 rangelev 0.89 se4_asp 0.647

medelev 0.955 meanslp 0.81 ne2_asp 20.69

meanelev 0.945 n1_asp 20.85

mean_h 0.945

sumelev 0.922

max_h 0.822

maxelev 0.813

TABLE 4. Results of stepwise regression analysis for TRMM 3B42 and TRMM 3B43.

Month

TRMM 3B42

r2Constant

TRMM

precipitation (mm) Lon (8E) Lat (8N) RPC1 RPC2 RPC3 RPC4

Jan 242.68 0.44 1.09 20.71 20.59 20.67 0.30

Feb 228.11 0.40 0.71 20.46 20.56 20.59 0.40

Mar 246.48 0.44 1.21 0.81 21.13 0.23

Apr 250.91 0.65 1.35 21.13 20.93 0.29

May 248.94 0.58 1.38 3.70 2.18 0.36

Jun 0.53 0.71 20.39 0.99 5.91 3.25 21.72 0.57

Jul 212.92 0.80 20.26 1.04 9.68 5.48 22.43 0.63

Aug 233.59 0.71 20.21 1.43 8.89 4.48 0.61

Sep 29.56 0.74 0.36 3.63 3.10 0.60

Oct 225.05 0.67 20.08 0.86 0.85 20.87 0.33

Nov 267.98 0.51 20.11 1.96 0.83 21.42 21.16 21.30 0.40

Dec 243.76 0.31 20.07 1.28 20.60 20.98 21.04 0.36

Month

TRMM 3B43

r2Constant

TRMM

precipitation (mm) Lon (8E) Lat (8N) RPC1 RPC2 RPC3 RPC4

Jan 27.95 0.66 0.09 20.71 20.41 20.76 0.63

Feb 216.53 0.53 0.40 20.56 20.61 20.66 0.56

Mar 214.07 0.68 0.05 0.24 21.06 20.65 0.60

Apr 28.03 0.85 0.08 20.72 21.13 20.79 0.62

May 218.10 0.85 0.44 1.66 21.79 21.11 0.63

Jun 23.85 0.83 20.26 1.96 2.70 21.01 21.40 0.69

Jul 20.04 0.89 5.13 4.65 21.80 0.74

Aug 21.40 0.87 20.15 0.37 4.97 3.30 21.13 0.75

Sep 0.38 0.89 1.85 2.35 0.72

Oct 0.12 0.81 20.80 0.61

Nov 214.39 0.67 0.35 21.11 20.71 21.17 0.67

Dec 25.56 0.68 0.06 20.61 20.64 20.83 0.68
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the main reason may be due to the time scale, because

finescale precipitation estimates tend to have high

uncertainty (Huffman et al. 2007, 2010).

b. Correction of TMPA precipitation based
on stepwise regression

Terrain variables were extracted from the DEM, then

correlation analysis was performed, followed by princi-

pal component analysis, to prepare for calibration of

TMPA precipitation via stepwise regression. The cor-

relation analysis showed that terrain variables had sig-

nificant correlation (at the 0.01 level) with precipitation

for at least 1month, except for nw8_asp. Twenty factors

remained to perform subsequent RPC analysis. Four

RPCs were determined (Table 3), which explainedmore

than 88% of variance of the original dataset. Each RPC

represented at least one original terrain variable. Step-

wise regression analysis was done using monthly TMPA

precipitation, location variables, and RPC scores as in-

dependent variables and observed monthly precipitation

as a dependent variable. Variables significant at the 0.05

level were allowed to enter the regression models.

The results showed that determination coefficients of

regression models for TRMM 3B42 were relatively low

from October to April (0.23–0.4) and got higher from

May to September (0.57–0.63), as shown in Table 4a.

The coefficients for TRMM3B43 were ranged from 0.56

to 0.75 and higher than TRMM 3B42 for all months

(Table 4b), which indicated that regression models for

TRMM 3B43 were more reliable than TRMM 3B42.

Corrected TMPA precipitation was compared with

rain gauge values to further assess method effectiveness

(Fig. 4). The correlation coefficients and NSEs for cor-

rected TRMM 3B42 increased by 0.03–0.21 and 0.07–

0.71, respectively. Therewere 4months (June–September)

in which corrected precipitation was significantly related

to observed value and NSEs were higher than 0.5. How-

ever, determination coefficients decreased in 6 months

and were negative in 5 months. Comparatively, cor-

rected TRMM 3B43 showed better improvement. The

correlation coefficients were all higher than 0.75, al-

though they showed only a little increment (0–0.03).

NSEswere also increased for all months andwere higher

than 0.56. The determination coefficients ranged from

0.47 to 0.71 and higher than 0.6 in 6 months.

The above information indicates that corrected TMPA

precipitation was superior to original data overall, which

shows that stepwise regression method could improve

TMPA data, especially for TRMM 3B43. However, the

correction results for TRMM 3B42 were less effective,

and the evaluation indices were too small to reach ac-

ceptable ranges for most months. In addition, negative

corrected values existed inmostmonths (not shown), and

most negative values appeared from November through

February, which accounts for 0%–19% and 2.9%–15.4%

in total corrected values for TRMM 3B42 and TRMM

3B43, respectively. It was obvious that negative pre-

cipitation was contrary to the actual situation.

c. Correction of TMPA precipitation based
on BP neural network

The stepwise regression method was followed by the

BP neural network method to correct TMPA precip-

itation. The results showed that correlation coefficients

between observed and corrected precipitation were

0.68–0.87 and 0.88–0.96, NSEs were 0.46–0.76 and 0.77–

0.91, and determination coefficients were 0.29–0.73 and

0.74–0.91 for TRMM 3B42 and TRMM 3B43, respec-

tively. Compared to the results of the stepwise regres-

sion method, the above three indices were all improved;

they increased by 0.07–0.22 and 0.05–0.17, 0.1–0.32 and

0.09–0.29, and 0.19–0.86 and 0.12–0.36 for TRMM 3B42

and TRMM3B43, respectively. In general, the corrected

precipitation based on the BP neural network was closer

to observed precipitation than that based on stepwise

regression, indicating that a nonlinear model was more

effective than a linear model.

After correction by a BP neural network, the scatters

between observed and corrected precipitation were

closer to the 1:1 line for both TRMM 3B42 and TRMM

3B43, as shown in Fig. 5. Corrected TRMM 3B43 was

FIG. 4. Evaluation index before and after correction by the stepwise

regression method.
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significantly correlated with the observed value for

all months, and biases ranged from 27.6% to 0.7%, as

shown in Fig. 6, which indicated that corrected TRMM

3B43 could be accepted. However, determination co-

efficients of corrected TRMM 3B42 were still less than

0.5 for January, March, April, and October. Correlation

coefficient and NSE in March were smaller than 0.7

and 0.5, respectively. In addition, biases were still higher

than 10%, and precipitation was therefore overestimated

in July and August, indicating that corrected TRMM

3B42 was still unsatisfactory in a few months.

From the results of the stepwise regression and the BP

neural network, it is obvious that both of them had

better correction for TRMM 3B43 than TRMM 3B42. It

has been shown previously that TRMM 3B43 had better

linear correlationwith observed precipitation, but biases

FIG. 5. Scatterplot of rain gauge and TMPAprecipitation before and after correction based on the BP neural network for everymonth (on

the scale of the entire study area).
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were higher than TRMM 3B42 and it could be inferred

that correction results were affected more by linear

correlation degree than the biases of the original data.

d. Spatial-scale dependence of correction methods

The aforementioned results were for the entire study

area, and TMPA precipitation was also corrected on

a subregion scale by the two methods. Figure 7 shows

that the precipitation in subregions was significantly

improved after correction and scatters were closer to the

1:1 line. Compared with correction over the entire area,

correlation coefficients of subregions increased by 0.01–

0.23 and 0.01–0.22 for TRMM 3B42 and TRMM3B43,

respectively, and corrected precipitation was significantly

related to observed precipitation, except for subregions 1

and 5, which were corrected by stepwise regression

method. Biases ranged from 27.28% to 0.06% and

25.6% to 0.4%, decreasing by 122.9%–6.7% and 0.6%–

79.8% for TRMM 3B42 and TRMM3B43, respectively.

This reveals that correction on the subregion scale was

more accurate than on the larger scale. TRMM 3B43

corrected by the twomethods on the subregion scale was

acceptable for every subregion, as well as TRMM 3B42

corrected by the BP neural network method. Addi-

tionally, the BP neural network method showed higher

correlations and biases than stepwise regression; how-

ever, negative corrected precipitation by the latter

method may be responsible for the lower biases.

4. Discussion

Rain gauges are the most direct method to measure

near-surface precipitation, and rain gauge observations

yield relatively accurate point measurements of pre-

cipitation, but they also suffer from sampling error in

representing area means (Xie and Arkin 1995). In this

study, rain gauge precipitation was treated as the true

value in the buffer of 25 km in diameter centered at the

rain gauge. Generally speaking, there should be more

than enough rain gauges in a region to make sure that

the average precipitation is representative of that re-

gion. Xie and Arkin (1995) indicated that at least five

gauges are needed to produce a good average monthly

precipitation for grid areas of 2.58 3 2.58 with an accu-

racy of 10%, but only 10% of the global land grid areas

satisfy this requirement. Limited by sparse rain gauges,

some previous studies treated the point rain gauge ob-

servation as the truth in 0.258 or 18 pixels over complex

terrain. For example, Yin et al. (2008) corrected a 18 3 18
TRMM 3B42 version 5 product by taking a single rain

gauge precipitation as the actual value in the buffer of

50km over the Tibetan Plateau. Hirpa et al. (2010) eval-

uated TRMM 3B42RT, CMORPH, and PERSIANN

with rain gauge precipitation over very complex terrain

in Ethiopia and took a single rain gauge precipitation as

the true value in 0.258 pixel. Tobin and Bennett (2010)

compared and adjusted five 0.258 grids of the TMPA

research product that corresponds with the Douglas rain

gauge in the San Pedro River basin (1971 km2). Similar

examples can also be found in Islam (2009) and

Heidinger et al. (2012). To further interpret whether the

point rain gauge observation could be treated as the

truth in the buffer of 25 km, we extracted terrain factors

(listed in Table 2) in a series of buffers with different

sizes centered at every rain gauge (5, 10, 15, 20, 25, 30,

35, and 40 km in diameter). Correlation coefficients

were calculated between rain gauge precipitation and

terrain factors in every buffer, followed by a significance

test between correlation coefficients of adjacent buffers.

The results showed that there were no significant differ-

ences (sig) between buffers of 5 and 10km (sig5 0.781), 10

and 15km (sig 5 0.908), 15 and 20 km (sig 5 0.409), 20

and 25 km (sig5 0.051), and 25 and 30 km (sig5 0.904).

However, correlation coefficients between buffers of 30

and 35 km (sig 5 0.001) and 35 and 40 km (sig 5 0.001)

were significantly different. This result indicates that the

terrain factors have similar influence on the pre-

cipitation in a 30-km area centered at a rain gauge, and

the precipitation could be treated homogeneously in this

area. Thus, a buffer size of 25 km can be accepted.

Satellite precipitation has error and bias from indirect

observation and uncertainty in the precipitation re-

trieval algorithm, especially for high-latitude or moun-

tain areas. Many efforts have been made to correct this

precipitation, and most were statistically based (Tian

et al. 2010; Tobin and Bennett 2010), only considering

probabilistic relationships between rain gauge and sat-

ellite precipitation.However, the performance of satellite

FIG. 6. Biases between rain gauge and TMPA precipitation

before and after correction based on the BP neural network for

every month.
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FIG. 7. Scatterplot of rain gauge and TMPAprecipitation before and after correction using stepwise regression and the BP neural network

for every subregion.
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precipitation was affected by many factors (e.g., local

topography), and the aforementioned methods may be

not applicable to the areas of complex terrain. Cor-

recting TRMM precipitation using the stepwise regres-

sion proposed by Yin et al. (2008) achieved satisfactory

results for the Tibetan Plateau. This type of method was

more applicable because it considered terrain variables

as correcting factors. However, negative values appeared in

the regression results for our study area. Moreover, con-

sistency between corrected and rain gauge precipitation

was not satisfactory. The results of the BP neural network

showed greater consistency between corrected and rain

gauge precipitation than those of stepwise regression. Bode

(2000) indicated that the artificial neural network wasmore

precise than traditional linear regression and nonlinear re-

gressionmethods in cost estimation, and our results showed

that the BP method was more applicable in correcting

precipitation. Terrain variables and precipitation in the

study area may not be simply described by linear relation-

ship; conversely, nonlinearity showed better efficiency.

Parameters such as the number of hidden layers and

their nodes and learning rate affect the BP neural network

effectiveness (Ju et al. 2009). The numbers of hidden

layers and nodes increase network complexity. Conver-

gence speed is too slowwhen the learning rate is small, and

error will vary greatly if that rate is too high. In this study,

we adjusted all these parameters; the output changed

slightly, and error could not be reduced by further pa-

rameter change. The ultimate parameters were set when

the correction achieved best results: one hidden layer with

10 nodes was adopted and the learning rate was 0.01.

Earlier study showed that input data should be processed

more efficiently to enhance prediction accuracy (Ju et al.

2009). However, the original TMPA precipitation as an

input variable gave unpleasant precision in the study area.

Therefore, accuracy of corrected precipitation was limited

by the quality of input TMPA precipitation.

5. Conclusions

In this study, twoTMPAprecipitation products (TRMM

3B42 and TRMM 3B43) during 1998–2010 were evalu-

ated and corrected in the arid area of northwest China.

TMPA showed unsatisfactory performance and pre-

cision since it overestimated precipitation occurrence

and amount in most cases, as well as producing numer-

ous false alarms. Corrected TMPA precipitation based

on stepwise regressionwas closer to observed values, but

the results remained unsatisfactory. The BP neural net-

work, which was a nonlinear model, showed better correc-

tion results than traditional linear regression approaches.

Both correction methods were affected by region size

and were more effective on a smaller spatial scale than

over the entire study area. However, the BPmethod was

limited by the poor quality of the original TMPA pre-

cipitation. In addition, both methods gave better cor-

rection results for TRMM 3B43 than for TRMM 3B42.

TRMM 3B43 results corrected regionally by stepwise

regression and corrected both regionally and nonre-

gionally by the BP neural network were acceptable, but

satisfactory results were only found in TRMM 3B42

corrected regionally by the BP neural network.
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