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Algorithms for Generating Climate Change

Scenarios for Temperature and Pan
Evaporation on a Lake Basin

Manish Kumar Goyal1 and C. S. P. Ojha2

Abstract: Climate change scenarios generated by general circulation models (GCMs) have too coarse a spatial resolution to be useful
in planning disaster risk reduction and climate change adaptation strategies at regional to river/lake basin scales. This paper investigates
the performances of existing state-of-the-art rule induction and tree algorithms, namely, single conjunctive rule learner, decision table,
M5P model tree, decision stump, and REPTree. Downscaling models are developed to obtain projections of mean monthly maximum
and minimum temperatures (Tmax and Tmin) as well as pan evaporation to lake-basin scale in an arid region in India using these algorithms.
The predictor variables, such as air temperature, zonal wind, meridional wind, and geo-potential height, are extracted from the National
Centers for Environmental Prediction (NCEP) reanalysis data set for the period 1948–2000 and from the simulations using third-generation
Canadian coupled global climate models for emission scenarios for the period 2001–2100. A simple multiplicative shift was used for
correcting predictand values. The performances of various models have been evaluated on several statistical performance parameters
such as correlation coefficient, mean absolute error, and root mean square error. The M5P model tree algorithm was found to yield better
performance among all other learning techniques explored in the present study. An increasing trend is observed for Tmax and Tmin
for emission scenarios, whereas no trend has been observed for pan evaporation in the future. DOI: 10.1061/(ASCE)HE.1943-5584
.0000795. © 2014 American Society of Civil Engineers.

Author keywords: Climate change; Intergovernmental Panel on Climate Change (IPCC) scenarios; India; Pichola Lake; Statistical
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Introduction

General Circulation Models (GCMs) are an important tool in the
assessment of climate change. These models are based on well-
established physical principles and have been demonstrated to
reproduce observed features of recent climate and past climate
changes (Fowler et al. 2007; Chu et al. 2010; Ojha et al. 2010).
However, they remain relatively coarse in resolution and are unable
to resolve significant subgrid scale features such as topography,
clouds, and land use (Wilby et al. 2002; Anandhi et al. 2009; Goyal
et al. 2012). Since confidence in the projection of GCMs decreases
at smaller scales, other techniques, such as the use of regional
climate models and downscaling methods, have been specifically
developed for the study of regional-scale and local-scale climate
change. The methods used to convert GCM outputs into local

meteorological variables required for reliable hydrological model-
ing are usually referred to as downscaling techniques. Two funda-
mental approaches exist for the downscaling of large-scale GCM
output to a finer spatial resolution. The first of these is a dynamical
approach where a higher resolution climate model is embedded
within a GCM. The second approach is to use statistical methods
to establish empirical relationships between GCM-resolution cli-
mate variables and local climate. A dynamic downscaling approach
has superior capability in complex terrain or with changed land
cover (Kite 1997; Wang et al. 2004). However, this method entails
higher computation cost and relies strongly on the boundary con-
ditions provided by GCMs (Chu et al. 2010). In contrast, statistical
downscaling gains local predictands by appropriate statistical or em-
pirical relationships with surface or troposphere atmospheric predic-
tors (Xu 1999). Since this method is comparatively cheap and
computationally efficient and is as powerful as its dynamic competi-
tor, it has been widely employed in climate change impact assess-
ments (Wilby and Wigley 1997; Fowler et al. 2007). However, its
drawback is that it requires a reliable observed historical data series
for calibration and in order to build the appropriate statistical rela-
tionship (Chu et al. 2010).

Statistical downscaling methods are generally classified into
three groups: (1) regression models, (2) weather typing schemes,
and (3) weather generators (WGs). Each group covers a range
of methods, all relying on the fundamental concept that re-
gional climates are largely a function of the large-scale atmospheric
state (Fowler et al. 2007). This relationship may be expressed as a
stochastic and/or deterministic function between large-scale atmos-
pheric variables (known as predictors) and local climate variables
(known as predictands). In regression models, the transfer function
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is used to describe methods that directly quantify a relationship
between the predictand and a set of predictor variables (Kang
et al. 2007). Weather typing or classification schemes relate the
occurrence of particular weather classes to local climate (Conway
et al. 1996; Fowler et al. 2000, 2007). Weather generators in the
simplest form are stochastic models, based on daily precipitation
with a two state first-order Markov chain dependent on transition
probabilities for simulating precipitation occurrence, and a gamma
distribution for precipitation amounts (Mason 2004; Fowler
et al. 2007). Several studies (Fowler et al. 2007; Anandhi et al.
2009) have shown that the statistical downscaling method
is simple to handle and has, by and large, superior capability
and is therefore widely applied (Wilby and Harris 2006). Down-
scaling has found wide application in hydroclimatology for
scenario construction and simulation/prediction of (1) monthly
mean temperature (Benestad 2001), (2) daily minimum and maxi-
mum temperature (Wilby et al. 2002), (3) daily mean, minimum
and maximum temperature (Kettle and Thompson 2004), and
(4) monthly minimum and maximum air temperature (Anandhi
et al. 2009).

This paper explores existing state-of-the-art rule induction
and tree algorithms, namely: (1) single conjunctive rule learner,
(2) decision table, (3) M5 model tree, (4) decision stump, and
(5) REPTree as a downscaling methodology to study climate
change impact over the Pichola Lake basin in an arid region.
In the literature, there is no evidence of any study dealing with
simultaneous evaluation of various decision learning approaches.
In light of this, the objective of this study is to (1) rank various
rule induction and tree algorithms, (2) downscale mean monthly
maximum temperatures (Tmax) and minimum temperatures (Tmin)
as well as pan evaporation using the best available approach from
simulations of the third-generation Canadian Coupled Global Cli-
mate Model (CGCM3) for the latest IPCC scenarios (IPPC 2007),
and (3) apply a simple multiplicative shift to correct the GCM bias
and compare the results with and without bias correction.

Study Region and Data Extraction

The study area is the Pichola Lake catchment in the Rajasthan prov-
ince in India that is situated from 72.5°E to 77.5°E and 22.5°N to
27.5°N. The Pichola Lake basin, located in the Udaipur district, is
one of the major sources for water supply for this region. The mean
monthly Tmax in the catchment varies from 19°C to 39.5°C, and the
mean annual Tmax is 30.6°C. The mean monthly Tmin ranges from
3.4°C to 29.8°C based on decadal (1990–2000) observed values.
This region receives an average annual precipitation of 597 mm.
For other details, readers are referred to studies by Khobragade
(2009) and Goyal and Ojha (2012).

The monthly mean atmospheric variables were derived from
the National Centers for Environmental Prediction (NCEP) and the
National Center for Atmospheric Research (NCAR) (hereafter
called NCEP) reanalysis data set (Kalnay et al. 1996) for the period
of January 1975 to December 2000. The NCEP and NCAR accom-
plished different re-analysis projects that aimed to generate global
data sets for a long time period for different atmospheric parameters
(Kalnay et al. 1996). The data have a horizontal resolution of
2.5° latitude by 2.5° longitude and 17 constant pressure levels
in the vertical. The atmospheric variables, such as air temperature,
zonal wind, meridional wind, and geo-potential height, are ex-
tracted for nine grid points whose latitude ranges from 22.5°N to
27.5°N, and longitude ranges from 72.5°E to 77.5°E at a spatial
resolution of 2.5°.

Rule Induction and Tree Algorithms

Single Conjunctive Rule Learner

Single conjunctive rule learner is one of the data mining learning
algorithms and is normally known as inductive learning. The ob-
jective of rule induction is generally to induce a set of rules from
data that confines all generalizable knowledge within that data and
at the same time is as small as possible (Cohen 1995). Classifica-
tion in rule induction classifiers is typically based on the firing of a
rule on a test instance, triggered by matching feature values at the
left-hand side of the rule (Clark and Niblett 1989). Rules can be of
various normal forms and are typically ordered; with ordered rules,
the first rule that fires establishes the classification outcome and
halts the classification process (Mohd and Thomas 2007).

Decision Table

Decision table employs the wrapper method to find a good subset
of attributes for inclusion in the table. This is done using a best-first
search. The decision table algorithm constructs a decision rule
using a simple decision table majority classifier, as proposed by
(Kohavi 1995). It reviews the data set with a decision table, which
contains the same number of attributes as the original data set.

M5 Model Tree

Model tree technique presents a structural representation of the data
and a piecewise linear fit of the class (Quinlan 1992). Like conven-
tional decision tree learners, M5 builds a tree by splitting the data
based on the values of predictive attributes. Instead of selecting
attributes by an information theoretic metric, M5 chooses attributes
that minimize intra-subset variation in the class values of instances
that go down each branch. The variability is measured by the stan-
dard deviation of the values that reach that node from the root
through the branch with calculating the expected reduction in error
as a result of testing each attribute at that node. The attribute that
maximizes the expected error reduction is chosen. The splitting
stops if the values of all instances that reach a node vary slightly,
or only a few instances remain (Bhattacharya and Solomatine 2005;
Goyal and Ojha 2011; Ajmera and Goyal 2012).

Decision Stump

Decision stumps are simple classifiers, in which the final decision
is made by only a single hypothesis or feature. A decision stump is
simply a one node decision tree based on a co-occurrence feature,
whereas the majority classifier assigns the most frequent sense in
the training data to every occurrence of that word in the test data.
The decision stump algorithm builds simple binary decision stumps
for both numeric and nominal classification problems (Witten
et al. 1999).

REPTree

The REPTree algorithm is a fast decision tree learner that constructs
a decision/regression tree using information gain/variance and
prunes it using reduced-error pruning (with back-fitting) (Senthil
kumar et al. 2012). The algorithm only sorts values for numeric
attributes once (Daud and Corne 2007).

Weka (Witten and Frank 2000) implementation of the various
learning algorithms is used here. Weka is written in Java and is
freely available from http://www.cs.waikato.ac.nz/~ml.
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Results and Discussions

The most relevant probable predictor variables necessary for
developing the downscaling models are identified by using the
three measures of dependence. The cross-correlations enable veri-
fying the reliability of the simulations of the predictor vari-
ables by the GCM and are provided in Table 1. Seven predictor
variables, namely air temperature at 925, 500, and 200 hPa;
zonal wind (925 hPa); meridional wind (925 hPa); and geo-
potential height (500 and 200 hPa) at 9 NCEP grid points with
a dimensionality of 63, are used because of better correlation as
the standardized data of potential predictors. Principal Component
Analysis (PCA) is performed to transform the set of correlated N-
dimensional predictors (N ¼ 63) into another set of N-dimensional
uncorrelated vectors (called principal components) by linear com-
bination, such that most of the information content of the original
data set is stored in the first few dimensions of the new set. It is
observed that the four leading principal components (PCs) of the
PCAmethod explain about 97% of the information content (or vari-
ability) of the original predictors. PCs are extracted to form feature
vectors from the standardized data of potential predictors. These
feature vectors are provided as input to the various downscaling
models. Results of the different models for predictands are tabu-
lated in Table 2. It can be observed during calibration from Table 2
that the performance of models using M5P tree and decision table
algorithms for mean monthly Tmax and Tmin, as well as pan evapo-
ration, is clearly superior to that of REPTree, decision stump, and
single conjunctive rule learner-based models in the training data
set. For the Tmax and Tmin predictands, the results of the decision
stump and single conjunctive rule learner -based models are quite
similar. It can be inferred that models Model3 and Model1, using
decision table, performed the best for predictands Tmax and pan
evaporation, respectively, while Model8 using M5P performed
the best for the predictand Tmin. It can also be inferred from
validation results that the performance of M5P tree models

(namely TmaxMT, TminMT, and EvapMT) for the predictands
(Tmax and Tmin as well as pan evaporation) is clearly superior to
that of decision table, REPTree, decision stump, and single con-
junctive rule learner-based models in the validation data set.

It can also be observed from Table 2 that the performance
of M5P models for all predictands is clearly superior to that of de-
cision table, REPTree, decision stump, and single conjunctive rule
learner-based models in the training and validation data set, barring
few exceptions. Models using decision table performed better in the
training data set for the predictands Tmax and pan evaporation. It
can be inferred that models TmaxMT, and TminMT using algorithm
M5 model tree performed best for predictands Tmax and Tmin,
respectively, whereas model EvapMT using algorithm M5 model
tree performed best for the predictand pan evaporation. A multi-
plicative shift (Ines and Hansen 2006) is used to correct the GCM
bias of models TmaxMT, TminMT, and EvapMT corresponding
to Tmax and Tmin as well as pan evaporation, respectively. All
the corrected models performed better than uncorrected in terms of
various performance measures, as given in Table 3, barring few ex-
ceptions. A comparison of mean monthly observed Tmax, Tmin,
and pan evaporation with Tmax, Tmin, and pan evaporation simu-
lated using M5 model tree algorithm models TmaxMT (corrected),

Table 1. Cross-Correlation Computed between Probable Predictors in NCEP and GCM Data Sets

Correlation Ta925 Ua925 Va925 Va200 Ta20 Zg200 Ua200 Ta500 Zg500

P 0.83 0.79 0.67 −0.18 0.66 0.81 0.23 0.81 0.60
S 0.68 0.56 0.43 −0.14 0.46 0.64 0.57 0.64 0.39
K 0.87 0.76 0.61 −0.20 0.68 0.85 0.73 0.85 0.59

Note: K = Kendall’s tau; P = product moment correlation; S = Spearman’s rank correlation.

Table 2. Various Performance Statistics of Model Using Various Approaches

Approach Model

CC MAE RMSE

Training Validation Training Validation Training Validation

Single conjunctive rule learner TmaxSCRL 0.69 0.73 2.78 2.60 3.33 3.09
Decision table TmaxDT 0.97 0.73 0.66 2.46 1.04 3.46
M5 model tree TmaxMT 0.96 0.96 0.69 1.03 1.24 1.36
Decision stump TmaxDS 0.70 0.64 2.57 2.92 3.30 3.56
REPTree TmaxREP 0.85 0.84 1.68 1.86 2.46 2.54
Single conjunctive rule learner TminSCRL 0.89 0.83 2.72 3.42 3.32 4.34
Decision table TminDT 0.95 0.91 1.84 2.39 2.34 3.25
M5 model tree TminMT 0.98 0.95 1.07 1.61 1.43 2.41
Decision stump TminDS 0.89 0.86 2.74 3.43 3.30 4.28
REPTree TminREP 0.98 0.93 1.05 1.98 1.62 2.96
Single conjunctive rule learner EvapSCRL 0.78 0.63 1.24 1.57 1.75 2.28
Decision table EvapDT 0.98 0.72 0.30 1.30 0.45 1.95
M5 model tree EvapMT 0.96 0.94 0.57 0.78 0.77 1.00
Decision stump EvapDS 0.70 0.69 1.48 1.47 2.01 2.06
REPTree EvapREP 0.56 0.69 2.31 2.07 2.78 2.82

Table 3. Various Performance Statistics of Model Using Bias Correction

Model

CC MAE RMSE

Training Validation Training Validation Training Validation

TmaxMT
(corrected)

0.97 0.96 0.69 1.01 1.14 1.23

TminMT
(corrected)

0.98 0.97 0.97 0.91 1.12 1.81

EvapMT
(corrected)

0.96 0.95 0.52 0.68 0.57 1.05
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TminMT (corrected) and EvapMT (corrected) is shown in
Figs. 1–3 for the validation period. It can be inferred that these
models are not able to mimic a few low observed events for the
Tmax and Tmin predictands while a few maxobserved events for
the pan evaporation predictand.

Once the downscaling models have been calibrated and vali-
dated, the next step is to use these models to downscale the scenario

simulated by the GCM. The GCM simulations are run through
the calibrated and validated models (viz TmaxMT, TminMT, and
EvapMT) to obtain future simulations of the predictands. The pre-
dictands’ (viz Tmax and Tmin as well as pan evaporation) patterns
are analyzed with box plots for 20 year time slices. Typical results
of downscaled predictands (Tmax, Tmin, and pan evaporation)
obtained from the predictors are presented in Figs. 4–6. In part (a)

Fig. 1. Typical results for comparison of the monthly observed Tmax with Tmax simulated using M5 model tree downscaling model TmaxMT for
NCEP data for validation period (1990 to 2000)

Fig. 2. Typical results for comparison of the monthly observed Tmin with Tmin simulated using M5 model tree downscaling model TminMT for
NCEP data for validation period (1990 to 2000)

Fig. 3. Typical results for comparison of the monthly observed pan evaporation with pan evaporation simulated using M5 model tree downscaling
model EvapMT for NCEP data for validation period (1990 to 2000)
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of these figures, the Tmax, Tmin, and pan evaporation downscaled
using NCEP and GCM data sets are compared with the observed
Tmax, Tmin, and pan evaporation for the study region using
box plots. The projected Tmax, Tmin, and pan evaporation for
2001–2020, 2021–2040, 2041–2060, 2061–2080, and 2081–2100,
for the four scenarios A1B, A2, B1, and COMMIT are shown in
(b), (c), (d) and (e), respectively.

From the box plots of downscaled predictands (Figs. 4 and 5),
it can be observed that Tmax and Tmin are projected to increase in
the future for the A1B, A2, and B1 scenarios, whereas no trend
is discerned from the COMMIT scenario by using predictors. The
projected increase in predictands is high for the A2 and A1B sce-
narios, whereas it is least for the B1 scenario. This may be because
among the scenarios considered, the scenarios A1B and A2 have
the highest concentration of atmospheric carbon dioxide (CO2),

equal to 720 and 850 ppm, and the same for the B1 and
COMMIT scenarios, which have concentrations equal to 550 ppm
and approximately 370 ppm, respectively. Increase in the con-
centration of CO2 in the atmosphere causes the earth’s average tem-
perature to rise, which in turn causes an increase in evaporation,
especially at lower latitudes (Anandi et al. 2009). In the COMMIT
scenario, where the emissions are held the same as in the year 2000,
no significant trend in the pattern of projected future precipitation
could be discerned. From the box plot of pan evaporation (Fig. 6),
it can be concluded that the change pattern of pan evaporation is
not very clear in the future for A1B, B1, and COMMIT scenarios.
This may be because a greater number of factors contribute to
evaporation. However, an increasing trend has been observed for
the A2 scenario. The appendix shows pruned model trees obtained
by using the M5 model tree algorithm for the predictands.

Fig. 4. Box plots results from the M5 model tree based downscaling model TmaxMT model for the predictand Tmax
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Furthermore, a physical-based empirical method for compu-
tation of evaporation is employed to analyze the trend. For this
purpose, the Hargreaves method (Hargreaves and Samani 1985) is
a simple, empirical approach that has been used in cases in which
the availability of weather data is limited. This approach requires
only measurements of maximum and minimum temperatures, with
extraterrestrial radiation calculation as a function of latitude and
day of the year (Itenfisu et al. 2003). The Mann–Kendall nonpara-
metric trend test was performed on the computed evaporation
values using the Hargreaves method for all the scenarios using
downscaled Tmax and Tmin with extraterrestrial radiation. A value
of 0.05 was chosen as the local significance level. It is observed
that there is no significant trend, either positive or negative, for the
predictand pan evaporation. Hence, this physical-based model pro-
duced similar results to those of this study.

Comparison with Previous Downscaling Studies

Anandhi et al. (2009) developed downscaling models using a
support vector machine (SVM) for obtaining projections of
monthly mean maximum and minimum temperatures (Tmax
and Tmin) for the catchment of the Malaprabha reservoir in
India. The resulting models produced similar results to those
of this study. For example, the results of downscaling show that
Tmax and Tmin are projected to increase in the future for the
A1B, A2, and B1 scenarios, whereas no trend is discerned from
the COMMIT scenario, and Tmax was better simulated than
Tmin between the two predictands. A comparison for pan evapo-
ration has been made to a similar study carried out in the semi
arid Haihe River basin in China. Chu et al. (2010) developed
the downscaling models for pan evaporation using statistical

Fig. 5. Box plots results from the M5 model tree based downscaling model TminMT model for the predictand Tmin
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downscaling method, and results produced are similar to those of
this study.

Conclusions

This paper explores the suitability of various available rule and
decision tree learning algorithms, namely the single conjunctive
rule learner, decision table, M5 model tree, decision stump, and
REPTree approaches to downscale mean monthly maximum tem-
perature (Tmax), minimum temperature (Tmin), and pan evapora-
tion from GCM output to local scale. The M5P model tree
performed best for the predictands Tmax, Tmin, and pan evapora-
tion. The M5P model tree was followed by REPTree in the case of
Tmax and Tmin but followed by decision table in the case of pan
evaporation. The single conjunctive rule learner performed worst
in the case of Tmin and pan evaporation, whereas the decision
stump algorithm performed worst in the case of Tmax. GCM bias
correction procedure improved the overall predictability of predic-
tands. The results of downscaling models using the M5P model tree
algorithm show that Tmax and Tmin are projected to increase in
the future for A1B, A2, and B1 scenarios, whereas no trend is
discerned from the COMMIT scenario using predictors. It is inter-
esting to note that the change in the pattern of pan evaporation is
not obvious in the future for the A1B, B1, and COMMIT scenarios
but is apparent in the A2 scenario, which corresponds to an increas-
ing trend.

However, data used from a number of GCMs could produce
different results in a given location. Therefore, caution should be
exercised in interpreting the outcome of such impact analysis for
practical applications since downscaling results in this research
using the outputs of a single GCM.

Appendix. Pruned Model Tree

Pruned model trees obtained using the M5 modeling approach are
as follows:
1. Pruned model tree obtained by using M5 modeling approach

for maximum temperature
• M5 pruned model tree: (using smoothed linear models).
• LM1 (72=26.882%).
• LM num: 1.

MaxTemp ¼ 0.7908 × pc1 − 1.0665 × pc2 − 1.0403×
pc3 − 0.4 × pc4þ 30.3012

• Number of Rules: 1.
2. Pruned model tree obtained by using M5 modeling approach

for minimum temperature
• M5 pruned model tree: (using smoothed linear models).

pc1 <¼ −0.623: LM1 (36=21.891%)
pc1 > −0.623:
jpc1 <¼ 3.497: LM2 (17=14.41%)
jpc1 > 3.497: LM3 (19=14.916%)

• LM num: 1.

Fig. 6. Box plots results from the EvapMT model based downscaling model for the predictand pan evaporation
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MinTemp ¼ 1.1205 × pc1 − 0.6049 × pc2 − 1.2277 ×
pc3 − 0.432 × pc4þ13.3791

• LM num: 2.
MinTemp ¼ 0.8571 × pc1þ 0.4189 × pc2 − 0.3184 ×

pc3þ 0.2432 × pc4þ 18.3162
• LM num: 3.

MinTemp ¼ 1.0488 × pc1þ 0.1258 × pc2 − 0.3184 ×
pc3þ 0.2289 × pc4þ 18.8965

• Number of Rules: 3.
3. Pruned model tree obtained by using M5 modeling approach

for pan evaporation
• M5 pruned model tree: (using smoothed linear models).

pc1 <¼ −2.735: LM1 (26=13.378%)
pc1 > −2.735: LM2 (46=32.736%)

• LM num: 1.
Pan Evaporation ¼ 0.2927 × pc1 − 0.5117 × pc2 −

0.2963 × pc3 þ 0.1108 × pc4 þ 4.6447
• LM num: 2.

Pan Evaporation ¼ 0.5937 × pc1 − 0.7731 × pc2 −
0.5083 × pc3 þ 4.7801

• Number of Rules: 2.
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