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Abstract: Recent studies on alkaline soils of arid areas suggest a possible contribution of abiotic exchange to soil 
CO2 flux (Fc). However, both the overall contribution of abiotic CO2 exchange and its drivers remain unknown. Here 
we analyzed the environmental variables suggested as possible drivers by previous studies and constructed a 
function of these variables to model the contribution of abiotic exchange to Fc in alkaline soils of arid areas. An 
automated flux system was employed to measure Fc in the Manas River Basin of Xinjiang Uygur autonomous region, 
China. Soil pH, soil temperature at 0–5 cm (Ts), soil volumetric water content at 0–5 cm (θs) and air temperature at 
10 cm above the soil surface (Tas) were simultaneously analyzed. Results highlight reduced sensitivity of Fc to Ts 
and good prediction of Fc by the model Fc=R10Q10

(Tas–10)/10+r7q7
(pH–7)+λTas+µθs+e which represents Fc as a sum of 

biotic and abiotic components. This presents an approximate method to quantify the contribution of soil abiotic CO2 
exchange to Fc in alkaline soils of arid areas. 
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Carbon dioxide flux in soil respiration (Fc, soil CO2 
flux) plays a significant role in the terrestrial ecosys-
tem carbon cycle and accounts for 60%–90% of the 
total ecosystem respiration (Schimel et al., 2001). Soil 
is a porous and complex system and the time lag be-
tween Fc (the “apparent” respiration) and the real soil 
respiration remains undetermined (Fang et al., 1999). 
This time lag is non-negligible unless the measuring 
period is larger than one year (Raich and Schlesinger, 
1992). The contributions of root respiration and the 
deep circulation of organic matter in soils associated 
with roots raise uncertainty during the determination 
of whether soil is a source or sink of the atmospheric 
CO2 (Högberg et al., 2001; Nguyen, 2003; Giardina et 
al., 2004). 

Estimation of carbon dioxide flux in soil respiration 
is considerably uncertain. During the last three dec-
ades, soil respiration was thought to be sensitive to the 

dramatic temperature increases ongoing in this century 
(IPCC, 2007). Researchers worldwide calculate esti-
mates of Q10, a factor by which respiration is multi-
plied when temperature increases by 10°C, but few 
publications stated which environmental variables de-
termine the spatial variations of the apparent Q10. 
Other environmental factors also change simultane-
ously with temperature and thus obscure the effect of 
temperature (Davidson and Janssens, 2006). The cli-
mate change and vegetation seasonality might con-
tribute an ecological gradient in the Q10 value (Wang 
et al., 2010). 

Meanwhile, other researchers revealed a series of 
“anomalous” CO2 fluxes in soil respiration of carbon-
ate ecosystems (Hastings et al., 2005; Jasoni et al., 
2005; Mielnick et al., 2005; Wohlfahrt et al., 2008), 
some of which were explained in terms of abiotic 
processes (Emmerich, 2003; Mielnick et al., 2005;  
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Kowalski et al., 2008). Further research is still neces-
sary to investigate whether these processes are sig-
nificant in terrestrial CO2 sinks (Schlesinger et al., 
2009), but they can temporally dominate the ecosys-
tem respiration (Inglima et al., 2009), reducing the 
robustness of the Q10 model (Sanchez-Cañete et al., 
2011). This may reveal some unknown components of 
soil respiration and motivate the model development 
(Kowalski et al., 2008). 

One of these abiotic processes was successfully 
separated following soil sterilization, implying a po-
tential soil alkalinity contribution to the soil carbon 
cycle in alkaline land (Stone, 2008; Xie et al., 2009), 
similar to ocean pH contribution to the ocean carbon 
cycle (Caldeira et al., 2003). As a strong (or tempo-
rally strong) ecological process, the separated abiotic 
process contributed to carbon dioxide flux in soil res-
piration at alkaline sites of arid areas (Xie et al., 2009). 
This suggested soil pH as an additional determinant of 
the apparent soil respiration in alkaline land since soil 
pH determines the intensity of abiotic CO2 exchange. 
Furthermore, soil pH is also a main determinant of the 
real soil respiration. It has been widely accepted as a 
dominant factor that regulates soil nutrient bioavail-
ability, vegetation community structure, plant primary 
productivity, and a range of carbon processes, includ-
ing microbial community structure and activity 
(Robson, 1989). Soil pH affects soil features, soil va-
lidity and soil transformation, and impacts soil organic 
matter mineralization (Laskowshi et al., 2003; Kermitt, 
2006). The processes such as nitrification are consid-
ered to be highly pH sensitive (Curtin et al., 1998). 
Alkalinity influences the formation, properties and 
development of soils and affects the soil microbial 
activity and normal growth of crops. This situation can 
be attributed to the effects of high soil salinity content 
on soil enzyme and microorganism activity. Alkalinity 
is recognized as a dominant factor that governs the 
microbial turnover of organic matter (Adams and 
Adams, 1983) and produces an inhibitory effect on the 
rate of decomposition of organic matter (Olsen et al., 
1996).  

Soil temperature and soil water content was sug-
gested as the other two main determinants of soil CO2 
flux in alkaline soils of arid areas (Xie et al., 2009), 
and air temperature was thought to be a main driver of 
the abiotic ventilation of CO2 (Serrano-Ortiz et al., 

2010). However, both the overall contribution of 
abiotic CO2 exchange and its drivers remain unknown. 
The objectives of this research are to analyze the en-
vironmental variables suggested as possible drivers by 
previous studies and construct a function of these 
variables to estimate soil CO2 flux in alkaline soils of 
arid areas, which also presents an approximate method 
to quantify the contribution of soil abiotic CO2 ex-
change to the CO2 flux in alkaline soils of arid areas. 

1  Materials and methods 

1.1  Study area 

The experiments were conducted at the Manas River 
Basin of Xinjiang Uygur autonomous region, China, 
which is located at the southern periphery of the 
Gubantonggut Desert and in the hinterland of the 
Eurasian continent. Soils in the hinterland of the Eura-
sian continent bear typical physical and chemical 
characteristics due to the soil water and soil salt being 
transported during complex ecological processes. Al-
most 10×106 km2 of the region are arid land, occupy-
ing a third of the global total. The largest desert-oasis 
compound system in the world developed in this vast 
alkaline region. The inflow rivers carried large quanti-
ties of salt into the desert-oasis compound ecosystem, 
resulting in strong, complicated ecological responses 
(Chen et al., 2005; Xu et al., 2007). Soil samples 
analyses in this region revealed the extreme alkalinity 
of local soils, with pH values of 8.4–9.6 (Zhu et al., 
2011). This pH range exceeds the average alkalinity of 
the outflow rivers (pH: 8.1). High efficiency in water 
use and carbon gain is a specific characteristic of the 
regional carbon cycle and water cycle (Liu et al., 2011; 
Liu et al., 2012a; Ma et al., 2012). 

1.2  Field experiments 

Field experiments were conducted at six sampling 
sites (Fig. 1) during July 2012. The experiment condi-
tions were very different at each site. Soil CO2 flux (Fc) 
was measured with an LI-8100 Automated Soil CO2 
Flux System (LI-COR, Lincoln, Nebraska, USA) 
equipped with a long-term monitoring chamber 
(LI-8100 L), began at 06:00 a.m. and ended at 06:00 
a.m. (local time) on the next day, with an interval of 
1′20″. Some of these observations focused on the 
nocturnal variations of Fc, to investigate the universal-
ity of the nocturnal CO2 absorption in summer in Gur-
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Gurbantunggut Desert and other arid regions (Stone, 
2008). The air temperature of 10 cm above the soil 
surface (Tas), the soil temperature (Ts) and the soil 
water content (θs) at 0–5 cm depth were monitored 
automatically by temperature probes equipped with a 
LI-8100 System.  
 

 
 
Fig. 1  Regional distribution of the sampling sites in the Manas 
River Basin 
 

Descriptive statistics were used to calculate aver-
ages of the data from each set of reduplicates at a site 
scale. For a regional scale, we calculated averages 
along the gradient of soil pH. A series of field data and 
laboratory data of Fc in Sangong River Basin were 
collected from previous publications (Li et al., 2011; 
Chen et al., 2012; Liu et al., 2012b; Ma et al., 2012), 
and some of these data were included in our modeling 
approach.  

1.3  Modeling approach 

The model of Fc in the present study is developed 
from the worldwide utilized Q10 model for the estima-
tion of carbon dioxide flux in soil respiration (Wang et 

al., 2010): 
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T
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Where T=Ts or Tas, R10 is the referred Fa at 10°C, and 
Q10 is the factor by which Fa is multiplied when T in-
creases by 10°C. 

An explicit analysis of the components of Fc in al-
kaline areas within a growing season suggests a rec-
onciliation of Eq. 1 as suggested by Chen et al. (2012): 
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Where Fx is the contribution of abiotic CO2 exchange 
to Fc. 

Because soil pH explained the spatial variations of 
Fx (Chen et al., 2012) and laboratory experiments 
suggested a linear model for Fx (Xie et al., 2009), the 
pH submodel (referring to the function form of Q10 
model) was chosen from two function forms: 

pH 7
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and Eq. 2 was represented as: 
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(3) 

Where r7 is the referred value of f(pH) at pH=7; q7 is 
the factor by which f(pH) is multiplied when pH in-
creases by 1; and λ, μ and e are regression coefficients. 
It must be noted that the experimental partition of bi-
otic and abiotic components of Fc is still an unresolved 
issue (Chen et al., 2012). So we employed a global 
convergent Q10=1.5 (Mahecha et al., 2010) to reduce 
the uncertainty and increase the comparability of our 
analyses with other arid regions. The other parameters 
of Eq. 3 were stepwise fitted. R10 was determined first 
and the data beyond explanation of the Q10 model was 
attributed to Fx. Then the parameters in f(pH) were 
fitted to determine the pH submodel. The regression 
coefficients λ, μ and e were finally determined. 

2  Results 

2.1  Variations of Fc 

Variations of Fc with soil temperature at 0–5 cm re-
vealed that Fc has reduced sensitivity to Ts with sea-
sonal variability along two ecological gradients (soil 
alkalization and vegetation seasonality). This is more 
evident in saline desert than in oasis farmland (Fig. 2), 
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implying that soil abiotic CO2 exchange results in the 
reduced sensitivity of Fc to Ts. Alkaline-saline desert 
has a higher alkalization degree and lower vegetation 
coverage, and the soil alkalization degree, and vegeta-
tion coverage determine the dominance of biotic and 
abiotic processes. 

Fc is more sensitive to Tas than to Ts and θs on clear 
days, and so Tas is an optimal temperature index to be 
introduced in Eq. 3, but the relationship between Fc 
and θs becomes much more robust on the days before 
or after a rain pulse. This explains the necessity to fur-
ther consider θs as a determinant of Fc in Eq. 3 (Fig. 3).  

2.2  Simulation of Fc 

An analysis with a back-propagation network accord-
ing to the distribution of residuals and the performance 
of the cross-validation in the network proved the reli-
ability of utilizing pH, Tas and θs to determine Fc. 
These optimal indices explain approximately 90% of 
the variability of Fc (Figs. 4 and 5). Soil pH primarily 
determines the spatial variations of Fc, while Tas and θs 
explain a significant amount of the Fc temporal varia-
tions.  

Performance of Eq. 3 with linear f(pH) and expo-
nential f(pH) on a site scale (farmland, desert, farm-
land+desert) and a regional scale (Sangong River Ba-
sin, Sangong River Basin+Manas River Basin, San-
gong River Basin+Manas River Basin+Laboratory) 
demonstrated that Eq. 3 with exponential f(pH) is 
more suitable in the description of Fc (Fig. 6). Al-
though Eq. 3 with linear f(pH) has a good prediction at 
a special alkaline site, it becomes not robust when 
considering two types of alkaline soils together. Equa-
tion 3 with exponential f(pH) is not only a good fit at 
different sites but also robust when calculated in the 
Sangong River Basin, the Manas River Basin and the 
coupling of two databases. Equation 3 with exponen-
tial f(pH) is even a good fit when the laboratory data-
base is included with the two field databases, with a 
slightly lower estimation. Such a slightly lower esti-
mation demonstrated the sensitivity of the parameters 
in Eq. 3 because biotic processes were depressed in 
the laboratory experiments. 

2.3  Analyses 

Variation of soil CO2 flux (Fc) at alkaline sites of the 

 
 
Fig. 2  Variations of respiration with soil temperature along double ecological gradients (the soil alkalization and the vegetation season-
ality), where the soil alkalization in oasis farmland (a–c: pH 7.5) and alkaline-saline desert (d–f: pH 9.3) was compared. The vegetation 
gradient is naturally formed in the seasonal variations. 
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Fig. 3  Dependence of Fc on Tas and θs on clear days (a–b) and the relationship between Fc and θs on the days before and after a rain 
pulse (c–d) 

 
arid area is mainly determined by soil pH, soil volu-
metric water content at 0–5 cm (θs) and air tempera-
ture at 10 cm above the soil surface (Tas). The model 
Fc=R10Q10

(Tas–10)/10+r7q7
(pH–7)+λTas+µθs+e has a better 

prediction of Fc than the model since the model with 
an exponential f(pH) is robust on both site and re-
gional scales. Hence we suggest the former model as a 
suitable function to estimate Fc in alkaline soils of the 
arid area. 

Parameters of the model were different on three re-
gional-scale analysis (Sangong River Basin, Sangong 
River Basin+Manas River Basin, Sangong River 
Basin+Manas River Basin+Laboratory). The regional- 
scale analysis considering both Sangong River Basin 
and Manas River Basin presents the parameters most 
applicable in other arid regions, and the parameterized 
model is Fc=0.3625×1.5(Tas–10)/10+3.0191× 0.7562pH–7  

+0.0059Tas+0.0003θs–2.5081. This presents an ap-
proximate method to quantify the soil abiotic CO2 ex-
change contributions by Fx=3.0191×0.7562pH–7+0.0059 
Tas+0.0003θs–2.5081.   

Analyses in the present study suggest that soil bi-
otic and abiotic CO2 exchange have equal contribu-
tions to Fc, and therefore soil abiotic CO2 exchange is 
a crucial component in the carbon balance in alkaline 
soils of the arid area. But it is considerably uncertain 
to determine whether alkaline soil is a source or sink 
of the atmospheric CO2 since the deep circulation of 
soil inorganic/organic carbon associated with soil 
abiotic CO2 exchange remains unknown. 

3  Discussion 

Soil respiration is the main process for underground  
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Fig. 4  The process of the investigation of the reliability of determining Fc by pH and Tas with a back-propagation network and the dis-
tribution of residuals (bars) 

 
CO2 release into the atmosphere. In the most recent 
publications, it was interpreted as the respiration of 
plant organs (autotrophic respiration) and the respira-
tion of microbes and animals (heterotrophic respira-
tion) (Nguyen, 2003), and estimated by measurements 
of soil CO2 flux (Schimel et al., 2001). This research 
implies that soil abiotic CO2 exchange is a crucial 
component of soil CO2 flux in alkaline soils of an arid 
area and can explain the “anomalous” CO2 fluxes in 
the apparent soil respiration.  

The inherent spatial and temporal variations in data 
must be considered in the assessment of the sensitivity 
of environmental factors that influence ecological data 
(Legendre and Fortin, 1989; Butler and Chesson, 1990; 
Dutilleul, 1993; Underwood et al., 1996). Soil respira-
tion depends on numerous complex and non-linear 
interactions between physiological, biochemical, 
chemical, ecological and meteorological variables 
(Schimel et al., 1994; Jarvis, 1995). Despite of the 
performance of Q10 model around the world, the ad-
vance in empirical modeling suggested the introduc-

tion of other drivers. Reth et al. (2005) identified the 
influence of soil chemistry (including soil pH) as an 
additional predictor and demonstrated the spatial 
variation of soil respiration in the studied field is sig-
nificantly correlated with soil pH. We therefore in-
cluded soil pH and the degree of soil alkalization as 
additional determinants of the “anonymous” compo-
nent Fx in soil respiration in alkaline areas. 
The introduction of Fx in our modeling of Fc can be 
considered as the description of the part of Fc unex-
plained by biological respiration components. The 
potential overlap in the temporal and spatial compo- 
nents of the ecological data leaves an unexplained 
component worthy of inclusion in the multivariate 
analysis of the ecological data (Borcard et al., 1992; 
Borcard and Legendre, 1994; Legendre and Bor-
card-1994; Økland and Eilertsen 1994; Anderson and 
Gribble, 1998; Borcard and Legendre, 2002). This 
overlap additionally illustrated why the spatial differ-
ence of abiotic components can be explained by pH, 
and not by temperature. 
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Fig. 5  Reliability of determining Fc by pH and Tas using the cross-validation in a back- propagation network 

 
To highlight the specialty of soil respiration in an 

alkaline area (different from general carbonate eco-
systems), we did not include the known non-biological 
processes, such as the subterranean ventilation of CO2 
(Serrano-Ortiz et al., 2010), dissolution of soil carbon-
ates (Gombert, 2002; Kowalski et al., 2008) and 
groundwater recharge of dissoluble carbon (Scanlon et 
al., 2006), in the concept of soil inorganic respiration. 
But we did include these factors in the hypothetical 
system (short arrows in the left side of Fig. 4). We 
hypothesized that these known non-biological proc-
esses are not strong enough to affect the temperature 
sensitivity of soil respiration. The inclusion of all fac-
tors is complicated and worthy of further research. 

The results in the present study suggest a significant 
impact of pH on soil respiration (Fc), with a focus on 
alkaline soils (pH: 8.5–10.4). Previously, a series of 

publications investigated the significance of pH on Fc, 
and most researches focused on non-alkaline areas 
(pH<7). In the acidic forest soil (pH: 3.8–6.0), the soil 
pH was positively correlated with the soil CO2 fluxes 
(Laskowshi, 2003). It was also demonstrated in a sub-
sequent investigation of acid agriculture soil (pH: 
3.4–6.8) that a significant positive correlation existed 
between the pH and the soil basal respiration (Kermitt, 
2006). All these studies suggested the inclusion of 
soil alkalinity as a main determinant in the empirical 
modeling of soil respiration. Therefore, the soil pH 
can be a significant factor to determine soil respira-
tion in both alkaline and non-alkaline soils, and we 
strongly suggest the inclusion of soil pH in the Q10 
model to develop a more reliable model for soil res-
piration experiments on alkaline or non-alkaline soils 
worldwide. 
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Fig. 6  Performance of Eq.3 with linear f(pH) (a–c) and exponential f(pH) (d–f, g–i) on a site scale (a, d: farmland; b, e: desert; c, f: 
farmland+desert) and a regional scale (g: Sangong River Basin; h: Sangong River Basin+Manas River Basin; i: Sangong River Ba-
sin+Manas River Basin+Laboratory) 
 

4  Conclusion 

Soil pH, soil volumetric water content at 0–5 cm (θs) 
and air temperature at 10 cm above the soil surface 
(Tas) are three main determinants of soil CO2 flux (Fc) 
in alkaline soils of arid areas. Fc has a reduced sensi-
tivity to soil temperature at 0–5 cm (Ts). The model 
Fc=R10Q10

(Tas–10)/10+r7q7
(pH–7)+λTas+µθs+e has a good 

prediction of Fc and presents an approximate method 
to quantify the contribution of soil abiotic CO2 ex-
change to Fc. Analyses in the present study suggest 

that soil biotic and abiotic CO2 exchange have equal 
contributions to Fc, and therefore soil abiotic CO2 ex-
change is a crucial component in the carbon balance in 
alkaline soils of arid areas.  
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