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The urban heat island (UHI) refers to the phenomenon of higher atmospheric and surface temperatures
occurring in urban areas than in the surrounding rural areas. Mitigation of the UHI effects via the config-
uration of green spaces and sustainable design of urban environments has become an issue of increasing
concern under changing climate. In this paper, the effects of the composition and configuration of green
space on land surface temperatures (LST) were explored using landscape metrics including percentage of
landscape (PLAND), edge density (ED) and patch density (PD). An oasis city of Aksu in Northwestern
China was used as a case study. The metrics were calculated by moving window method based on a green
space map derived from Landsat Thematic Mapper (TM) imagery, and LST data were retrieved from Land-
sat TM thermal band. A normalized mutual information measure was employed to investigate the rela-
tionship between LST and the spatial pattern of green space. The results showed that while the PLAND is
the most important variable that elicits LST dynamics, spatial configuration of green space also has sig-
nificant effect on LST. Though, the highest normalized mutual information measure was with the PLAND
(0.71), it was found that the ED and PD combination is the most deterministic factors of LST than the
unique effects of a single variable or the joint effects of PLAND and PD or PLAND and ED. Normalized
mutual information measure estimations between LST and PLAND and ED, PLAND and PD and ED and
PD were 0.7679, 0.7650 and 0.7832, respectively. A combination of the three factors PLAND, PD and
ED explained much of the variance of LST with a normalized mutual information measure of 0.8694.
Results from this study can expand our understanding of the relationship between LST and street trees
and vegetation, and provide insights for sustainable urban planning and management under changing
climate.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
1. Introduction

The urban heat island (UHI) refers to the phenomenon of higher
atmospheric and surface temperatures occurring in urban areas
than in the surrounding rural areas. This phenomenon is widely
observed in cities regardless of their sizes and locations (Connors
et al., 2013; Cui and de Foy, 2012; Imhoff et al., 2010; Li et al.,
2012; Tran et al., 2006). The UHI is mainly caused by the modifica-
tion of land surfaces by urban development, which uses materials
that effectively store short-wave radiation (Solecki et al., 2005). As
a result, land surface temperature (LST) increases due to the UHI,
which may disrupt species composition and distribution (Niemelä,
1999) by increasing the length of growing seasons, decrease air
quality (Feizizadeh and Blaschke, 2013; Lai and Cheng, 2009; Sar-
rat et al., 2006; Weng and Yang, 2006), leading to greater health
risks (Patz et al., 2005). The UHI may also decrease water quality
as warmer waters flow into streams putting additional stress on
aquatic ecosystems (James, 2002). Therefore, it has become a major
research focus in urban climatology and urban ecology since first
reported in 1818 (Howard, 1818).

The intensity and spatial pattern of UHI are largely exacerbated
from population dynamics and development of build-up areas
(Arnfield, 2003; Wu et al., 2013). Specifically, urban structure
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(e.g., height-to-width ratio of buildings and streets), proportion of
built-up versus green spaces per unit area, weather conditions
(e.g., wind and humidity), and socioeconomic activities determine
the development of the UHI (Hamdi and Schayes, 2007; Rizwan
et al., 2008b; Taha, 1997; Unger, 2004; Voogt and Oke, 1998). For
example, Huang et al. (2011) found statistically significant rela-
tionship between the UHI and socioeconomic factors indicating
that higher UHI effects were linked to block groups characterized
by low income, high poverty, less education, more ethnic minori-
ties, more elderly people and greater risk of crime. As many of
these factors, especially land surface characteristics are primarily
represented by land-cover and land-use (LCLU), the relationship
between the LST and LCLU has been the focus of numerous studies
on the UHI (Buyantuyev and Wu, 2010; Dousset and Gourmelon,
2003; Pu et al., 2006; Voogt and Oke, 2003;Weng et al., 2004). This
is due to the fact that vegetation usually has higher evapotranspi-
ration and lower emissivity than built-up areas, and thus has lower
surface temperatures (Hamada and Ohta, 2010; Weng et al., 2004).

Composition and configuration of green spaces are the two ma-
jor elements of LCLU. The former refers to the abundance and vari-
ety of land cover types and the latter is related to the spatial
arrangements and layout of land cover types (Connors et al.,
2013; Turner, 2005). Remarkable proliferations of studies focusing
on the relationship between LST and green space composition has
been reported over the last two decades (Chen et al., 2006; Tran
et al., 2006; Voogt and Oke, 2003; Weng, 2009; Weng et al.,
2004). Though the magnitude of correlations varied among these
reports, a negative relationship between the vegetation amount/
fraction and LST was consistently observed. However, the spatial
characteristics and configurations of vegetation patches within
the urban environment have significant impacts on the distribu-
tion of the UHI (Bowler et al., 2010; Cao et al., 2010; Honjo and
Takakura, 1991; Yokohari et al., 1997; Zhao et al., 2011), and that
the size and shape of a vegetation patch creates cool island effects,
a phenomenon that the temperature of green space is lower than
its surrounding areas (Cao et al., 2010; Zhang et al., 2009). Based
on a case study of a heavily urbanized Beijing metropolitan area
in China, Li et al. (2012) also indicated that increasing patch den-
sity results in significantly higher LST when the size of urban green
space unaffected, and that spatial configuration has a significant
influence in the variability of derived LST.

It is evident from an exhaustive literature review hitherto that
there is a lack of case studies within arid regions (Connors et al.,
2013). As cities are growing fast in population, and urbanization
is projected to be high (Baker et al., 2004), sustainable planning
of urban environment to mitigate UHI effects highlights a pressing
need for immediate attention. This is further emphasized by cli-
mate changes as arid regions are likely to become even drier in re-
sponse to increasing temperature from global warming (Durack
et al., 2012). Driven by fast economic growth and population in-
crease, Northwestern China has experienced rapid urbanization
in the past several decades, along with a drastic transformation
of the urban environment and social equity (Aishan et al., 2013;
Fan and Qi, 2010; Halik et al., 2013; Liu et al., 2013). In addition,
the majority of the previous studies used ordinary least squares
regression and/or spatial autoregression to analyze the relation-
ship between the landscape metrics and LST. The statistical signif-
icance of the relationship between the landscape metrics and LST
varied between the methods (Li et al., 2012). Comparative ap-
proaches with additional case studies are needed to generalize
the methods and concepts demonstrated by these preliminary at-
tempts. To that end, we investigate the effects of composition
and configuration of urban green space on LST using a robust mov-
ing window algorithm of normalized mutual information measure
in the arid city of Aksu, Xinjiang Uyghur Autonomous Region in
Northwestern China. One of the advantages of using mutual infor-
mation measures is that it can capture linear as well as strongly
non-linear relationships among variables under the ‘‘umbrella’’ of
just one concept (‘‘mutual information’’). The goal is to provide
guiding suggestions for sustainable urban planning and develop-
ment under future climate changes. We chose to use Landsat
30 m resolution data as previous studies (Liu and Weng, 2008; Li
et al., 2013) have demonstrated that 30 m and 90 m are the opti-
mal resolutions to study the relationship between LST and land-
scape patterns at patch level and landscape levels, respectively.

The paper is organized in the sections below. Following the
description of the study area in Section 2, the methodology of cal-
culating LST, landscape metrics, and a brief introduction to normal-
ized mutual information measure are presented in Section 3. The
results, discussions and conclusions are presented in Sections 4–
6, respectively.

2. Study area

The study area, downtown Aksu City, Northwestern China, is a
typical oasis city located in an arid region. Aksu City is the capital
of Aksu Prefecture in Xinjiang Uyghur Autonomous Region, China.
Geographically, the city is situated in south of the Tianshan Moun-
tains and northwest edge of the Tarim Basin (39�300N–41�270N,
79�390E–82�010E; Fig. 1). Aksu City is known as ‘‘the Land of Melons
and Fruits’’. It includes municipal total area of 14,300 km2 and
built-up area of 28.1 km2.

Aksu City is rich in light and heat resources. It has a long frost-
free period from 205 to 219 days. The climate is dry, and rainfall is
extremely rare with less than 50 mm per year and average annual
evaporation of 1950 mm. Topography of the study area is flat. The
climatic and the physiographic conditions are mostly the same
across the region. Therefore, it is an ideal area to explore the rela-
tionship between LST and spatial pattern of green space in arid and
semi-arid land.

The proportion of green area in the metropolitan region has in-
creased to 30.6% today from 12% in early 1980s. Urban green space
coverage has reached 39.2% with the per capita public green area of
9 m2. Meanwhile, city’s ecological environment has been signifi-
cantly improved. This rapid growth in green space emphasizes a
need to develop most effective configuration of green space to re-
duce the urban heat island caused by expanding impervious sur-
faces and to adapt to the global climate change.

3. Methodology

3.1. Land surface temperature

Landsat-5 Thematic Mapper (TM) thermal infrared band 6
(11.45–12.50 lm) data with 120 � 120 m resolution were utilized
to derive the LST (Fig. 2b). The satellite data were collected on Au-
gust 19, 2011, which was a clear day with 0% cloud cover. Meteo-
rological variables that influence the intensity of urban heat
environment at the time of image capture were obtained from Chi-
na standard meteorological station in the study site. These vari-
ables include daily precipitation (0 mm), daily average wind
speed (1.6 m/s), wind direction (South-East) and humidity (46%).
Due to the lack of detailed in situ atmospheric variables that allow
physical inversion of brightness temperature to LST, a mono-win-
dow algorithm was applied for retrieval of LST (Qin et al., 2001)

TS ¼ ½að1� C � DÞ þ ðbð1� C � DÞ þ C þ DÞTsensor � DTa�=C ð1Þ

with C = es, D = (1 � s) [1 + (1 � e) s], a = �67.355351 and
b = 0.458606, where e land surface emissivity (LSE) is, s is the total
atmospheric transmissivity, Tsensor is the at-sensor brightness tem-
perature, and Ta represents the mean atmospheric temperature gi-
ven by:



Fig. 1. Location map of the study area showing overview map of China (top – left corner) and the Xinjiang Uyghur Autonomous Region (bottom – left corner).

Fig. 2. Green space and LST maps for the downtown are Aksu city: (a) green space
map and (b) LST map with units of Kelvin.
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Ta ¼ 16:011þ 0:92621T0 ð2Þ

with T0 being the near-surface air temperature. Qin et al. (2001)
also estimated the atmospheric transmissivity from w, the atmo-
spheric water vapor content, for the range 0.4–1.6 g/cm2, according
to the following equations:
s ¼ 0:97429� 0:08007w; and ð3Þ

s ¼ 0:982007� 0:09611w ð4Þ

Both T0 and w were obtained from local meteorological stations.
LSE was obtained from the NDVI thresholds method (Sobrino et al.,
2004).

e ¼ esoil; when NDVI < 0:2; ð5Þ

e ¼ eveg ; when NDVI > 0:5 and ð6Þ

e ¼ evegPv þ de; when 0:2 P NDVI 6 0:5; ð7Þ

where esoil is the soil emissivity, eveg is the vegetation emissivity, and
de includes the effects of the geometry of natural surfaces and the
internal reflections. Because most of the study area is a plain sur-
face, this term is negligible. Pv is the fraction of the vegetation that
can be computed by the following formula (Carlson and Ripley,
1997):

Pv ¼
NDVI � NDVImin

ðNDVImax � NDVIminÞ

� �2

ð8Þ

where NDVImax = 0.5, and NDVImin = 0.2. Soil and vegetation emis-
sivities were estimated to be 0.97 and 0.99, respectively (Sobrino
et al., 2004).

3.2. Spatial pattern of green space

The multi-spectral Landsat-5 TM data acquired on August 19,
2011 were used to map green space (i.e., vegetated areas)
(Fig. 2a). The spatial resolution of the multi-spectral data is 30 m.



Table 2
Landscape metrics used in this study (Mcgarigal et al., 2002).

Metrics (abbreviation) Calculation and description

Compositional
Percentage of landscape

(PLAND)

100=A�
Pn

i¼1ai

Proportional abundance of
green space in the landscape (%)

Configurational
Patch density (PD)

n/A � 106

Number of green space patches
divided by total landscape area (n/km2)

Edge density (ED) 10;000=A�
Pn

i¼1ei

Total length (border not included)
of all edge segments of green space
per hectare (m/ha)

ai, area of patch i; ei, length of edge (or perimeter) of patch i; A, landscape area; n,
number of patches.
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A maximum likelihood image classification approach was applied
to extract the vegetated area using ENVI from EXELIS Visual Infor-
mation Solutions. The four bands green, red, near-infrared, and two
shortwave infrared were used for classification. An accuracy
assessment was conducted based on 200 ground reference data
that were photo interpreted from existing land cover map with a
scale of 1:150000 (produced by Land Resources Bureau of Aksu
City and College of Resources and Environmental Sciences, Xinjiang
University, China in June, 2012) together with Landsat true color
image. The overall accuracy of the derived classification map was
87.60%, and the kappa coefficient was 0.83 (Table 1).

It has been demonstrated that land surface temperature or sur-
face urban heat island could be related to LCLU types (Chen et al.,
2006; Connors et al., 2013; Weng, 2001; Xian and Crane, 2006),
and there are relationships between spatial structure of urban
thermal patterns and urban surface characteristics (Li et al.,
2011; Liu and Weng, 2008; Weng et al., 2007). The last several dec-
ades have witnessed a remarkable proliferation of studies on
developing landscape metrics (1) to characterize landscape pat-
terns and its association to UHIs (Gustafson, 1998; Li and Reynolds,
1993; Li and Wu, 2004; McGarigal and Marks, 1995; Turner, 2005;
Turner et al., 1989; Wu, 2000; Wu et al., 2002), and (2) to relate
landscape patterns to ecological processes (Turner, 2005). With re-
spect to the measurement objectives, these metrics can be general-
ized into landscape composition and spatial configuration metrics
(Gustafson, 1998; McGarigal and Marks, 1995). Landscape compo-
sition metrics measure the presence and amount of different patch
types within the landscape without explicitly describing its spatial
features while landscape configuration metrics measure the spatial
distribution of patches within the landscape (Alberti, 2005). In this
study, we selected three commonly occurring landscape metrics to
relate LST with spatial pattern of urban green space according to
the following principles (Lee et al., 2009; Li and Wu, 2004; Riitters
et al., 1995; Riva-Murray et al., 2010): (1) important in both theory
and practice, (2) easily calculated, (3) interpretable, and (4) mini-
mal redundancy. Table 2 shows the three landscape metrics. See
Mcgarigal et al. (2002) for detailed calculation equation and com-
ments. They are selected to provide complementary information
about landscape structure for both composition and configuration.

The metrics were calculated using the landscape structure anal-
ysis program FRAGSTATS (http://www.umass.edu/landeco/re-
search/fragstats/fragstats.html). The FRAGSTATS software allows
the option of conducting a local structure gradient or moving win-
dow analysis, and generating the results as a new grid for each se-
lected metric. Our choice was to use moving window analysis,
which requires a user specifies the level of heterogeneity (class
or landscape) and the shape (round, square or hexagon) and size
(radius or length of side, in meters) of the window to be used. A
window of the specified shape and size is passed over all positively
valued cells inside the landscape of interest. However, only cells in
which the entire window is contained within the landscape are
evaluated. Within each window, the selected metric at the class
Table 1
Accuracy assessment of the urban green space classification map.

Reference data (pixels)

Urban green space Residential area

Urban green space 231 6
Residential area 0 170
Construction site 1 53
Water body 0 11
Total 232 240
Producer’s accuracy (%) 99.6 70.8
Overall accuracy (%) 87.6
Kappa coefficient 0.83
or landscape level is computed, and the value is returned to the fo-
cal cell. The moving window is passed over the grid until every
positively valued cell containing a full window is assessed in this
manner.

In our case, we used 8-cell rule which considers all eight adja-
cent cells that share a side with the focal cell and 500 m-radius cir-
cular window. The window moves over the landscape one cell at a
time, calculating the selected metric within the window and
returning that value to the center cell and output a new continuous
surface grid map for each selected metric (Mcgarigal et al., 2002).

3.3. Statistical correlation measures

Scatter plots were generated to explore the bivariate relation-
ship between LST and each of the landscape metrics. The normal-
ized mutual information measure was assessed based on them
(Cover and Thomas, 1991; Webb, 2002). The Shannon entropy of
a continuous random variable X with probability density function
p(x) for all possible events x 2 S is defined as

HðXÞ ¼ �
Z

S
pðxÞ log pðxÞdx ð9Þ

where S is the support of the variable and p(x) is its probability dis-
tribution function. Probability distributions may be used to con-
struct a frequency distribution of certain events occurring either
discretely, in the form of a histogram, or continuously (Allaby,
2008).

In the case of a discrete random variable X, entropy H(X) is ex-
pressed as

HðXÞ ¼ �
X
x2X

pðxÞ log pðxÞ ð10Þ

where p(x) represents the probability of an event x e X from a finite
set (X) of possible values.

In probability and information theories, the mutual information
of two random variables is a quantity that measures the amount of
User’s accuracy (%)

Construction site Water body Total

2 2 241 95.9
15 2 187 90.9
148 2 202 73.3
0 99 110 90.0
165 103 740
89.7 96.1

http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://www.umass.edu/landeco/research/fragstats/fragstats.html
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information that both variables share. Formally, the mutual infor-
mation of two discrete random variables X and Y can be defined as:

IðX;YÞ ¼
X
x2X

X
y2Y

pðx; yÞ log
pðx; yÞ

pðxÞpðyÞ

� �
ð11Þ

where p(x, y) is the joint probability function of X and Y, defined as

pðx; yÞ ¼ PðX ¼ x and Y ¼ yÞ ð12Þ

We can define:

pðxÞ ¼
X
y2A

pðX ¼ x; yÞ ð13Þ

pðyÞ ¼
X
x2A

pðx;Y ¼ yÞ ð14Þ

as the marginal probability distribution functions of X and Y respectively.
I(x,y) is always a non-negative quantity, being zero when the

variables are statistically independent. The higher the value of I,
the higher is the dependence between them.

The normalized mutual information (Cover and Thomas, 1991;
Sridhar et al., 1998), can be defined as

CXY ¼
IðX; YÞ
HðYÞ and CYX ¼

IðX; YÞ
HðXÞ ð15Þ

This expression can be used as a ‘‘correlation’’ measure (Cover
and Thomas, 1991) with the advantage of capturing linear and
non-linear relationships among variables. It is sometimes called
as ‘‘asymmetric dependency coefficient (ADC)’’ (Sridhar et al.,
1998). However, two definitions in Eq. (15) will produce unequal
values due to their asymmetric property in the definitions. There-
fore, a symmetric normalized mutual information measure can be
proposed (Press et al., 1990; Strehl and Ghosh, 2003), such as

NIðX;YÞ ¼ 2
IðX;YÞ

HðYÞ þ HðXÞ ; NIðX;YÞ ¼ IðX;YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðYÞHðXÞ

p ð16Þ

It is worth mentioning that the mutual information of two ran-
dom variables I(X,Y) is always smaller than the entropy of any of
them, i.e., H(X) or H(Y), namely: I(X;Y) < H(Y) and I(X;Y) < H(X)
are valid, because the information both variables share can
Fig. 3. Grid map of urban green space metrics. (a) Percent cov
never be greater than the information each one has. Therefore
0 6 CXY 6 1. If CXY equals one, it means X, Y are perfectly correlated.
If CXY equals 0 it indicates there is no correlation between X, Y.

In this study, Eq. (15)was applied to measure the normalized
mutual information between the different variables since the focus
of the work is to find out the correlation between the land surface
temperature, which is chosen as a proxy of target variable, and
other variables including PLAND, PD and ED.
4. Results

The spatial distribution of PLAND is shown in (Fig. 3a), PD (Fig. 3b)
and ED (Fig. 3c). Higher vegetation cover or percent green space is lo-
cated on the eastern edge of the study site, which is possibly a park or
a nursery with mature grown trees (Fig. 3a). Patch density is high
over the Middle-Western Aksu downtown (Fig. 3b) indicating more
fragmented but evenly distributed vegetation patches. Edge density,
an indicator of linear configuration of green space along the streets,
appears to be large on southwest and northeast parts of the study
site. The spatial distribution patterns of patch density and edge den-
sity are similar suggesting there exists some degree of correlation be-
tween these two variables.

Two dimensional scatter plots between LST and landscape met-
rics are shown in Fig. 4. There seems to be a negative linear rela-
tionship between LST and both vegetation fraction and edge
density. However, these relationships do not seem to be statisti-
cally significant enough R2 < 0.32 (in all cases) to obtain meaning-
ful conclusions. That is why other measures may play an important
role. However, some useful information can be extracted. It is
interesting to note that patch density and edge density are corre-
lated variables but demonstrates very different degrees of effects
on LST. The results imply that edge density has more deterministic
effects on LST than the patch density. One may expect that planta-
tion of street trees evenly distributed in the urban area may be an
effective way of reducing urban heat island effects, therefore, en-
ergy consumption as opposed to establishing dense patches of
green space in discrete locations.

Table 3 shows the normalized mutual information analysis be-
tween the LST and landscape metrics calculated using Eq. (15). It is
er of green space, (b) patch density and (c) edge density.



Fig. 4. Scatter plot of LST with PLAND, PD and ED.

Table 3
Normalized mutual information results of compositional configuration of green space
and landscape metrics.

CXY Normalized mutual information value

X Y

PLAND 0.7100
PD 0.6985
ED 0.7033
PLAND, PD LST 0.7679
PLAND, ED 0.7650
PD, ED 0.7832
PLAND, PD, ED 0.8694
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evident that the compositional and spatial configuration of urban
green space can affect the LST to a certain degree. When these
two major categories of green space pattern are taken into account
separately, it seems the compositional green space pattern has
slightly larger effect on LST than configurational factors.
Meanwhile, the configurational green space patterns do have
relatively strong effect but not as strong as compositional green
space pattern. The mutual information value was largest when
all three landscape metrics were considered in order to see the ef-
fect on the LST. This is expected since each of the landscape metrics
does have some level of causal interactions with LST change, and
the effects could constructively interfere each other. Combination
of any two or three of the landscape metrics had a higher impact
on LST than that of a single variable. The joint effect of (PLAND,
PD) was slightly better in magnitude than the effect of (PLAND,
ED) on LST, confirming the stronger correlation between edge
density and LST as shown in Fig. 4. However, the mutual
information value between (ED, PD) and LST was larger than of
the (PLAND, PD) and (PLAND, ED), which might be attributed to
the fact that (1) patch density and edge density is more determina-
tive factors that elicits LST and (2) there exist correlations between
patch density and edge density.

5. Discussion

The results of this study showed that PLAND was correlated
with LST with statistical significance. This is consistent with a
number of previous studies, which demonstrated negative correla-
tions between LST and the abundance of green space measured by
Normalized Difference Vegetation Index (Buyantuyev and Wu,
2010; Chen et al., 2006), fraction of vegetation (Weng et al.,
2004), percent cover of LCLU (e.g., Forest, Grass, Cropland, etc.)
(Weng et al., 2006; Zhou et al., 2011), or PLAND (Li et al., 2012).
Trees and other plants help cool the environment, making green
space a simple and effective way to mitigate urban heat island ef-
fects. Green spaces lower surface and air temperatures by evapo-
transpiration due to its lower thermal inertia compared to
impervious surfaces and bare soils (Hamada and Ohta, 2010; Lam-
bin and Ehrlich, 1996; Weng et al., 2004); by providing shade that
prevents land surfaces from direct heating from sunlight (Zhou
et al., 2011). Concerning the configurational metrics, the PD and
ED were less correlated with LST than PLAND. The normalized mu-
tual information analysis also showed that there was less depen-
dence between the LST with individual PD and ED, which is still
smaller than the dependence between the PLAND and LST. This
indicates that the increase of patch density leads to a decrease in
mean patch size resulting in a general increase in total patch edges.
Therefore, the effects of the increase in patch density on LST can be
explained by both a decrease in mean patch size and increase in
patch edges. The decrease in mean patch size may increase LST be-
cause a larger, continuous green space produces stronger cool is-
land effects than that of several small pieces of green space even
if the total area equals to the area of the continuous green space
(Cao et al., 2010; Li et al., 2012; Zhang et al., 2009). In contrast,
the increase of total patch edges may enhance energy flow and ex-
change between green space and its surrounding areas, and pro-
vide more shade for surrounding surfaces, which lead to the
decrease of LST (Zhou et al., 2011).
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As far as the each landscape metric is concerned individually,
the highest normalized mutual information measure was found
with the PLAND (0.71). The implication from this observation is
that the composition of green space was more important than
the configuration of green space in reducing UHI effects, which is
consistent with previous findings (Li et al., 2012; Zhou et al.,
2011). However, our results also showed that ED and PD together
were the most deterministic factors of LST than the unique effects
of a single variable or the joint effects PLAND and PD or PLAND and
ED. Normalized mutual information measure between LST and
PLAND and ED, PLAND and PD and ED and PD were 0.7679,
0.7650 and 0.7832, respectively. A combination of the three factors
PLAND, PD and ED explained much of the variance of LST with a
normalized mutual information measure of 0.8694. This is because
the composition and configuration of green space are construc-
tively interrelated.

Many of the results from this study regarding to the relation-
ships between the green space and LST were expected as reported
in a number of publications (Connors et al., 2013; Hamada and
Ohta, 2010; Li et al., 2011; Weng et al., 2004). Traditionally,
increasing the green space by planting more trees has been empha-
sized in urban planning (Rizwan et al., 2008a; Zhou et al., 2011).
While confirming the fact that the increase in green space can sig-
nificantly mitigate UHI effects, our results showed that configura-
tion of green space as expressed by the joint effect of PD and ED
is the most deterministic metric that affects LST. Optimizing the
configuration of green space which increases the PD and ED should
be highlighted to mitigate UHI effects. These results have impor-
tant implications for green space management, particularly in rap-
idly urbanizing arid regions as in our case study, where both water
resources and available land area for increased green space is ex-
tremely limited.

Under changing climate, arid regions are likely to become even
drier, while wet areas tend to get wetter in response to observed
global warming (Durack et al., 2012) as indicated by increasing
surface temperature. Expanding the urban green space is a rational
approach for adapting to climate change. At the same time, it can
contribute to the sustainable development of urban areas. How-
ever, it may compete with other socio-economic interests that also
require space. Therefore, in order to determine a proper balance
between the sustainable development and urban green space in-
crease, urban planners should work on optimizing the configura-
tion of green space patches in selected areas by increasing the
size of existing green space patches rather than building new smal-
ler patches. In the arid Northwestern China, where temperatures
are already high and water resources are limited, the outcome of
this study can support decisions about sustainable urban design
and development, which will help mitigating the effects of future
climate, and benefit human wellbeing by improving water and en-
ergy use efficiency.
6. Conclusion

Taking the urban area of the oasis city of Aksu area as an exam-
ple, this study quantitatively examined the effects of spatial com-
position and configuration of green space on land surface
temperature (LST). Normalized mutual information measure was
used to quantify the relationship between LST and landscape met-
rics including percentage of landscape (PLAND), edge density (ED)
and patch density (PD). Our results showed that (1) both the com-
position and configuration of green space elicits urban heat island;
(2) joint effects of any two combinations of the metrics was larger
than the effect of a single metric; (3) ED and PD combined was the
most deterministic factor of LST than the unique effects of a single
variable or the joint effects PLAND and PD or PLAND and ED; (4)
optimizing the configuration of green space which increases the
PD and ED should be prioritized in sustainable urban planning
and development to mitigate urban heat island effects.

Water scarcity is the major limiting factor of anthropogenic
activities in arid and semi-arid regions. Specifically, the increase
of green space cover is restricted by water availability. Our results
suggested that by increasing patch and edge density of the green
space, the thermal environment in the City of Aksu can be further
improved without expanding the percentage of landscape
(PLAND). In arid and semi-arid regions, where temperatures are al-
ready high and water resources are limited, the outcome of this
study may provide climate change adaptation and mitigation ben-
efits by reducing greenhouse gas emissions and energy demand for
the cooling of buildings.
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