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This study was focused on addressing the need for accurate land-use/land-cover classifica-
tion (LULC) maps in Iran and in other similarly developing countries. To generate and
validate a new LULC map for northeastern Iran’s 2037.5 km2 Hable-roud watershed, a
step-by-step process was developed and implemented, consisting of image preprocessing,
extraction of training and reference sampling locations, decomposition of multi-spectral
thematic mapper bands into features by independent component analysis methods, classi-
fication using these features and slope maps, enhancement of land-use classes through
image segmentation and zonal statistics, then through consideration of normalized differ-
ence vegetation index and climatic zones, followed by ground truthing. This newly
developed approach provided maps that distinguished dryland farming, irrigated farmland,
forest plantations, and low-, medium-, and high-vegetation density rangelands, while
currently available maps for the watershed left 39% of lands unclassified or in combined
classes. The new maps’ ground-truthing-based overall accuracy and kappa coefficient
were 88.3% and 0.83, respectively. In order to develop such an improved LULC map, it
was necessary to go beyond the mere analysis of reflectance information, to incorporating
climatic and topographic data through this newly proposed step-by-step approach.

1. Introduction

With a mean annual rainfall of 240 mm, and roughly 90% of its territory classed as arid or
semi-arid, Iran is a dry land area. Of the nation’s 1.65 × 106 km2 total area, about
0.37 × 106 km2 are arable and of this 54% is irrigated and the remainder devoted to dryland
farming (Mousavi 2005). Most Iranian farms are small, with only 22% exceeding 10 ha in
area and 11% being less than 1 ha in extent (Mousavi 2005). Areas in their natural state or
existing as rangeland total 1.024 × 106 km2, of which pastures (at various levels of forage
productivity) and forests contribute 88% and 12%, respectively. In many of Iran’s arid and
semi-arid regions, and in particular in the Hable-Roudwatershed that is the focus of this study,
significant overgrazing and inappropriate land use (e.g. steep hillside farming, up–downslope
tillage) are the main contributors to soil erosion and land degradation. Accurate land-use/land-
cover classification (LULC) maps can be very useful tools in watershed management, and in
particular in soil erosion control efforts and decision-making with respect to which lands are
capable of sustaining agriculture and which are not (Cihlar 2000; Renschler and Harbor
2002).
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Poor soil and lack of adequate water distribution has led agriculturalists to resort to
dryland farming. Dryland farming systems are very diverse, including a variety of shifting
agriculture systems, annual croplands, home gardens, mixed agriculture–livestock sys-
tems, as well as nomadic pastoral and transhumance systems. The soil is generally too dry
to adequately plough after harvest. If a field remains uncultivated, weeds may grow
(Koohafkan and Stewart 2008). This results in the inaccurate classification of land use
and land cover from the analysis of remote-sensing data given the spectral mixture and
spatial heterogeneity.

Using aerial photographs and topographic maps, the Iranian Forest, Range and
Watershed Management Organization has been involved in mapping LULC for the last
50 years. Recently, satellite imagery have been employed in LULC classification; how-
ever, this raises certain issues related to existing LULC maps: (i) polygon boundaries of
main land uses (i.e. irrigated farming, dryland farming, rangeland and forest classes) have
been found to be inaccurate and show significant overlap; (ii) separation into classes of
irrigated vs. dryland farming is generally not possible; and (iii) roughly 15% of the land
area was classed as ‘mixed’, with separation into individual classes not being possible
(Saadat and Namdar 2012). In light of these issues, the goal of the present study was to
develop a new protocol for LULC classification using a large semi-arid study area
(2037.5 km2) based on readily available ancillary information, independent component
analysis (ICA), and expert classification. This research methodology has been devised
using a multidisciplinary and hierarchical approach.

LULC classification is one of the most common applications of remote-sensing data.
Any given remote-sensing image can be decomposed into several objects exhibiting
similar spectral characteristics. Therefore, the main objective of a feature extraction
technique is to accurately retrieve these features. There are a large number of standar-
dized classification schemes used for land-use and land-cover maps throughout the
world. The most commonly used approaches include unsupervised classification, super-
vised classification, vegetation indices, object-based image analysis (OBIC), and sup-
port vector machines, among others. Each of these methods has its own restrictions and
advantages, but none can individually create an acceptable level of accuracy in produ-
cing LULC maps in most cases.

Spectral enhancement methods can be useful in ensuring accurate image classification.
ICA is a mathematical tool for extracting factors or components that underlie sets of
random variables, measurements, or signals (Du, Kopriva, and Szu 2006; Naik and Kumar
2011). Chen et al. (2008), using ICA to improve image classification accuracy, found it
not only to be effective in removing correlation amongst multi-spectral images, but also in
allowing sparse coding of images and capturing the essential edge structures and textures
of images. Experimental results demonstrating that the ICA algorithm can effectively
improve the accuracy of image classification highlight the ability of ICA to perform
unsupervised classification (Du, Kopriva, and Szu 2006).

Ozdogan (2010) reported on the usefulness of the ICA signal processing algorithm’s
ability to temporally decompose Moderate Resolution Imaging Spectroradiometer
(MODIS) data to automatically map major crop types in three agricultural regions
(Kansas and Nebraska in the USA, and northwestern Turkey). Based on the premise
that when cultivated fields were smaller than the spatial resolution of a moderate-resolu-
tion sensor, then temporal profiles of individual crops in the resulting images were
observed as mixtures. Chitroub and AlSultan (2008), employing ICA for seasonal analysis
of vegetation, found that the extracted independent component (IC) images were particu-
larly informative regarding the surface state of the observed scene. This was especially the
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case with respect to the stability and transition zones of the vegetation, compared with the
extracted PC images.

The development of segmentation-based image analysis (often named object-based
image analysis, OBIA) applications has blossomed in the last 10 years (Woodcock and
Harward 1992; Lobo 1997; Blaschke, Burnett, and Pekkarinen 2004; Blaschke, Lang, and
Hay 2008; Im, Jensen, and Tullis 2008; Gamanya, de Maeyer, and de Dapper 2009).
Other researchers have similarly concluded that overall accuracy is significantly higher
when using OBIA versus traditional methods (Chen et al. 2007; Lackner and Conway
2008; Blaschke 2010).

Using a number of ancillary layers (e.g. landform and climatic zone maps) to assist in
the interpretation and classification of remotely sensed imagery for LULC mapping,
Saadat et al. (2011) showed that successful mapping depends on more than just analysis
of reflectance information: incorporating climatic and topographic conditions helped
delineate what was otherwise overlapping information.

It is well known that a significant correlation exists between spectral data and different
vegetation growth parameters (Thenkabail et al. 2004; Tian et al. 2007; Houborg and
Boegh 2008; Saadat et al. 2011). Guerschman et al. (2003) recommended that, when
possible, three images (spring, early summer, late summer) be used to identify summer
crops, winter crops, and rangelands. Saadat et al. (2011) demonstrated that, in the case of
funding constraints to obtaining more than one image, late-summer images were more
suitable for LULC mapping.

Shaped through a multidisciplinary and hierarchical approach, the present study’s
principal objective and novelty is to propose a new protocol for LULC classification in
semi-arid regions using late-summer Landsat TM images. This classification relies on
readily available ancillary information, ICA, and expert classification.

2. Methods and materials

2.1. Study area

Iran’s Hable-Roud watershed, located between 52° 16ʹ and 53° 08ʹ E longitude and
35° 27ʹ and 35° 57ʹ N latitude, covers an area of 2037.5 km2 in the northeastern portion
of Tehran Province (Figure 1). Composed of a complex combination of mountains, hills,
plains, and rivers, the watershed ranges from 1443 to 4051 m in elevation above mean sea
level (AMSE). Given its geographic location and topography, a wide range of climates
prevails across the different portions of the Hable-Roud watershed (i.e. semi-arid cold to
dry). Mean annual precipitation is 318 mm and mean annual air temperature is 8.7°C.
March is the month of highest rainfall, at 79 mm on average (Royan Consulting
Engineering 2008). Existing landform maps show 69.13% of the Hable-Roud watershed
to be mountainous, with the remaining landforms being: 153.6 ha (0.07% of total area)
river alluvial plains, 2271.8 ha (1.01%) piedmont plains, 1701.6 ha (0.75%) alluvial fans,
31,552.8 ha (13.98%) upper terraces, 3701.2 ha (1.64%) river terraces, and 30,282.5 ha
(13.42%) hills (Saadat and Namdar 2012).

2.2. Land-use and land-cover classification

To classify land use and land cover from a late-summer Landsat TM5 image (7 August
2010, scene 164–35, US Geological Survey), six steps (Figure 2) were undertaken: (i)
image preprocessing; (ii) random extraction of training and reference sampling locations;
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(iii) decomposition of multi-spectral TM bands into features using the ICA method; (iv)
expert classification using the slope map and features extracted by the ICA method; (v)
enhancement of the classified land-use map via image segmentation and zonal statistics;
and (vi) enhancement of the classified land-cover map via the normalized difference
vegetation index (NDVI) and climatic zones. By combining the outputs of the last two
steps, a final LULC map was created. Upon completion of all these steps the accuracy of
the final LULC map was evaluated. ERDAS IMAGINE (Version 9.2) was used for all
image geo-processing and ArcMap (Version 9.3) software was used for the GPS data.

2.2.1. Image preprocessing

Landsat TM images have seven individual bands, each representing a single layer of
continuous imagery. Given their low spatial resolution (60 m), the thermal band was used
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Figure 2. Image preprocessing.
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Figure 1. Location of the study area.
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solely for cloud removal. The image’s non-thermal bands (30 m) were combined into a
multi-layer image and clipped with a 250 m exterior buffer around the study area boundary
(Figure 2. steps 1 and 2). The satellite data were geometrically registered using a second-
order polynomial transformation. Uniformly distributed ground control points (GCPs) were
employed such that the root mean square error was less than 0.33 pixel.

Since almost 70% of the study area is mountainous, topographical normalization was
employed to remove the potential effects of differential illumination and shadowing
caused by terrain variability on spectral reflectance. This involved using Lambertian
reflectance models to transform data in such a manner as to normalize the imagery,
rendering it as if it were a flat surface (Smith, Lin, and And Ranson 1980; Colby
1991). This transformation required the solar elevation and azimuth at time of image
acquisition (header file), a digital elevation model (DEM) based on 1:25,000 digital
topographic maps (obtained from the National Cartographic Centre of Iran), and the
original imagery file (TM). The coordinate system used in the topographic maps was
Universal Transverse Mercator (UTM) zone 39 with spheroid and datum WGS84.

Around 0.5% of the image was covered by clouds. As clouds were reflective (high) in
Band 1 and cold (low) in Band 6, the ratio of the two bands was high over clouds
(Martinuzzi, Gould, and Ramos González 2007). Therefore, a new image, where cloudy
parts were masked out from the original image, was produced by thresholding on this
ratio. Since the cloudy area in the image was very small, a fill process was not performed.

2.2.2. Stratified design of training and reference sampling sites

Training and reference sampling locations were chosen by stratified random sampling to
include a full variety of potential LULC classes across the entire study area. Since this
study encompassed a relatively large watershed, with different climatic zones and a
complex terrain, we first combined three ancillary layers to generate a map with 24 initial
strata (Figure 3, step 7).

● a 1:25,000 scale landform map prepared by Saadat et al. (2008);
● a 1:25,000 scale classified slope map prepared by Saadat and Namdar (2012); and
● a 1:50,000 scale climatic zone map prepared by Royan Consulting Engineers

(2008),

We further combined this initial stratification map with an unsupervised classification
image of the Landsat TM (ISODATA method, with a maximum of 12 iterations and a
95% convergence threshold) with 18 classes (Figure 3, steps 8 and 9). The resulting base
map for the stratification featured 145 strata. Using a stratified random sampling proce-
dure (Stehman 1999), 410 training and 410 reference sampling locations were distributed
across the base map (Figure 3, step 10). Of the 820 training/reference sampling locations,
14 were essentially inaccessible due to physical barriers or their remoteness from roads.
These sites were replaced by 14 accessible sites within the same classes. Because urban
areas represented less than 1% of the total area and were easily recognizable on the image,
these regions were ignored on field visits.

2.2.3. Decomposition of multi-spectral TM bands into features using the ICA method

ICA performs a linear transformation of the spectral bands such that the resulting
components are decorrelated and independent (Figure 4, Step 11). Each IC contains

International Journal of Remote Sensing 8061

D
ow

nl
oa

de
d 

by
 [

B
Y

U
 B

ri
gh

am
 Y

ou
ng

 U
ni

ve
rs

ity
] 

at
 1

0:
43

 3
0 

D
ec

em
be

r 
20

14
 



information corresponding to a specific feature in the original image. Detailed descriptions
of the mathematical formulation of ICA are given in Shah (2003) and Comon (1994). ICA
exploits the higher-order statistical characteristics of multi-spectral and hyperspectral
imagery (e.g. skewness and kurtosis). Skewness and kurtosis are, respectively, measures
of asymmetry and peakedness/flatness on an image histogram. Based on histograms
derived from different bands, a combination of three measurements was used for

To next step
Figure 4, Step 11
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Figure 3. Extraction of a training and reference sampling location map.
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component ordering: correlation × skewness × kurtosis. From six TM bands, six ICs were
extracted (Figure 4, Step 12), and these were scrutinized for their ability to distinguish
irrigated farming from dryland farming. ICA Component 1 was distinctive for irrigated
farming, while ICA Component 3 was distinctive for dryland farming (Figure 5).

2.2.4. Expert classification using ICA features and slope map

Using an expert classification strategy with non-parametric, variable range-based rules,
coupled with an elimination process, we defined a hierarchical decision tree based on
ICA1, ICA3, and slope (Table 1), resulting in four possible outcomes for agriculture
activities: Dryland Farming (DF), Irrigated Farming (IR), Man-Made Forest (FMM), and
Rangeland (R).

2.2.5. Image segmentation and zonal statistics

An image segmentation algorithm was applied to the six bands of the Landsat TM image
(Figure 6, Step 15) using the Bonnie Ruefenacht algorithm (Ruefenacht et al. 2002). The

to Figure 6, Step 16
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Figure 4. Decomposition of multi-spectral TM bands into features using the ICA method and
subsequent expert classification using ICA features and slope map.
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Euclidean Distance Method was used in performing segmentation using Euclidean dis-
tance for all band values for each pixel. The threshold distance of edge detection for best
boundary delineation was set at five through trial and error, and was particularly critical
for edges between dry farming and range areas. In this step, spectrally and spatially related
partitions were formed. Zonal statistics were calculated as the distribution of classes from
the previous step within each polygon resulting from the segmentation, and organized in a
table. In the labelling process, a zonal statistics table was constituted based on polygons
from the image segmentation process and classified map. The zonal statistics table
presents a statistical distribution within each segmented polygon. As each segment
polygon might house more than one class, each polygon was labelled based on the
majority class within it (Figure 6).

2.2.6. NDVI stratification

For the subclasses of LC rangeland (Low-, Medium-, and High-Density ranges) another
approach was required. To address this, the Landsat TM image was clipped (Figure 7,
Step 19) so as to show only the R entity as defined by the results of Step 18 (Figure 6).
From the original 410 ground-truth locations, 349 were known to be ranges of varying
land cover density. These classified ground-truth points were overlaid with NDVI maps,

Table 1. Classification criteria for Irrigated Farming, Dryland Farming, Man-Made Forest, and
Rangeland.

Class Data for classification Rules

Irrigated Farming (IR) ICA1, slope 29.516 > ICA1 ≥ 3.0 and Slope ≤ 5%
Dryland Farming (DF) ICA3, slope ICA3 ≥ 3.0 and ICA1 < 3.9 and Slope ≤ 20%
Man-Made Forest (FMM) ICA1, slope 0.4 > ICA1 ≥ 0.1 and 15% > Slope ≥ 5%
Rangeland (R) IR, DF, FMM, Urban Not IR, not DF, not FMM, and not Urban

Distance (m)

Spatial profile ICA1 Spatial profile ICA3

(a)
Distance (m)

(b)

Figure 5. Spatial profile of (a) ICA Component 1, distinctive for irrigated farming, and (b) ICA
Component 3, distinctive for dryland farming.
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and NDVI thresholds were calculated independently for each of two climate zones (Table
2). Using these thresholds, NDVI maps were sliced into three classes: Low-, Medium-,
and High-Density ranges (Figure 7, Steps 20, 21, 22). The resulting layers were merged
with Dryland Farming, Irrigated Farming, and Urban (Figure 7, Step 23) in order to
generate a final LULC map.

2.3. Map accuracy assessment

To evaluate the accuracy of the LULC map, 410 reference sampling locations were chosen
using a stratified random sampling procedure (Stehman 1999) so as to encompass the full
variety of LULC classes across the whole study area. Class decisions were based on
observing an area around the sampling location equal to 1–3 image pixels. All sites were
visited and sampled by experienced agronomists with knowledge of the locality. Finally,
an error matrix was generated to compare land-use and land-cover classifications resulting
from the LULC map and the ground-truth classifications. The extent to which these two
classifications agreed was measured by map producer’s and user’s accuracies (Congalton
1991), and by the kappa coefficient (Cohen 1960; Hudson and Ramm 1987). It should be
noted that the field reference data were collected in the same month as images were
acquired.

3. Results and discussion

The final LULC map is shown in Figure 8. Land-use and land-cover classes include
Irrigated Farming, Dryland Farming, High-Density Rangeland (R1, cover > 30%, mostly
between 30% and 50%), Medium-Density Rangeland (R2, 15 < cover ≤ 30%), Low-
Density Rangeland (R3, cover ≥ 15%), Man-Made Forest, and Urban Area. The area and
relative coverage of LULC classes in the study area (Figure 9) shows Medium-Density
Rangeland to cover 109,078 ha or 53.5% of the whole study area, Low-Density
Rangeland (59,682 ha, 29.3%.), High-Density Rangeland (22,791 ha, 11.2%), Irrigated
Farming (7663 ha, 3.7%), and Dryland Farming (4009 ha, 2%).

The overall accuracy and kappa coefficient achieved were 88.3% and 0.83, respec-
tively (Table 2). Producer’s accuracy, a measure of how correct the classification is,
ranged from a low of 65% in the case of Man-Made Forest to a high of 93.7% in the
case of Irrigated Farming (Table 3). User’s accuracy is a measure of the reliability of the
map for each class, and ranged from a low of 60% in the case of Man-Made Forest to a
high of 93.4% for Medium-Density Rangeland. Both producer’s and user’s accuracy were
lowest for Man-Made Forest, which might be attributable to the class’s small population

Table 2. NDVI thresholds of each range class for each climate zone.

Climate zones Range class

NDVI thresholds

Maximum Minimum

Semi-Arid Low-Density Rangeland −0.109 −0.506
Medium-Density Rangeland 0.308 −0.108
High-Density Rangeland 0.508 0.309

Arid Low-Density Rangeland −0.147 −0.532
Medium-Density Rangeland 0.284 −0.146
High-Density Rangeland 0.472 0.285
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Figure 9. Area and percentage coverage of LULC classes for the study area.
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size; indeed, Man-Made Forest covers less than 0.1% of the total study area. It should be
noted that sparse trees including a few juniper species (5–25 trees per hectare) cover small
parts of the study area, particularly steep, stony mountainsides. However, separation of
this area into individual classes was not possible in this study. Thus, further work needs to
be done in the future in regard to classification aspects of the LULC map.

All classes were well defined and differentiated, except the Forest class. This was
particularly the case for Dryland Forest (PA = 88%), with its small area and diverse
agricultural activities (e.g. varying planting and harvest dates, different locations and
situations) presenting varying reflectance information on satellite images. The main
land-use classes such as Irrigated Farming, Dryland Farming, Rangeland, and Man-
Made Forest were differentiated through the step-by-step process of (i) image preproces-
sing; (ii) selection of training and reference sampling locations; (iii) use of the ICA
method to decompose multi-spectral TM bands into features; (iv) land-use type classifica-
tion based on slope and ICA method-derived features; (v) classified land-use map
enhancement by image segmentation and zonal statistics; and (vi) enhancement of
discrimination within the rangeland land-cover classification drawing on NDVI and
climatic zones. Successful mapping, namely the delineation of what was otherwise over-
lapping information, was found to require going beyond the mere analysis of reflectance
information, and incorporating climatic and topographic conditions.

Comparison of maps prepared by the Iranian Soil Conservation and Watershed
Management Research Institute (SCWMRI, Table 4) and our LULC map developed in
the present study (Table 2) shows the former to have major issues in differentiating among
classes, particularly in defining areas of Dryland Farming, which results in mixing up of
this class with Irrigated Farming or with Rangeland classes. Figures 10(a)–(d) show four
areas of the watershed where our LULC map’s land-use categories are colour-coded and
labelled red, while the SCWMRI map’s land-use categories are delimited by black lines
and labelled black. In Figure 10(a) the SCWMRI map shows only two polygons (i.e. R2
and IR + DF) compared with five zones (R1, R2, R3, IR, and DF) for the new model. In
general, the SCWMRI maps were able to identify Irrigated Farming better than the other
land-use classes (Figure 10(b)). However, these maps were not able to distinguish
between Dryland and Irrigated Farming separately, as shown in Figure 10(a). It may be
seen from Figures 10(a), (c), and (d) that the polygon boundaries of Dryland Farming and

Table 3. Accuracy assessment of land-use/land-cover classification (LULC) map.

Class
Reference

total
Classified

total
Number
correct

Producer’s
accuracy (%)

User’s
accuracy (%)

IR Irrigated Farming 32 37 30 93.75 81.08
DF Dryland Farming 25 26 22 88.00 84.62
FMM Man-Made Forest 4 5 3 75.00 60.00
R1 High-Density

Rangeland
44 47 40 90.91 85.11

R2 Medium-Density
Rangeland

193 183 171 88.60 93.44

R3 Low-Density
Rangeland

112 112 96 85.71 85.71

Total 410 410 362

Overall classification accuracy = 88.29%
Kappa = 0.831
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Rangeland areas (R2 and R3) of SCWMRI maps exhibit significant overlap and have the
least accurate results. This is likely because, in the case of Dryland Farming, there are
diverse agricultural activities that result in diverse reflectance information in the satellite
images. In turn, for some areas this makes Dryland Farming appear like R2 and R3 and
renders differentiation difficult. On the other hand, decomposition of multi-spectral TM
bands into features via the ICA method and using a number of ancillary layers (e.g.
landform and climatic zone maps) helps address these issues. Field visits confirmed that
polygon boundaries of the main land uses of the SCWMRI maps showed significant
overlap, especially between Dryland Farming and Rangeland. It was found that all classes
and polygon boundaries on the LULC map created in this study closely matched the
situation in the field.

4. Conclusions and recommendations

Accurate land-use-land-cover classification (LULC) maps are central to watershed plan-
ning and management efforts, allowing for the development of sustainable land-use and
resource allocation guidelines. However, these guidelines are only as good as the accuracy
of the LULC maps. In Iran and many other developing countries around the world,
currently available maps are fraught with limitations in regard to accuracy and discrimi-
natory ability with regard to land use. While multi-spectral satellite imaging could address
these issues, methods to extract the images and other geographic information’s full
potential need to be developed. To generate and validate a new approach to developing
LULC maps (in this case for northeastern Iran’s 2037.5 km2 Hable-Roud watershed), a
step-by-step process was developed and implemented, consisting of image preprocessing,
extraction of training and reference sampling locations, decomposition of multi-spectral
TM bands into features by ICA methods, classification using these features and slope
maps, enhancement of land-use classes through image segmentation and zonal statistics,
then through consideration of NDVI and climatic zones, followed by ground truthing.

Table 4. Accuracy assessment of land-use and land-cover classification maps prepared by the
Iranian Soil Conservation and Watershed Management Research Institute (SCWMRI).

Class Reference total
Classified

total
Number
correct

Producer’s
accuracy

(%)

User’s
accuracy

(%)

Mixed
(IR + DF)*

Irrigated
Farming +
Dry Farming

57 65 31 54.38 47.69

R1 High-Density
Rangeland

44 62 30 61.18 48.39

R2 Medium-
Density
Rangeland

193 210 117 60.62 55.71

R3 Low-Density
Rangeland

112 69 52 46.42 75.36

406 406 230

Overall Classification
Accuracy

56.65%

Note: * SCWMRI maps were not able to distinguish individually between DF and IR.
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While current maps only distinguished R1, R2, R3, and mixed Irrigated and Dryland
Farming and must, at times, combine categories, the approach developed in this study was
capable of greater discrimination, identifying and deliminating five different LU types:
dryland farming, irrigated farmland, and low-, medium-, and high-vegetation density
rangelands. The new maps’ ground truthing-based overall accuracies and kappa coeffi-
cients were 88.3% and 0.83, respectively (as shown in Figures 10(a)–(d), the current maps
have the least accurate results). The new maps’ producer’s and user’s accuracies ranged
from a low of 65% and 60%, respectively, for the least extensive land-use type (forest) to
highs of 93.7% and 93.4% in the case of irrigated farmland. The new (vs. present) maps’
greater discrimination and accuracy are apparent in Figure 10, where the new maps
discriminated land uses far better than the old map. Developing the improved LULC
map required going beyond the mere analysis of reflectance information, to incorporating
climatic and topographic data through a step-by-step approach.
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