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In semi-arid areas, a strongly variable climate represents a major risk for food safety.
An operational grain yield forecasting system, which could help decision-makers to
make early assessments and plan annual imports, is thus needed. It can be challenging
to monitor the crop canopy and production capacity of plants, especially cereals. In this
context, the aim of the present study is to analyse the characteristics of two types of
irrigated and non-irrigated cereals: barley and wheat. Through the use of a rich
database, acquired over a period of two years for more than 30 test fields, and from
20 optical satellite SPOT/HRV images, two research approaches are considered. First,
statistical analysis is used to characterize the vegetation’s dynamics and grain yield,
based on remotely sensed (satellite) normalized difference vegetation index (NDVI)
measurements. A relationship is established between the NDVI and LAI (leaf area
index). Different robust relationships (exponential or linear) are established between
the satellite NDVI index acquired from SPOT/HRV images, just before the time of
maximum growth (April), and grain and straw, for barley and wheat vegetation covers.
Following validation of the proposed empirical approaches, yield maps are produced
for the studied site. The second approach is based on the application of a Simple
Algorithm for Yield Estimation (SAFY) growth model, developed to simulate the
dynamics of the LAI and the grain yield. An inter-comparison between ground yield
measurements and SAFY model simulations reveals that yields are underestimated by
this model. Finally, the combination of multi-temporal satellite measurements with the
SAFY model estimations is also proposed for the purposes of yield mapping. Although
the results produced by the SAFY model are found to be reasonably well correlated
with those determined by satellite measurements (NDVI), the grain yields are never-
theless underestimated.

1. Introduction

The world’s population has been constantly increasing over the last half century. This
growth has been accompanied by an increase in the consumption of agricultural products,
especially cereals, such that it is becoming increasingly important for scientists and
decision-makers to be able to estimate grain yields at regional and national levels. An
operational grain-yield forecasting system is thus required, and could help decision-
makers to make timely decisions and plan annual imports (Justice and Becker-Reshef
2007). Many models, based on the use of remote sensing or agro-meteorological models,
have been developed to estimate the biomass and grain yield of cereals (Barnett and

*Corresponding author. Email: mehrez.zribi@cesbio.cnes.fr

International Journal of Remote Sensing, 2014
Vol. 35, No. 3, 1004–1028, http://dx.doi.org/10.1080/01431161.2013.875629

© 2014 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v 

B
ib

lio
te

] 
at

 1
5:

15
 1

9 
Fe

br
ua

ry
 2

01
4 

mailto:mehrez.zribi@cesbio.cnes.fr


Thompson 1982; Benedetti and Rossinni 1993; Moriondo, Maselli, and Bindi 2007;
Balaghi et al. 2008; Becker-Reshef et al. 2010; Laurila et al. 2010).

Remote sensing has demonstrated its strong potential for the monitoring of dynamics and
temporal variations of soil and vegetation, mainly because it provides wide spatial coverage
and has consistent internal data sets (Zribi, André, and Decharme 2008; Amri et al. 2011).
Optical remote sensing has demonstrated its strong potential for the monitoring of vegetation
dynamics and temporal variations, mainly because it provides wide spatial coverage and has
consistent internal data sets. In particular, the normalized difference vegetation index (NDVI)
expresses the contrast in reflectance between the red and near-infrared regions of a surface
spectrum (Rouse et al. 1974). The NDVI is simple to calculate, can be related to green
vegetation cover or vegetation abundance, and is expressed by: NDVI = (NIR − RED)/
(NIR + RED), where NIR is the near-infrared reflectance and RED is the reflectance at red
wavelengths. The NDVI is sensitive to the presence of green vegetation (Sellers 1985) and
has been used for several regional and global applications, in studies concerning the distribu-
tion and potential photosynthetic activity of vegetation (Deblonde and Cihlar 1993; Propastin
and Kappas 2009). Efforts have been made to develop various models and approaches for the
purposes of forecasting the yields of different crops in different regions throughout the globe.
Most studies related to the estimation of cereal yields make use of low resolution sensors
(Bastiaanssen and Ali 2003; Balaghi et al. 2008; Kogan et al. 2013). Balaghi et al. (2008)
proposed the use of empirical ordinary least squares regression models to forecast yields at
provincial and national levels. Their predictions were based on decadal NDVI/AVHRR data,
decadal accumulated rainfall, and average monthly air temperatures. Becker-Becker-Reshef
et al. (2010) combined a new BRDF-corrected daily surface reflectance data set, developed
from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS), with detailed
official crop statistics. They used these combined data to develop an empirical, generalized
approach to the forecasting of wheat yields. This was based on a single, generalized model,
which was applied at the level of the state of Kansas (USA) and has been shown to be directly
applicable to Ukraine. Yield estimations are also relevant to other types of vegetation,
including rice (Wang et al. 2010; Wei-guo, Hua, and Li-Hua 2011), soybean and soya
(Prasad et al. 2006), olives (Maselli et al. 2012), citrus fruit (Ye et al. 2006), and maize and
sunflower crops (Claverie et al. 2012).

In recent decades, there has also been a growing interest in approaches based on agro-
ecological process models combined with remote sensing. Vegetation models based on
climatic and agronomic data have demonstrated a good degree of correlation between
estimated and measured variables at the local level (Bastiaanssen and Ali 2003; Duchemin
et al. 2008). These models simulate key variables, including the leaf area index (LAI). The
model proposed by Bastiaanssen and Ali (2003) combines the photosynthetically active
radiation (PAR) model of Monteith (1972), the light-use efficiency model of Field,
Randerson, and Malmstrom (1995), and the surface energy balance model of Bastiaanssen
et al. (1998) to estimate the growth of irrigated crops. To forecast crop yields, these authors
used the National Oceanic and Atmospheric Administration’s (NOAA) Advanced Very High
Resolution Radiometer (AVHRR; http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html) instru-
ment during periods of crop irrigation. Most of these studies have been carried out in Europe
or North America, where generally high levels of cereal production are encountered.

Lobell et al. (2003) estimated crop yields using AVHRR imagery over northwest
Mexico. Remotely sensed estimations of the fraction of absorbed photosynthetically
active radiation (fAPAR) were incorporated into a simple model based on crop light-use
efficiency estimations derived from Monteith (1972, 1977), to predict wheat yields and
optimal planting dates.
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The aim of the present study is to evaluate the feasibility of three approaches: high-
resolution remote-sensing imagery, the agro-meteorological SAFY (Simple Algorithm for
Yield Estimation) model, and combined use of the SAFY model with remotely sensed
data, to estimate the dynamics and yields of cereals in the context of semi-arid, low-
productivity regions in North Africa.

Section 2 describes the study site and the experimental satellite and ground measure-
ment database. Section 3 is dedicated to the statistical analysis of this data, used to
estimate the dynamics and yields of cereals derived from the remotely sensed NDVI. In
Section 4, the use of the SAFY model for the estimation of vegetation cycle dynamics and
yields is described. Then, the combined use of the SAFY model and remotely sensed data
is presented. Our conclusions are given in section 5.

2. Experimental database

2.1. Study area

The Kairouan plain (Zribi et al. 2011) is situated in central Tunisia (9° 30′ E, 10° 15′ E,
35° N, 35° 45′ N) (Figure 1). The climate in this region is semi-arid, with an average
annual rainfall of approximately 300 mm, characterized by a rainy season lasting from
October to May, with the two rainiest months being October and March. As is generally
the case in semi-arid areas, the rainfall patterns in this area are highly variable in time and
space. The mean temperature in Kairouan City is 19.2°C (minimum 10.7°C in January
and maximum 28.6°C in August) and the mean annual potential evapotranspiration
(Penman) is close to 1600 mm. The landscape is mainly flat and the vegetation in this
area is dominated by agriculture (cereals, olive trees, and market gardens). There are
various types of crop, and their rotation is typical of semi-arid regions. The aquifer of the
Kairouan plain represents the largest basin in central Tunisia. It is fed by the infiltration of
surface waters during floods in the natural regime, or at the time of dam releases since the
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Figure 1. Illustration of the study site.
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construction of the Sidi Saad and El Haouareb dams. Surface and groundwater streams
drain into the Sebkha Kelbia, a large salt lake.

2.2. Satellite data

For the purposes of monitoring surface parameters and gaining an understanding of the
vegetation dynamics on the Kairouan plain, 15 images acquired by the SPOT 5 satellite
were analysed (Table 1). These images were acquired with a repeat time of approximately
21 days and high spatial resolution, equal to 10 m. All of the acquired images were
orthorectified using the ground control point technique. The resulting mismatch between
these images and the reference image was less than ± 0.5 pixel. In a second step, the
orthorectified images were calibrated to derive the TOA (top of atmosphere) reflectances,
and then atmospherically corrected to obtain the TOC (top of canopy) reflectances. The
raw digital values were initially converted to TOA reflectances using the same absolute
calibration techniques as those operationally applied to SPOT image data (Meygret 2005).
The atmospheric correction needed to determine the TOC reflectances relies on inversion
of the 6S radiative transfer model (Rahman and Dedieu 1994; Berthelot and Dedieu
1997), based on the use of look-up tables. This model requires input parameters such as
the aerosol optical thickness (AOT) at 550 nm, size distribution and refractive index of the
aerosols, water vapour content, ozone content, and atmospheric pressure. The water
vapour content was determined from measurements recorded at the study site, the ozone
content was obtained from ozone monitoring instrument (OMI) data (available at http://
toms/gsfc.nasa.gov), and the surface atmospheric pressure was retrieved from http://www.
tutiempo.net.

2.3. Ground measurements

Simultaneous to the satellite data acquisitions, ground campaigns were carried out
approximately once every two weeks on a large number of test plots, during two
agricultural seasons (2010–2011 and 2011–2012). During the first year a total of 27 test
fields, including 18 irrigated and 9 non-irrigated cereal fields, were used for the ground
truth measurements (Figure 1), whereas during the second season, 55 test fields, including

Table 1. Satellite acquisition dates.

Image Acquisition date Sensor

1 24 December 2010 SPOT5
2 29 January 2011 SPOT5
3 19 February 2011 SPOT5
4 17 March 2011 SPOT5
5 5 April 2011 SPOT4
6 28 April 2011 SPOT5
7 18 May 2011 SPOT5
8 3 July 2011 SPOT5
9 6 November 2011 SPOT5
10 13 January 2012 SPOT5
11 28 February 2012 SPOT5
12 31 March 2012 SPOT5
13 4 May 2012 SPOT4
14 25 May 2012 SPOT4
15 6 July 2012 SPOT4

International Journal of Remote Sensing 1007
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36 irrigated and 19 non-irrigated cereal fields, were analysed. Two types of cereal were
considered: wheat and barley in the case of the selected test fields. Table 2 provides a
detailed breakdown of the characteristics of these fields.

The in situ measurements involved mainly water content, height, LAI of the vegeta-
tion, and cereal yields.

2.3.1. Leaf Area Index

LAI is defined as the total one-sided area of leaf tissue per unit of ground surface area.
According to this definition, LAI is a dimensionless quantity characterizing the canopy of
an ecosystem. Two different approaches can be used to estimate LAI: directly through
destructive sampling, or indirectly by applying methods based on ground-level gap
fraction measurements. In the present study, an indirect method is used, in which LAI
is derived from hemispherical digital photography. A binary classification of green
elements and soil is proposed, in order to compute the gap fraction at a 57.5° zenith
angle, from which an estimation of LAI is then derived (Kirk et al. 2009; Baret et al.
2010; Sandmann, Graefe, and Feller 2013).

These measurements were applied to each cereal field, on different days during the
vegetation season. Thirty LAI estimations were made for each field, within two
20 m × 20 m square areas. The LAI measurements were made during the same week as
that during which the SPOT 5 satellite images were recorded, in order to limit any
discrepancies between ground and satellite measurements.

Figure 2(a) plots the variations in these measured quantities for three test fields, two of
which were irrigated. The third field was rainfed during the second season. First, a LAI
maximum, which occurred after a period of accelerated growth, can be observed during
the first two weeks of April. Secondly, a clear difference can be seen between the irrigated
and rainfed vegetation cycles, with a greater increase in the LAI parameter at the
beginning of the vegetation cycle in the case of the irrigated fields.

2.3.2. Cereal yield

For each test field, ten sample measurements were taken along the two field diagonals,
using a 75 cm × 75 cm frame. The cereal yields were then measured: the number of stalks,
the weight of the grain, and the weight of the straw were recorded. The yields and quantities
of grain lost during harvesting were studied simultaneously. As a result of the use of data
taken from both rainfed and irrigated fields, the estimated yields have a large dynamic
range, between 1300 kg ha–1 and 10,300 kg ha–1, with a mean value of 4300 kg ha–1 for
wheat, and between 1500 kg ha–1 and 5500 kg ha–1, with a mean value of 3400 kg ha–1, for

Table 2. Number and type of test fields for the two agricultural seasons.

Agricultural year Number and type of fields

2010/2011 Non-irrigated wheat: 6
Irrigated wheat: 14
Non-irrigated barley: 3
Irrigated barley: 4

2011/2012 Non-irrigated wheat: 13
Irrigated wheat : 27
Non-irrigated barley: 6
Irrigated barley: 9

1008 A. Chahbi et al.
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barley. Figure 2(b) shows the error bars corresponding to the measured grain yield and
NDVI extracted from satellite images at the beginning of April, for the 82 test fields. The
mean standard deviation of NDVI is 0.067, with an average value for all test fields equal to
0.58. For the measured grain yields, the average value for all fields is equal to 3400 kg ha–1,
and the mean standard deviation for all test fields is equal to 970 kg ha–1.

2.4. Land-use mapping

Land-use identification (Figure 3) is an essential step in the mapping of yields over all
cereal fields. For this, land-use mapping was implemented, based on a decision tree and
using two types of satellite data: four SPOT images acquired at four different times of the
year were used to identify different vegetation (Table 3) cycles, and SRTM data were used
for relief identification. A decision tree classification approach was used, from which 11
classes of land use were identified: pluvial olive trees, irrigated olive trees, irrigated winter
vegetables, irrigated summer vegetables, bare soils, cereals, urban areas, mountainous
areas, wadi beds, dams, and coastal salt flats (‘sebkhas’). For all of these classes, thresh-
olds were considered for one or two images. Test fields were used during the learning
phase in order to identify empirical NDVI thresholds allowing the different classes to be
distinguished. For example, for summer vegetables, an empirical NDVI threshold was
applied to the image acquired in July (NDVI > 0.3). In the case of winter vegetables, the
image acquired at the end of autumn or the beginning of summer was used. During these
periods of the year, vegetables have the highest NDVI index. For the cereal classes
(irrigated or non-irrigated, wheat or barley), the satellite data acquired in March or
April, corresponding to the cereals’ maximum growth, were used. The digital terrain
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model (DTM) provided by the Shuttle Radar Topography Mission (SRTM, http://srtm.
usgs.gov/) allowed high-relief areas to be eliminated from the land-use analysis. In order
to validate these remotely sensed classifications, a confusion matrix was produced by
comparing the classification results obtained from more than 100 test fields, characterized
by different types of land use. This analysis revealed an overall accuracy of approximately
80%, and greater than 90% in the case of cereals. The non-irrigated olive tree class covers
43% of the studied site, whereas the wheat class corresponds to 12% of the surface area of
the study site.
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Figure 2. (Continued).
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Once established, the land-use map can be used to extract a cereal mask for the two
agricultural seasons under study.

3. Statistical analysis of the relationship between cereal yields and satellite
observations

The aim of this section is to evaluate the potential of remote sensing, combined with
statistical analysis, for the estimation of barley and wheat yields.

3.1. Relationship between SPOT–NDVI and cereal yields

Figure 4 illustrates the relationship between NDVI acquired on 17 March 2011 and
31 March 2012, and the grain and straw yield measurements (Ygrain and Ystraw) obtained
at the end of the cereal season. For the first data set, including 44 fields and covering a
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Figure 3. Land-use map for the 2011–2012 agricultural season.

Table 3. Satellite imagery used to produce the land-use map.

Agricultural
year Spot 5 satellite imagery

2010/2011 24 December 2010, 29 January 2011, 17 March 2011, 28 April 2011 and 3 July
2011

2011/2012 6 January 2011, 13 January 2012, 31 March 2012 and 6 July 2012

International Journal of Remote Sensing 1011

D
ow

nl
oa

de
d 

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v 

B
ib

lio
te

] 
at

 1
5:

15
 1

9 
Fe

br
ua

ry
 2

01
4 



large range of sowing dates, as well as irrigation and fertilization schedules, two expo-
nential relationships were determined empirically:

Ygrain ¼ 434 exp 3:38NDVIð Þ;
Ystraws ¼ 285 exp 3:88NDVIð Þ: (1)

NDVI is well correlated with the average weight of the harvested grain (R2 = 0.66) and
with the average weight of the straw (R2 = 0.74). In the case of the data acquired before
and after those corresponding to Figure 4, the correlation between the satellite index and
the measured yields is weaker. In practice, the end of March corresponds to a maximum in
vegetation dynamics. Before this date, NDVI variations between fields are not affected by
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Figure 4. Relationship between mesured cereal yields (grain and straw) and the SPOT–NDVI
index, on 17 March 2011 and 31 March 2012: (a) grain yields, (b) straw yields.
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irrigation or rainfall events occurring in March, which are essential to grain development.
In mid-April, the vegetation LAI starts to decrease, leading to a reduced capacity to
distinguish between high and low grain yields.

Figure 5 plots the NDVI-estimated grain and straw yields as a function of the ground
truth measurements, thus validating the proposed empirical algorithms for the second set
of test fields: the resulting RMSE is equal to 850 kg ha–1 for grain yield and 1160 kg ha–1

for straw yield. This outcome demonstrates the robustness of the proposed empirical
approach, despite its simplicity.
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Figure 5. Comparison between measured and estimated cereal yields: (a) grain yields and (b) straw
yields.
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The same yield estimation algorithm was applied separately for the wheat and barley
crops, independently of the various agricultural practices (sowing date, type of seeder,
irrigation date, quantity of fertilizer, etc.). The results are described below.

3.1.1. Wheat yield

Figure 6 shows a plot of the exponential relationship between the measured yield (grain
and straw) and NDVI for the first set of wheat fields tested. The measured yield and
NDVI can be seen to be well correlated, with correlation coefficients R2 equal to 0.67 and
0.66 for grain and straw, respectively.
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Figure 6. Relationship between measured wheat yields (grain (a) and straw (b)) and the SPOT-
NDVI index on 17 March 2011 and 31 March 2012.
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The empirical relationships were validated with a second set of test fields. The
measured and estimated yields can be seen to be in good agreement, with an RMS
error equal to 900 kg ha–1 and 1100 kg ha–1 for grain and straw, respectively (Figure 7).

3.1.2. Barley yield

Twenty-two barley fields were observed during the two agricultural years. The database
was divided into two sets: the first was used to estimate the yield on the basis of the NDVI
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Figure 7. Comparison between measured and estimated wheat yields: (a) grain yields and (b) straw
yields.
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measurements, and the second set was used for model validation. Figure 8 provides a plot
of the linear relationship established between measured and NDVI-derived grain and
straw yields for the first set of test fields. The correlation coefficients R2 are equal to
0.62 and 0.70 for grain and straw, respectively.

The proposed relationship was validated by comparing yield measurements and
estimations with the second set of fields. The results are found to be in good agreement,
with an RMS error equal to 650 kg ha–1 and 1470 kg ha–1 for grain and straw estimations,
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Figure 8. Relationship between measured barley yields (grain (a) and straw (b)) and the SPOT–
NDVI index, on 17 March 2011 and 31 March 2012.
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respectively (Figure 9). In the case of barley, only a linear relationship was considered,
since the number of test fields was too small for a more complex (e.g. exponential)
relationship to be determined.
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Figure 9. Comparison between measured and estimated barley yields: (a) grain yields and (b)
straw yields.
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3.2. Yield mapping

Following the above-described validation, Equation (1) was used to invert NDVI and
generate yield maps for all classes of cereal. The wheat and barley classes could not be
treated separately, because they were not differentiated by the land-use identification
process.

In order to eliminate the influence of local terrain heterogeneities (due to local
variations in vegetation cover and soil surface, etc.) on the processed optical signal, the
yield was estimated over cells corresponding to 10 × 10 pixels (approximately 100 m2),
rather than at the scale of single pixels. For each resulting cell, the yield estimation was
applied only if more than 25% of the cell’s pixels belonged to cereal fields. The value of
the computed yield could then be considered as representative of the entire cell. In
Figure 10, the yield maps are shown for the 2011–2012 agricultural season.

4. Estimation of the dynamics and yields of cereals using the SAFY growth model

4.1. SAFY model description

One of the aims of the present study was to evaluate the potential use of time series of a
variable biophysical parameter (the LAI) for the monitoring of phytomass production and
the grain yield of cereal crops. This evaluation was based on the use of the SAFY model
(Duchemin et al. 2008). The main idea was to use the model to represent well-known
processes involved in crop development and growth, with the requirement that these
processes be simulated using standard data, i.e. climatic data and optical imagery (which
provides LAI estimations). Climatic data were generated by a weather station located in
our study area (lat: 35.56°, long: 9.94°), which provided air temperature (Ta) and incom-
ing global radiation (Rg) measurements. These data were recorded once every 30 min.
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Figure 10. Cereal yield map for the 2011–2012 agricultural season.
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The model simulates the increase in dry above-ground phytomass, based on the light-
use efficiency theory of Monteith (1977), and also takes the dynamics of green leaves and
the influence of temperature into account (Duchemin et al. 2008). The dynamics of green
LAI are simulated by estimating the extent of leaf coverage during growth (ΔLAI +) and
the decrease in LAI during senescence due to the wilting and falling of leaves (ΔLAI–).
These two phenological phases are identified through the use of a degree-day approach
based on the accumulated air temperature (ΣTa). Leaf senescence starts when ΣTa has
attained a given threshold STT (sum of temperature for senescence):

ΔLAIþ ¼ ΔDAM� PL �Tað Þ � SLA;

ΔLAI� ¼ LAI �Ta � STTð Þ=Rs;
(2)

where DAM is the dry, above-ground mass, PL is the partition-to-leaf function (which can
be expressed as an empirical function of the air temperature), SLA is the specific leaf area,
and Rs is the rate of senescence.

SAFY has a low level of complexity in order to simplify the optimization of unknown
parameters when a small number of observations is available. The parameters are limited
in number (14), and are used to determine a priori values based on data provided by
various prior experimental studies (Varlet-Grancher et al. 1982; Sinclair and Amir 1992;
Meinke et al. 1998; Porter and Gawith 1999; Claverie et al. 2012). However, three of
these parameters (the day of plant emergence (D0), the effective light-use efficiency
(ELUE), and the ‘sum of temperature for senescence’ (STT) are strongly dependent on
the ambient agro-environmental conditions.

4.2. Application of the SAFY model to cereal cycle retrieval

The first step involves calibrating the three parameters (D0, ELUE, STT). This procedure
corresponds to the identification of an optimum parameter set from which, for each field, the
SAFY simulation leads to the best reproduction of several observed variables. These para-
meters were calibrated using an optimization algorithm based on the observed ground truth
LAI values collected in the fields. For each test plot, three optimized parameters were
determined. These provided the ‘best combination’, defined as that having the lowest root
mean square error (RMSE) between the LAI measured in the field and that estimated by the
SAFYmodel. Table 4 indicates the range over which each of these parameters was considered.

The values of these three parameters are thus determined, for each test plot, on the
basis of LAI measurements. The cereal dynamics are derived, for each field, from the
estimated LAI. In Figure 11, the LAI determined with the model is compared to that
measured on the ground, for four different fields planted with irrigated and rainfed cereals.
It can be seen that in all four cases, the model accurately retrieves the dynamic range of
the LAI. Maximum growth occurs at the end of March.

Table 4. Ranges over which the three optimized SAFY parameters are considered.

Parameter Units Range Interval

D0 day 15–120 5
ELUE g MJ−1 0–10 0.2
STT °C 200–1800 10
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Figure 11. Green LAI dynamics for three different fields, estimated using the SAFY model, and
ground measurements during the 2011–2012 agricultural season.
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4.3. Application of the SAFY model to yield estimations

The grain-filling phase ranges from the day when foliage production ends to the day when
total senescence occurs. During this period, the daily increase in grain yield (ΔGY) is
proportional to the total above-ground phytomass (DAM), with a constant fraction Py
partitioned to grains, and thus:

ΔGY ¼ Py � DAM: (3)

Since the characteristic parameters of the wheat and barley fields are quite different, the
SAFY model was validated independently for each type of cereal. Field measurements
were thus used to calibrate the fraction Py, for each type of cereal, by minimizing the
RMSE between the grain yields measured in all of the fields, and the wheat and barley
grain yields simulated by the SAFY model (Py wheat = 0.0108 and Py barley = 0.0057).

Figure 12(a) compares the SAFY model yield estimations with ground measurements,
in the case of barley fields. Although the ground measurements and model estimations are
only moderately correlated (R2

barley = 0.35), the SAFY model can be seen to produce results
which are coherent with the ground measurements in terms of yield dynamics. The limita-
tions of the SAFY model can be explained by various influences (fertilization, irrigation,
etc.), which it does not take into account. In Figure 12(b), the SAFY model wheat yield
estimations are compared to the ground measurements. As in the case of barley fields, only a
moderate degree of correlation is found (R2

wheat = 0.33) between the two types of data.

4.4. Application combining the SAFY model with remotely sensed data

In this section, multi-temporal satellite LAI measurements are used to calibrate the SAFY
model. Before implementing this calibration, a relationship is established between the
satellite NDVI and the LAI.

4.4.1. NDVI–LAI relationship for cereals

The LAI variable can be determined from NDVI. Several types of relationship can be
found in the literature that compare these two key parameters. According to Wardley and
Curran (1984), the NDVI-LAI relationship can be assumed to be linear, although when
the LAI lies in the interval between 2 and 6 this relationship is no longer valid. Asrar et al.
(1984) and Richardson et al. (1992) derived logarithmic relationships to express the NDVI
as a function of LAI.

In the present study, for each pixel, a NDVI profile was generated from the satellite data.
A relationship was then established between the NDVI and LAI of the studied test fields
during the growing seasons of 2008–2009 and 2010–2011. As proposed by Duchemin et al.
(2006), an exponential relationship of the following type was then determined:

NDVI ¼ NDVI1 þ NDVIsoil � NDVI1ð Þ � e�kNDVI LAI; (4)

where NDVI1is the asymptotic value of the NDVI derived from the measurements; in
the case of the present study, NDVI1 was taken to be 0.75 (see Figure 13(a)), and
NDVIsoil is the value of NDVI for bare soil (value determined in the present study:
0.15); kNDVI is the extinction coefficient.
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Figure 13(a) plots the experimental LAI–NDVI data points, corresponding to the 2009–
2010 and 2011–2012 seasons, together with a least-squares fit to the above empirical
relationship, which has a correlation coefficient of 0.78. It should be noted that when LAI
exceeds 2, NDVI saturates (at approximately 0.75), leading to NDVI errors at high LAI
values.
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Figure 12. Comparisons between measured and estimated (SAFY model) grain yields, for barley
(a) and wheat (b).
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The proposed algorithm was validated by comparing ground truth measurements with
estimations derived from SPOT NDVI data for the test fields.

The resulting RMSE is equal to 0.73, as shown in Figure 13(b). In accordance with the
NDVI saturation effect noted above, the proposed empirical algorithm was found to be
inaccurate for high LAI values.

4.4.2. Application of the SAFY model using satellite LAI estimations

In this section, the grain yield is estimated using the SAFY model combined with
remotely sensed, multi-temporal SPOT acquisitions. This process involves initial
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Figure 13. (a) Relationship between NDVI and LAI measured at the test fields. (b) Comparison
between measured and estimated LAI using Equation (1), for the 2011–2012 agricultural season.
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calibration of the SAFY model, achieved by minimizing the RMSE between the SPOT5-
time series LAI and the SAFY model LAI. Maps of the three parameters – ELUE, D0, and
STT – optimized for the SAFY model, are thus generated. In order to eliminate the effects
of local heterogeneities (due to irregularities occurring during the sowing and growth
stages, vegetation dispersion heterogeneities, etc.), these three parameters are estimated
over cells corresponding to 10 × 10 pixels (approximately 100 m2). When more than 25%
of each cell belongs to the relevant class of cereals, the estimated values of the three
corresponding parameters are applied.

After having generating the (D0, ELUE, STT) parameter maps, an empirical relation-
ship ΔGY ¼ Py � DAMþ b was used to generate (wheat and barley) cereal yield maps.
The SAFY model thus estimates grain yields over a 10 × 10 pixel window. The yield map
corresponding to the 2011–2012 agricultural year is shown in Figure 14.

Figure 15(a) compares, for all pixels, the yield estimations computed using statistical
remote sensing analysis (Section 3) with those determined by combining the SAFY model
with remotely sensed measurements. In Figure 15(b), the difference between the two yield
maps is shown for each pixel. The two estimations can be seen to be reasonably correlated,
with R2 equal to 0.45. Nevertheless, it should be noted that the SAFY model grain yields are
underestimated. This could be explained by the fact that wheat and barley were not analysed
separately in this study. It is possible that saturation of NDVI (at approximately 0.75), which
leads to underestimated values of LAI, also contributes to an underestimation of the grain
yields predicted by the SAFY model. In addition, the semi-empirical SAFY model has 14
input parameters, of whichDo, ELUE, and STTwere calibrated in the present study. However,
there are three crop-specific parameters (Pla, Plb, Rs), the values of which depend on the type
of cereal (wheat or barley). Another limitation of the SAFYmodel is that it assumes ELUE to
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Figure 14. Cereal yield map produced by combining SPOT/HRV multi-temporal acquisitions and
SAFY model data.
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SAFY model.
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remain constant over each cereal’s phenological cycle, whereas other studies show that ELUE
decreases during the maturity phase (Lecoeur et al. 2011; Claverie et al. 2012).

5. Conclusion

The aim of this study was to characterize the dynamics and yields of various cereals in the
semi-arid Merguellil catchment, using high-resolution optical data and a simple agro model.

In a first step, a statistical comparison between SPOT optical measurements and
ground truth yields is proposed. The yield analysis for grain and straw as a function of
NDVI reveals a strong correlation between these two variables, from mid-March to mid-
April. An exponential relationship is retrieved between the yields and the remotely sensed
NDVI index, with a correlation coefficient greater than 0.6. Validation of the remotely
sensed estimations through the use of ground measurements shows that this approach is
robust, with an RMS error equal to 850 and 1160 kg ha–1 for grain and straw yields,
respectively. Exponential and linear relationships are determined for wheat and barley
yields, based on the NDVI index. Validation of the proposed expressions leads to reason-
able results, with an RMS error lower than 900 kg ha–1 for both types of cereal. On the
basis of the aforementioned analysis and the validation process, yield maps are proposed
for all classes of cereal at the study site.

In order to characterize the cereal cycle, a SAFY growth model is also used. This
model provides excellent simulations of variations in the LAI for irrigated and rainfed
cereal fields. In the case of the yield estimations, despite the limited accuracy (low
correlation coefficient) of the model, coherent trends in the yield dynamics are retrieved
for the study test fields. The tested model has the advantage of being relatively simple,
without requiring the input of data related to agricultural practices (sowing, irrigation, and
fertilization), and is thus very useful for operational applications on a regional scale.

Finally, the SAFY model is used in combination with remotely sensed LAI measure-
ments. In an initial step, an exponential relationship is established between NDVI and LAI,
both of which are derived from optical satellite data. An RMS error equal to 0.78 is found
when these remotely sensed parameters are validated through the use of ground measure-
ments. This relationship allows LAI to be mapped on cereal fields. Following calibration of
the SAFYmodel through the use of multi-temporal LAI satellite maps, yield estimations are
proposed for the entire study site. The maps produced from satellite measurements are
found to be moderately well correlated with those determined by combining satellite
measurements and SAFY model data (R2 = 0.45). The cereal yields predicted by the
SAFY model are found to underestimate the real values measured on the ground.
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