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A comparison of three methods for estimating the LAI of black locust
(Robinia pseudoacacia L.) plantations on the Loess Plateau, China
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Optical remote sensing is the most widely used method for obtaining leaf area index
(LAI) information. However, there is a need for improved processing techniques to
increase the accuracy of LAI estimates obtained in this way. This article describes the
use of high-resolution optical data from the Quickbird satellite for LAI estimation in
the semi-arid region of the Loess Plateau, China. Three different image processing
techniques were evaluated: processing based on spectral vegetation indices (SVIs),
texture parameters, and combinations of SVIs with textural analyses. Simple linear and
nonlinear regression models were developed to describe the relationship between
image parameters obtained using these approaches and 52 field measurements of
LAI. SVI-based approaches did not yield reliable LAI estimates, accounting for at
best 68% of the observed variation in LAI. Texture-based methods were somewhat
better, explaining up to 72% of the observed variation. A combination of the two
approaches yielded an even better adjusted r2 value of 0.84. This demonstrates that the
accuracy of estimated LAI values based on remote-sensing data can be significantly
increased by considering a combination of SVIs and texture parameters.

Keywords: LAI; texture parameters; vegetation index; black locust (Robinia
pseudoacacia L.); Quickbird image

1. Introduction

Leaf area index (LAI) is an important descriptor of vegetation conditions that is widely
used in physiological and biogeochemical studies (Asner et al. 1998). It is not only the
most important biophysical variable characterizing vegetation abundance and distribution
across the landscape (Gray and Song 2012), but is also a part of the essential climate
variable identified by the Global Climate Observing System (GCOS 2006). The establish-
ment of an exact estimation method of LAI is to evaluate the forest biomass (Solana-
Arellano, Echavarria-Heras, and Martinez 2003; Tobin et al. 2006) and the impacts of
environment deterioration (Shin et al. 2010). Remote-sensing technologies have become
increasingly important in large-scale ecological studies due to their low cost and ability to
rapidly provide large amounts of relevant information. A number of publications have
described the use of remote-sensing techniques for mapping forest parameters such as age,
height, LAI, and biomass using optical methods (Boyd 1999; Fassnacht et al. 1997;
Muukkonen and Heiskanen 2005; Wolter, Townsend, and Sturtevant 2009), synthetic
aperture radar (SAR) (Canisius and Fernandes 2012), and lidar (Fu et al. 2011;
Korhonen et al. 2011; Thomas et al. 2011; Zhao et al. 2011). Although various remote-
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sensing techniques for quantifying LAI have been evaluated, a broadly applicable method
that is suitable for use on regional scales has not yet been identified, largely due to the
broad diversity of forest ecosystems in terms of their environmental, topographic, and
biophysical properties (Sarker and Nichol 2011).

The Loess Plateau of China is located in the middle of the Yellow River basin and has
suffered serious environmental problems relating to soil erosion and ecosystem degrada-
tion. To address these issues, the Chinese government has launched a number of large-
scale vegetation restoration programmes (Cao, Chen, and Yu 2009). The black locust
(Robinia pseudoacacia L.) is the most abundant tree species on the Loess Plateau and has
been widely planted. This is due to its advantageous characteristics, which include rapid
growth, drought tolerance, shade intolerance, nitrogen fixation, and utility as a source of
timber and fuel (Burner, Pote, and Ares 2005; Wang et al. 2009; Wei et al. 2009). Until
now, however, little work has been done on estimating the LAI of black locust trees
growing in the Loess Plateau region.

The vegetation index is a measure that is widely used in conjunction with optical
remote-sensing methods for measuring LAI. It is usually calculated based on an analysis
of the ratio of red and near-infrared light reflected from the area of land under study to
determine the spectral contribution from green vegetation. LAI data can be obtained by
analysing optical data using regression models based on spectral vegetation indices (SVIs).
Such analyses do not require additional geometric information on the area of land being
analysed and minimize contributions from the soil background, angle of the sun, sensor
view angle, senesced vegetation, and the atmosphere (Huete, Jackson, and Post 1985).
However, the dynamic nature of forests limits the accuracy of LAI estimates based on
observations of a single variable. Factors such as differences in crown closure, shadows, and
stand density can produce markedly different stand structures that nevertheless yield
identical vegetation index values (Wulder et al. 1998). Moreover, the relationships between
LAI and SVIs show saturation when LAI values are greater than 3–5, which is one of the
principal limitations of remote sensing of LAI in forest canopies (Davi et al. 2006).

Image texture analysis involves measuring heterogeneity in the tonal values of pixels
within a defined area of an image (Wood et al. 2012) and can be used to identify objects or
regions of interest (Haralick, Shanmugam, and Dinstein 1973). Images with high spatial
resolution can potentially provide more textural information than low-resolution data because
they make it possible to distinguish the finer structure of the studied forests (Wulder et al.
1998; Tuominen and Pekkarinen 2005). However, texture is a very complex parameter and is
highly sensitive to the object under study, the physiographic conditions, and the window size
employed (Marceau et al. 1990; Chen and Cihlar 1996; Franklin,Wulder, and Lavigne 1996).
Texture has been used to estimate forest structure parameters (Kayitakire, Hamel, and
Defourny 2006; Ozdemir and Karnieli 2011) and as an input for vegetation classification
(Aguera, Aguilar, and Aguilar 2008; Kabir et al. 2010; Ota, Mizoue, and Yoshida 2011).

The accuracy of LAI estimates based on remote-sensing data could potentially be
improved by incorporating textural information into SVIs, especially for LAI values
greater than 3 (Wulder 1998; Wulder et al. 1998). Colombo et al. (2003) reported that
incorporating dissimilarity information into the NDVI improved the fit of the regression
equation for most vegetation types relative to that achieved using SVIs alone. Gu et al.
(2012) used spectral and spatial information from IKONOS-2 images to retrieve LAI
values for urban forests. They found that for natural broadleaved forests (which are both
dense and spatially complex), combining VI with texture improved the accuracy of the
retrieved LAI values by between 8.9% and 27.0% relative to that achieved using the
vegetation index alone. However, to our knowledge, few studies have directly evaluated
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the combined use of SVIs and textural information for estimating LAI values in mountain
areas.

Therefore, the objectives of this study were (i) to assess the potential of Quickbird data
used for estimating LAI values of black locust plantations in mountain areas of the Loess
Plateau in China and (ii) to compare the performance of three methods for retrieving LAI
data and their sensitivity: SVI-based image processing, texture-based processing, and a
combination of SVI- and texture-based processing. The results obtained provide important
information on the performance of different methods for estimating LAI values for black
locust trees in the Loess Plateau and on the use of textural information derived from
remote-sensing data in LAI modelling.

2. Study area and data

2.1. Study area

All LAI measurements were taken within the experimental area known as Huaiping forest
farm (34° 47′–34° 51′ N and 108° 05′–108° 10′E), whose elevation ranges from 1123 to
1417 m above sea level. It is located in Yongshou County of Shaanxi Province on the
Loess Plateau of China. The region has an annual mean temperature ranging from 7.0°C
to 13.3°C (Luo 1995) and an annual mean precipitation of 600.6 mm, of which 53% falls
between July and September (Peng, Zhong, and Zhan-bin 2004; Zhong et al. 2006). The
local growing season usually starts in early April and lasts until late October. Seventy-six
sample plots were selected; their locations are shown on the Quickbird panchromatic
image in Figure 1. Fifty-two samples were then selected at random and used to develop
linear and nonlinear regression models. The remaining 24 samples were used to test the
robustness of the developed models.

2.2. Data

This study was based on a single Quickbird panchromatic-multispectral image that was
acquired on 22 June 2012 under clear sky conditions. The panchromatic image has a
spatial resolution of 0.6 m while the resolution of the multispectral image is 2.4 m. The
solar azimuth angle was 108.3° and the solar elevation angle was 66.1°. The multispectral
image covers four wavebands corresponding to blue (450–520 mm), green (520–600 nm),
red (630–690 mm), and near-infrared (760–890 mm).

3. Methods

The LAI estimates obtained by analysis of remote-sensing data were compared to field
LAI measurements. Plot LAI data were obtained from field measurements of 76 sample
plots. Image parameters based on SVIs, texture parameters, and a combination of the two
were extracted for all field plots using an area of interest mask (AOI) of 20 m × 20 m. LAI
data for each field plot were then used as independent variables with the image parameters
as dependent variables in simple linear and nonlinear models.

3.1. Ground-based LAI measurements

The LAI-2200 instrument (LI-COR Inc., Lincoln, NE, USA; Li-Cor, 2010) was used to
indirectly measure LAI in 76 black locust plantation plots. LAImeasurements were performed
on 16 June and 15 July 2012, under diffuse radiation conditions at sunrise and sunset using a
single sensor. At each site, two above-canopy and nine low-canopy readings (see Figure 2)
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Figure 1. A portion of the study area and the location of the sample plots in the Loess Plateau
region of Yongshou County, Shaanxi Province, China.
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Figure 2. Distribution of sampling points within each plot.
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were taken with an opaque, 180° view-restricting cap (Jonckheere et al. 2004; Soudani et al.
2006) placed over the sensor in order to mask out the operator. In keeping with the recom-
mendation of Chason, Baldocchi, and Huston (1991), ring 5 was excluded in these analyses in
order to obtain the most accurate LAI estimates possible. This was found to improve the
agreement between the estimates and direct measurements based on litter trap results.

3.2. Remote-sensing data – pre-processing and estimating reflectance

Orthorectification of the panchromatic data was performed using the ENVI 4.7 software
package (Exelis Visual Information Solutions, Boulder, CO, USA). Fifty well-distributed
ground control points (GCPs) and a high-resolution (1:10000) digital elevation model
were used, and the overall error was 0.68 pixels. We then used the corrected panchromatic
data to rectify the multispectral data, giving an overall error of 0.34 pixels. The raw digital
number value for the multispectral data was converted to spectral radiance and subse-
quently to top of atmosphere (TOA) reflectance. Atmospheric correction was performed
using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)
approach (Yuan, Niu, and Wang 2009).

3.3. Vegetation indices

A vegetation index simply expresses the image values observed in two or more wave-
bands as a single value that is related to a biophysical variable of interest (Mather 1999).
The average reflectance data for each plot were used to compute a range of vegetation
indices, as shown in Table 1. NDVI is the most widely used vegetation index in remote-

Table 1. Selected SVIs used for LAI estimation.

Index References

Simple ratio (SR)¼NIR

R
Jordan (1969)

Soil-adjusted vegetation index (SAVI) ¼ 1þ Lð Þ NIR� Rð Þ
NIRþ Rþ Lð Þ Huete (1988)

Enhanced vegetation index (EVI) ¼ G
NIR� Rð Þ

NIRþ C1NIR� C2Bþ C3ð Þ Huete, Justice, and Liu
(1994)

Atmospherically resistant vegetation index (ARVI) ¼ NIR� R

NIRþ RB
Kaufman and Tanre (1992)

Vegetation index (RB) = NIR – γ(B – R)

Modified soil-adjusted vegetation index

(MSAVI) ¼
�
ð2NIRþ 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2NIRþ 1Þ2 � 8ðNIR� RÞ

q �
=2

Qi et al. (1994)

Non-linear vegetation index (NLI) ¼ NIR2 � R

NIR2 þ R
Gong et al. (2003); Goel
and Qin (1994)

Difference vegetation index (DVI) ¼ NIR� R Richardson and Wiegand
(1977)

Normalized difference vegetation index (NDVI) ¼ NIR� R

NIRþ R
Rouse et al. (1974)

Notes: B, R, and NIR represent Quickbird reflectance in the blue, red, and near-infrared wavelengths, respec-
tively. Parameters L and γ represent the SAVI term (set to 0.5) and the ARVI term (set to 1), respectively. The
coefficients used in the EVI algorithm are C1 = 6.0, C2 = 7.5, C3 = 1, and G = 2.5 (Comombo et al. 2003).
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sensing applications and was therefore used as a reference when evaluating the perfor-
mance of the texture-based method (Rouse et al. 1974). The correlation between the LAI
estimates obtained with different SVIs and those obtained from the ground measurements
was analysed. Only SVIs with an adjusted r2 value of >0.55 for this relationship (Table 3)
were tested in conjunction with textural data; the SVIs that satisfied this criterion were
difference vegetation index (DVI), enhanced vegetation index (EVI), normalized differ-
ence vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and modified soil-
adjusted vegetation index (MSAVI) (see Section 3.5).

3.4. Texture analysis

Texture indices (Table 2) were calculated based on the Quickbird panchromatic band at
the maximum spatial resolution of 0.60 m using the grey-level co-occurrence matrix
(GLCM) method together with grey-level difference vector (GLDV)-based texture mea-
surements. The use of a small window size is known to exaggerate differences within the
window but retains high spatial resolution, whereas larger windows may cause inefficient
extraction of texture information due to over-smoothing of textural variations (Nichol and
Sarker 2011; Sarker and Nichol 2011). Therefore, to obtain accurate information on the
texture of the vegetation, four different window sizes were tested (3 × 3, 5 × 5, 7 × 7, and
9 × 9 pixels) for each texture parameter considered. In each case, the window size that
yielded the highest adjusted r2 value for the specific parameter in question was used when
computing LAI estimates based on both an SVI and a texture parameter.

Table 2. Textural parameters considered in this work (Haralick, Shanmugam, and Dinstein 1973).

Grey-level co-occurrence matrix (GLCM)-based texture parameter estimation

Mean (ME) ¼ PN�1
i;j¼0 iPi; j

Homogeneity (HOM) ¼ PN�1
i;j¼0 i

Pij

1þ i� jð Þ2
Contrast (CON) ¼ PN�1

i;j¼0 iPi;j i� jð Þ2

Dissimilarity (DIS) ¼ PN�1
i;j¼0 iPi; j i� jjj

Entropy (ENT) ¼ PN�1
i;j¼0 iPi; j �InPi; jð Þ

Variance (VAR) ¼
P

i;j xij � μ
� �2
n� 1

Angular second moment (ASM) ¼ PN�1
i;j¼0 iPi; j

2

Correlation (COR) ¼
PN�1

i;j¼0 iPi;j � μ1μ2

σ12σ22

μ1 ¼
PN�1

i¼0 i
PN�1

j¼0 Pi; j

μ2 ¼
PN�1

j¼0 j
PN�1

j¼0 Pi; j

σ21 ¼
PN�1

i¼0 i� μ1ð Þ2 PN�1
j¼0 Pi; j

σ22 ¼
PN�1

j¼0 j� μ1ð Þ2 PN�1
i¼0 Pi; j

Here, P(i, j) is the normalized co-occurrence matrix.
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3.5. Combined SVIs and texture parameters

All textural images were resampled to give a pixel size of 2.4m using nearest-neighbour
resampling in order to integrate the texture information with the SVI results obtained from
the multispectral image. Based on the results presented in Section 4.2, the window sizes
used for the different textural parameters were 9 × 9 for DIS, 5 × 5 for CON and COR,
and 3 × 3 for VAR, HOM, SEC, ASM, and ENT (see Table 2 for expansion of these
abbreviations).

3.6. Statistical analysis

Empirical relationships between the image indices and LAI were investigated by perform-
ing linear and non-linear regression analyses using LAI as the independent variable and
the image index as the dependent variable. Three common statistical parameters were
considered to identify the most robust model with the best fit: the adjusted coefficient of
determination (r2), root mean square error (RMSE), and the p-level. Adjusted r2 was
computed based on either linear or nonlinear relationships between the two variables, as
appropriate (Pu 2012). All statistical analyses were conducted using the SAS software
package (version 8.0) for Windows (SAS Institute Inc., Cary, NC, USA).

4. Results and analysis

4.1. Performance of raw data processing and SVIs

The coefficients of determination for the relationships between field LAI values and
spectral data for bands b1 (blue), b2 (green), and b3 (red) from the Quickbird data were
found to be poor individually (Table 3). However, stronger correlations were observed for
band 4 (near-infrared), for which the adjusted r2 value was 0.66. Overall, the SVIs offered
better performance than that achieved by simply looking at the reflectance from a single
spectral band; the highest adjusted r2 values were achieved using SAVI and MSAVI (0.68
in both cases). As mentioned in the Introduction, this improvement over analysis based on
single bands is attributed to the ability of SVI-based analyses to enhance spectral

Table 3. The best results obtained from raw data processing and SVIs.

Variance Model r2adj RMSE

b1 y = 0.24 – 0.015x 0.22 1.26
b2 y = 0.41– 0.025x 0.34 1.20
b3 y = 0.39– 0.023bx 0.19 1.10
b4 y = 1.42 + 0.46x 0.66 0.79
EVI y = 1.08 + 0.12x 0.61 0.85
NLI y = 0.80 + 0.05x – 0.004x2 0.58 0.97
SR y = 9.42 + 0.86x 0.34 1.06
DVI y = 1.69x0.49 0.56 0.90
SAVI y = 0.35x0.23 0.68 1.02
NDVI y = 0.68x0.14 0.67 1.02
ARVI y = 0.71 + 0.025x 0.32 0.96
MSAVI y = 0.63 + 0.095x – 0.0084x2 0.68 0.91

Notes: The variables x and y in the above expressions represent the LAI values measured in the field and the
spectral variables, respectively. All adjusted r2 values are statistically significantly at the 0.99 confidence level.
RMSE values were calculated based on the difference between measured and predicted LAI values.
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contributions from green vegetation while minimizing those from soil background, sun
angle, sensor view angle, senesced vegetation, and the atmosphere (Huete, Justice, and
Liu 1994; Lu 2006).

4.2. Performance of texture-processing methods

The accuracy of the LAI estimates obtained by considering textural information within the
Quickbird data was generally greater than that achieved using SVIs alone. The textural
parameters that yielded the most accurate LAI estimates were entropy and the angular
second moment, using 3 × 3 windows in both cases (Figure 3). Angular second moment,
entropy, and homogeneity performed better than any other texture parameters whenever
window size changed (Figure 3). It is important to note that the coefficient of determina-
tion between field data and predicted LAI values was significant for all models and
variables (p < 0.001) with the exception of mean texture parameter (Figure 3).

The application of different window sizes did not influence the coefficient of deter-
mination for the relationships between textural parameters, and field LAI values for any
parameter save the correlation index (Figure 4). However, in almost all cases, the r2 values
for window sizes of 3 × 3 and 5 × 5 were somewhat higher than those achieved with 7 × 7
or 9 × 9 windows (Figure 4). While the models based on the entropy and angular second
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Figure 3. Accuracy of LAI estimates based on different texture parameters at various window sizes
(subfigures (a), (b), (c), and (d) show the results obtained using window sizes of 3 × 3, 5 × 5, 7 × 7,
and 9 × 9, respectively).

178 J.-J. Zhou et al.

D
ow

nl
oa

de
d 

by
 [

M
os

ko
w

 S
ta

te
 U

ni
v 

B
ib

lio
te

] 
at

 0
4:

41
 2

5 
D

ec
em

be
r 

20
13

 



moment texture parameters yielded better results than those achieved with the SVIs tested,
even these models could only explain 72% of the observed variation in the field LAI data.
Therefore, to obtain a more robust model for LAI estimation, we decided to explore the
potential for using SVIs in conjunction with texture information to take full advantage of
the richness of Quickbird data.

4.3. Performance of SVIs in conjunction with texture parameters

In most cases, the combination of an SVI with a texture parameter significantly improved
the accuracy of the estimated LAI values (Table 4). The model based on a combination of
angular second moment and MSAVI yielded the highest adjusted r2 value observed in this
work (Figures 5 and 6). This was a significant improvement in LAI estimation compared
with the best result obtained using raw spectral band data, SVIs, and texture parameter
models (Figure 7). Interestingly, the combination of entropy data with SVIs invariably
yielded adjusted r2 values that were lower than those achieved using entropy alone
(Figure 7). In all cases, the results achieved using the models listed in Table 4 were
statistically significant. Overall, these findings clearly demonstrate that the accuracy of
LAI estimates can be improved by combining textural information with SVI-based analyses.

5. Discussion

Field measurements of LAI for black locust plantations in the Loess Plateau region were
compared to spectral and textural indices calculated from high spatial resolution
Quickbird images of the study area to identify effective methods for mapping LAI in
this region by remote sensing. The relationships between measured LAI values and
various spectral/textural indices were investigated using regression analysis. The closest
agreement between measured and estimated LAI values was achieved when using models
based on a combination of an SVI and a texture parameter (adjusted r2 = 0.84).
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Figure 4. Coefficients of determination for relationships between LAI and texture parameters
obtained using different window sizes.
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5.1. Relationship between LAIs and SVIs

The lower adjusted r2 value (0.68) obtained for SVIs may be due to the high LAI values
for the study area. Many SVIs become ‘saturated’ above a certain LAI threshold (which
typically occurs at LAI values of 3–5). Consequently, they will grossly underestimate the
LAI values for high biomass forests (Turner et al. 1999; Jensen et al. 2008; Yang et al.

Table 4. Results obtained when using both SVIs and texture parameters.

Variance Model r2adj RMSE

CON_W5×5 + DVI y = 0.18e0.22x 0.44 1.00
CON_W5×5 + EVI y = 0.33e0.24x 0.63 0.97
CON_W5×5 + NLI y = 0.50e0.25x 0.64 0.79
CON_W5×5 + MSAVI y = 0.53e0.28x 0.72 0.90
CON_W5×5 + NDVI y = 0.63e0.25x 0.72 0.90
CON_W5×5 + SAVI y = 1.17e0.22x 0.65 0.93
DIS_W9×9 + DVI y = 0.11e0.22x 0.44 0.84
DIS_W9×9 + EVI y = 0.23x0.59 0.58 0.81
DIS_W9×9 + NLI y = 0.54x0.13 0.63 0.74
DIS_W9×9 + MSAVI y = 0.52e0.15x 0.70 0.64
DIS_W9×9 + NDVI y = 0.53x0.50 0.76 0.85
DIS_W9×9 + SAVI y = 0.99e0.13x 0.58 0.73
ENT_W3×3 + EVI y = 0.72x0.18 0.24 1.09
ENT_W3×3 + NLI y = 1.12x0.26 0.69 0.72
ENT_W3×3 + MSAVI y = 1.16x0.26 0.64 0.81
ENT_W3×3 + NDVI y = 1.31x0.22 0.49 0.97
ENT_W3×3 + SAVI y = 2.51e0.047x 0.23 1.10
HOM_W3×3 + DVI y = 0.41e−0.17x 0.71 0.91
HOM_W3×3 + EVI y = 0.41e−0.17x 0.71 0.62
HOM_W3×3 + NLI y = 0.87e−0.068x 0.68 0.66
HOM_W3×3 + MSAVI y = 1.04e−0.098x 0.76 0.55
HOM_W3×3 + NDVI y = 1.07e−0.091x 0.69 0.54
HOM_W3×3 + SAVI y = 1.94e−0.10x 0.75 0.51
ASM_W5×5 + DVI y = 0.15e−2.27x 0.84 0.54
ASM _W5×5 + EVI y = 0.27e−0.24x 0.83 0.60
ASM _W5×5 + NLI y = 0.31e−0.034x 0.77 0.51
ASM_W5×5 + MSAVI y = 0.34e−0.038x 0.84 0.41
ASM _W5×5 + NDVI y = 0.43e−0.21x 0.82 0.47
ASM _W5×5 + SAVI y = 0.76e−0.21x 0.83 0.43
VAR_W3×3 + DVI y = 0.092e0.19x 0.51 1.03
VAR_W3×3 + EVI y = 0.14e0.23x 0.66 0.72
VAR_W3×3 + NLI y = 0.24e0.24x 0.71 0.74
VAR_W3×3 + MSAVI y = 0.29e0.21x 0.75 0.74
VAR_W3×3 + NDVI y = 0.30e0.23x 0.72 0.78
VAR_W3×3 + SAVI y = 0.58e0.20x 0.70 0.86
COR_W5×5 + DVI y = −0.49 + 0.45x–0.10x2 0.71 0.73
COR_W5×5 + EVI y = −0.99 + 0.92x –0.21x2 0.72 0.53
COR_W5×5 + NLI y = −2.56 + 2.15x –0.44x2 0.72 0.80
COR_W5×5 + MSAVI y = −2.34 + 2.01x –0.42x2 0.73 0.78
COR_W5×5 + NDVI y = −1.89 + 1.28x–0.38x2 0.69 0.73
COR_W5×5 + SAVI y = −3.26 + 2.76x –0.61x2 0.73 0.92

Note: The variables x and y in the above expressions represent the field LAI measurements and the estimates
obtained using the specified combinations of SVI and texture parameter, respectively. All adjusted r2 values are
statistically significantly at the 0.99 confidence level. RMSE values were calculated based on the differences
between measured and predicted LAI values.
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Figure 5. Scatter plots showing the best results achieved using (a) SVIs, (b) texture parameters,
and (c) SVIs and texture parameters in combination.
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2012). This constitutes one of the principal limitations on the use of remote sensing for
measuring the LAI of forest canopies (Davi et al. 2006). Wulder (1998) reported that the
relationship between NDVI and LAI may be reduced by variation in age class, height,
stand density, and crown closure. The heterogeneity of forest might weaken the LAI–SVI
relationship (Colombo et al. 2003). Previous studies have demonstrated that models based
on SVI analysis of Quickbird images do not provide reliable estimates of LAI, yielding
adjusted r2 values of only 0.42 (Lin et al. 2008) and 0.50 (Jensen et al. 2008). In this
research, we tested eight commonly used SVIs in order to assess the potential of spectral
information from Quickbird data used for LAI estimation. Although some complex SVIs
(e.g. MSAVI, SAVI, and NDVI) performed better than single spectral bands (b1, b2, and
b3), simple ratio (SR) and atmospherically resistant vegetation index (ARVI) performed
poorly.

5.2. Relationship between LAI and image texture

The best r2 value for a model based on a texture parameter was 0.72, which is higher than
that achieved for a model based on MSAVI (0.68). Analyses based on texture parameters
were thus better than SVI analyses for estimating LAI values in black locust plantations
based on remote-sensing data. This may be due to the high resolution of the panchromatic
Quickbird images used for textural analysis, which increases the scope for distinguishing
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Figure 7. Coefficients of determination (r2) for LAI retrieval using combinations of two SVIs with
texture parameters and using texture parameters alone.
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specific forest structures (Aguera, Aguilar, and Aguilar 2008; Franklin et al. 2000; Kabir
et al. 2010; Ota, Mizoue, and Yoshida 2011). In contrast to previous reports on estimation
of LAI values using texture statistics (Wulder et al. 1998), this work used simple linear
and nonlinear models involving single texture parameters. Nevertheless, we still achieved
significant improvements in the quality of the LAI estimates obtained, and we also
identified specific texture parameters (angular second moment and entropy parameters)
and window sizes (3 × 3 and 5 × 5) most suitable for estimating LAI values. These results
contradict the findings of Colombo et al. (2003), who reported that the best textural
indicator for this purpose was the dissimilarity index, computed using a 6 × 6 pixel
window. Window size influences the resultant texture, possibly due to the amount of
variance included (Wulder et al. 1998). Small window sizes were more sensitive to inter-
pixel differences in the proportions of tree crown and shadow, whereas a larger window
may not extract texture information efficiently due to over-smoothing of texture variation
(Fuchs et al. 2009; Sarker and Nichol 2011).

When texture is decomposable, it has two basic dimensions by which it may be
described (Haralick 1979). The first is for describing the primitives out of which the
image texture is composed – for example, angular second moment, homogeneity, and
entropy. The second dimension is for the description of spatial dependence or interaction
between the primitives of texture – for example, dissimilarity, mean, and correlation
(Haralick 1979; Wulder et al. 1998). The fact that angular second moment, entropy, and
homogeneity perform better may be attributed to variation in texture dimensions.

5.3. Relationship of LAIs and SVIs with texture parameters

The most accurate model among those considered in this work is based on a combination
of SVIs and a texture parameter, and yielded an adjusted r2 value of 0.84. A similar
approach has previously been used to improve the accuracy of forest biomass estimates
(Nichol and Sarker 2011), LAI retrieval for different vegetation types (Colombo et al.
2003) and urban forests (Gu et al. 2012), and the accuracy of forest type classification
(Ota, Mizoue, and Yoshida 2011). However, it has not been widely used to retrieve LAI
data for forests in mountain areas such as the Loess Plateau.

Texture can represent differences in forest stand structure and provide information
concerning the physical distribution of scene elements (Wulder et al. 1998; Fuch et al.
2009), while vegetation indices can provide information about vegetation content. The
combination of spatial and spectral information is a surrogate for actual forest structural
and vegetation information (Wulder, Franklin, and Lavigne 1996; Wulder et al. 1998). As
demonstrated in this research, a combination of spectral and spatial characteristics can be
used to build a reliable model for estimation of LAI values of black locust plantations.
When the LAI value of forest was larger than 3, the spectral information could not
represent the complex assemblage of structural characteristics. Moreover, it has not
previously been possible to derive sufficient spectral information from remote-sensing
images of such areas due to factors such as shadows, foliage height, and stand density
(Wood et al. 2012). The outstanding improvement in the adjusted r2 when adding textural
information might be explained by the non-uniform and non-radom spatial distribution of
black locust plantations. Forest is a mosaic of dense and sparse vegetation cells and the
complex structure can be determined by considering texture parameters when working
with images of high spatial resolution (Wulder 1998; Colombo et al. 2003; Gebreslasie,
Ahmed, and van Aardt 2011; Wood et al. 2012). Colomobo (2003) reported that when the
spectral information is heterogeneous and patchy, texture information is useful. In our
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study, adding texture information to spectral information improved LAI estimation accu-
racy. This might be related to the heterogeneous forest structure of black locust plantation,
where trees have a clumped distribution. The black locust has a clumped distribution
pattern due to asexual reproduction (Call and Nilsen 2003). Liesebach and Schneck
(2004) have claimed that after the first establishment of a black locust population, it is
more likely that asexual reproduction will dominate for many generations.

6. Conclusions

The potential of Quickbird imagery for LAI estimation was explored and high model
performance was obtained by using a combination of angular second moment and MSAVI
in the present study. The promising results (adjusted r2= 0.84, RMSE = 0.41) indicated
that the combination of texture and SVIs has enhanced potential for LAI estimation in
comparison with other image processing techniques. Texture proved to be more effective
than spectral information for LAI estimation based on Quickbird data. This improved
performance may be due to the higher resolution (0.6m) of Quickbird data and the large
number of field samples. However, the present work was conducted based on commonly
used SVIs and texture algorithms. Future work will focus on testing different texture
algorithms and other SVIs for the same task of LAI estimation. Furthermore, estimation of
LAI will require the combination of other spatial variables with spectral information. In
this respect, we suggest that optical sensors should be integrated with lidar data in order to
provide vertical spectral and spatial information on forest vegetation.
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