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Abstract—Surface coal mining and urbanization, as well as crop-
based agriculture, have resulted in accelerated degradation and
desertification of grasslands in the Holingol region, InnerMongolia
AutonomousRegion, over the last three decades. Thepurpose of this
study was to investigate the spatial–temporal changes of land cover
due to the surface coal-mining activities in the Holingol region from
1978 to 2011. In this study, we used the subspace method to apply
land-cover classification schemes to Landsat archival images from
1978, 1988, 1999, and 2011.We then used the grid squaremethod to
investigate spatial–temporal land-cover changes during the period
of 1978–2011. The results show that both surface coal mining and
urban areas have increased dramatically. This expansion was
accompanied by considerable loss of grassland and wetland.
Grid-cell-based spatial–temporal analysis showed that urban/bare
expansion had a strong negative correlation with grassland change
( ), coal-mining area expansion had a negative correlation
with grassland change ( ), and coal-mining area expansion
was positively correlated with urban/bare expansion (0.21). Fur-
thermore, the correlation coefficients of land-cover categories for
three time intervals between 1978 and 2011 (1978–1988, 1988–1999,
and 1999–2011) showed that there was almost no correlation
between grassland and coal-mining area in 1978–1988 and 1988–
1999, but the correlation coefficient became negative ( ) in
1999–2011.

Index Terms—Grassland degradation, grid cells, land cover,
surface coal mining, urban expansion.

I. INTRODUCTION

T HE Holingol region is located in the northern part of the
Horqin Sandy Land in the Inner Mongolia Autonomous

Region of China. The Holingol study area includes the city of
Huolinguole, as well as parts of East Ujimqin, West Ujimqin, Ar
Horqin, Jarud, Horqin Right Middle, and Horqin Right Front
Banners. Previous studies indicate that population increase,
excessive land development, overgrazing, and collection of
fuel wood have been the main driving forces in Horqin’s

desertification process [1]–[3]. In recent decades, China’s
demand for coal for power generation has put the coal-rich
Holingol region under strong pressure, and a surface coal-mining
boom has emerged. The dramatic increase in coal-mine exploi-
tation has lately generated major concern regarding the fragile
environment of this region. In addition, a recent study estimates
that coal pollution in North China is shortening life expectancy
by 5.5 years [4].

Thefirst surface coalmine in this regionwas theHolingol open
pit coal mine, which began in 1979 with a coal production
capacity of 300 000 tons per year. By 2004, however, the coal
production capacity had dramatically expanded to 12 500 000
tons per year. Furthermore, newmining operations in this region
at the Baiyinhua and Hesigewula open pit coal mines were
introduced in 2005 and 2007.

Rich coal reserves coupled with low-cost mining attracted
unregulated exploitation that has brought dramatic land-cover
changes to this area. Most of the coal production in this area is
achieved by surface mining in which large volumes of waste
materials are excavated and removed from one place to another
causing a continuous change of natural land cover and topogra-
phy over time [5].

Furthermore, coal mining, coal-based power generation, and
petrochemical processing are extremelywater intensive. Tomeet
thewater demands of coal-based industries, local rivers, and their
tributaries have been dammed and many wells have been dug. A
recent analysis found that the Wulagai wetland, which is located
in this region, has gone dry due to the overuse of groundwater and
surface water [6]. However, to our knowledge, no detailed
quantitative analysis concerning the land degradation rates under
the surface coal-mining activities in theHolingol region has been
published.

The coal-driven boom not only has exacerbated existing
environmental problems by exploiting water resources, altering
landscapes, and discharging wastewater onto rivers and grass-
lands, but also has led to new concerns particularly related to
urbanization issues. For example, the population of Huolinguole
has increased by about a factor of three, from 29 897 in 1985 to
82 430, in 2010 [7]. Meanwhile, the population of migrant
agricultural workers has also increased rapidly; as a result, a
large area of grassland has been turned into farmland [8]. The
nomadic grazing tradition has also beenweakened, making room
for more intensive land management [9].

As natural land cover is converted into human-dominated
cover types, the fragile environment has experienced a remark-
able change [10]. Assessing and monitoring of surface coal
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mining is crucial for obtaining knowledge of the kind, type, and
degree of land-use/land-cover changes and regional ecosystems
degradation caused by surface coal mining [11]. Moreover, it
yields the locations and rate of human pressure on natural
resources and the type of land cover on which this pressure may
reach critical levels [12].

Remotely sensed data collected over a span of years can be
used to identify and characterize both natural and anthropogenic
changes over large areas of land [13], [14]. Landsat satellite
images are ideal for land monitoring as the images have been
recorded over nearly four decades, providing a unique resource
for temporal analysis of land cover [15]. Various approaches
have been developed for land-cover classification [16]. A main
source of classification error is the indivisibility of classes. To
reduce classification errors, it is desirable to find a method that
transforms the input high-dimensional data into low-dimensional
feature space to reduce overlap between classes and to preserve
the main properties of the original data [17]. The subspace
method is one such transformation method [18]. Recently,
developed subspace methods have been used to solve remote
sensing image classification problems and have shown potential
for efficient classification of remote sensing data [19].

For detailed analysis of the relationships among changes in
landscape patterns, it is necessary to obtain spatial and temporal
information about areas that are smaller than municipalities and
uniform in size. Using a municipality’s boundary as the mapping
unit in an analysis has shortcomings: the size and boundaries of
administrative units of localmunicipalitiesmay change over time
[20], they may not be uniform enough for statistical and numeri-
cal processing, and the spatial resolution may be too coarse for
identifying land-use/land-cover changes.

Recently, spatial–temporal analyses of land-cover changes
using grid cells have demonstrated that grid cells provide
a newway to obtain spatial and temporal information about areas
that are smaller than the municipal scale and uniform in size [21]

and to further develop the change dynamics analysis in order to
better characterize the phenomena using limited available data.

The purpose of this study was to investigate the spatial–
temporal changes of land cover due to the open-cast surface
coal-mining activities in the Holingol region from 1978 to 2011,
by integrating remote sensing images, GIS, and detailed field
work. To do this, we applied the subspace classification method
to accurately classify land cover from Landsat images recorded
in 1978, 1988, 1999, and 2011. These land-covermapswere then
combined with grid cells to analyze the spatial–temporal
land-cover changes and investigate their statistical properties.
This allowed us to determine the impact of surface mining
activities on the environment and land use over a time period
of more than three decades.

II. MATERIALS

A. Study Area

The study area is the Holingol region, located in the northern
part of the Horqin Sandy Land of the Inner Mongolia Autono-
mousRegion, China, and centered at , (Fig. 1).
The climate is characterized by extremes, with high temperatures
in the summer and extremely low temperatures in the winter, as
well as low precipitation. This territory includes a variety of
ecosystems such as the forest, steppe, wetland, mountain, and
desert.

Huolinguole, which is a new coal-resource-based industrial
city, is located in the centre of Holingol region. The climate of
Huolinguole can be regarded as representative of this region. The
monthly mean temperature ranged from in January to

in July, during the period of 1973–2006. The annual
mean precipitation ranged from 193.1 to 654.8 mm. In contrast,
the annual mean potential evaporation of 1544.2 mm is far
higher than the annual precipitation.

Fig. 1. Location of the study area (red quadrangle on the left side). The black lines outline the boundaries of the city and banners. The three red marks within the red
quadrangle indicate the three main coal fields in Holingol: HL, HG, and BY indicate the Holingol, Hesigewula, and Baiyinhua coal fields, respectively. The right side
shows the 2011 Landsat TM image ( ) of the study area. The red rectangle indicates the area of the images shown in Fig. 5.
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B. Dataset Description

We acquired Landsat MSS, TM, and images to
interpret land-use/land-cover changes for the study area from
four separate dates (nominally 1978, 1988, 1999, and 2011).
Landsat scenes are processed for standard terrain corrections by
the U.S. Geological Survey (USGS). Table I provides the image
dataset description. In consideration of the weather conditions,
only images from June to August, the green vegetation season,
and with low cloud cover were used to maximize the vegetation
information content for each monitoring date. All analyses were
based on the optical and thermal infrared bands of theMSS, TM,
and data, while excluding panchromatic bands. The
spatial resolution of the MSS bands was approximately 79 m,
but these data were resampled to 60 m by using the cubic
convolution method employed by the USGS.

Precise geometric registration to a commonmap reference and
co-registration among individual images are crucial for ensuring
the reliable detection of temporal changes of land cover. The
Landsat scenes were rectified through an image-to-image opera-
tion and resampled using a nearest neighbor algorithm to pre-
serve the reflectance of the original pixels. All Landsat images
were geometrically rectified to a common map reference system
(UTMmap projection Zone 51 North, WGS-84 geodetic datum)
using a different number (around 25–36) of ground control points
(GCPs) for each image.

The June 1978 MSS images contained cloud cover and
associated shadows on the right-hand side of the study area, so
we used a mosaic of June and August 1978 MSS images to
generate a “cloud-free” image mosaic. Here, we isolated the
clouds and their associated shadow portions of the June image by
visual image interpretation, then substituted the selected portions
with clear pixels from the August 1978 MSS scene (131/28) of
the same area. The August 1988 TM data did not cover a small
area in the south-western region of the study area, so we used a
mosaic of August 1988 TM and June 1989 data to attain full area
coverage. The data from August (122/28) was used as the
primary base image because it accounted for about 90% of the
total study area, and the June 1989 (122/29) was used for
patching the south-western part (this mosaic is hereafter referred
to as the 1988 TM data). The August 1999 data had the
same incomplete image problem, so we used August 1999

data (122/28 and 122/29) for primary base image data,
and theAugust 2002 data (123/29)was used for patching
the south-western region (this mosaic is hereafter referred to as

the 1999 data). The August 2011 TM data lacked the
right-hand edge of the study area, so we used the August 2011
TM data (123/28 and 123/29) for primary base image data, and
the June 2011 TM data (122/28 and 122/29) was used for
patching the right-hand edge of the study area.

For minimizing the contrast between the two images in the
final mosaic, a histogrammatching method was applied to adjust
the distribution of brightness values in the slave image (patch
scene) to match the master scene (base scene). In addition, to
reduce spectral variation in the mosaic image and to improve
classification results, we used images collected during the sum-
mer growing season in order to reduce spectral signature varia-
tion caused by seasonal differences in plant phenology [22].
Moreover, the proportions of patch imagery to base imagery in
the mosaic were small.

In addition to Landsat data, ancillary GIS datasets and other
ancillary satellite data were used as reference data to assist in our
field investigation in the determination of typical land-cover
classes and in selecting ground reference sites for each Landsat
recording date. The GIS datasets included data from the
National Land Cover Database (NLCD) of China from the years
1995 and 2000 at a spatial scale of 1:100 000 [23] and from
Resources and Environment Database of China digital maps at a
scale of 1:4 000 000 [24], including a vegetation map (published
in 1979), soil map (1978), desert map (1988), road map (1988),
and river map (1989). Remote sensing data included ALOS
PRISM images (panchromatic, 2.5-m spatial resolution) and
AVNIR-2 (10-m spatial resolution, three visible bands, and one
near-infrared band) images acquired on October 7, 2007; four
WorldView-2 images with 0.46-m panchromatic and 1.84-m
multispectral resolutions acquired in May to August 2012; a
GeoEye-1 satellite image with 0.41-m panchromatic and 1.65-m
multispectral resolutions acquired on August 3, 2009 (provided
by the GeoEye Foundation); four Landsat MSS scenes; nine
Landsat TM scenes; and six Landsat scenes. Other
ancillary data such as Shuttle Radar Topography Mission
(SRTM) elevation data were used to provide information
about the elevation of the area and to help locate ground
reference sites.

C. Collection of Ground Truth Data

To obtain the ground truth data, we have conducted extensive
field work at a number of locations across the study area in the
period between 2000 and 2007 [3] and in 2012. During the field

TABLE I
PATH/ROW AND ACQUISITION DATES FOR THE LANDSAT TIME-SERIES SCENES USED IN THIS STUDY
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surveys, photos were taken for ground reference data with GPS
facilities and land-cover types were recorded in the land-use/
land-cover recording sheet. In addition, local herders and farmers
were visited to verify current and past land-cover patterns and
discuss the drivers of land-cover changes.

Based on the field investigation results, GIS datasets, visual
interpretation of the remote sensing data, and with consideration
of the Landsat scene acquisition dates, we designated 10–12
land-cover types in this experiment (Table II).

According to our fieldwork results, in 1978, the study area was
dominated by those practicing a traditional nomadic lifestyle,
and there were only a few concrete buildings and unpaved roads.
TheHolingol open pit coalminewas still in its earlier preparation
plan in 1978. Therefore, we did not add the urban and coal land-
cover types in the 1978 MSS.

Since the 1990s, the migration of people has rapidly increased
the human population of the grassland areas in the Holingol
region. Consequently, the land area developed for agricultural
use has expanded. The rapid agricultural expansion caused land
degradation and alkali soils to become a serious problem in this
region. So, we added the alkali soils land-cover class to the 1999

and 2011 TM images.
Ground reference data sites were selected for each mapping

class and for each mosaic Landsat recording date to accurately
portray the spectral complexity and variability within each class.
All initial digitized ground reference sites were compared with
the corresponding Landsat imagery acquired in 1978, 1988,
1999, and 2011 to provide the correct interpretation for the time
of the image date. In addition, as described above, other ancillary
images and ancillary GIS datasets were used to support image
interpretation and to provide as much information as possible to
help locate the ground reference sites.

When a sample site contained multiple classes or was poorly
delineated, a new homogeneous sample polygon (or line) was
delineated within the original site. It is important to note that each
sample site contains at least nine pixels [25]. A subset of the
image-interpreted sites was also field visited and additional sites
were collected. The training and test samples were selected from
ground reference sites by manual digitization to ensure that they
were spatially separated and to reduce the potential for correla-
tion between the study and test data [25]. Fig. 2 shows some
typical landscapes in the study area.

III. METHODS

A. Subspace Classification

The subspace method was applied to each of the four dataset
groups (Table I). Subspace methods [18], widely used for
pattern recognition and computer vision, have been applied to
remote sensing data classification [26]. The subspace method
is a supervised classification method. In this method, high-
dimensional input data are projected onto a low-dimensional
feature space, and the different classes are then represented in
their own low-dimensional subspace. The following is a descrip-
tion of the subspace method procedure.

In the preprocessing step, the training samples are normalized
as follows. Let be the input data dimension, which is equal to

the number of bands. For a given pixel ,
the normalized pixel is computed as

where is the pixel length. To be
concise, we also use to denote a normalized pixel.

Let be the basis vectors of the
subspace of class , which are computed from class training
samples by eigenvalue and eigenvector solving algorithms;
where denotes the subspace dimension and denotes the
number of classes. The projection length of pixel in a subspace
of class is given by

After computing the projection length between pixel and
each subspace, pixel is then labeled by the class that has the
largest projection length.

Misclassifications may occur when class subspaces overlap.
To separate them, the subspaces are slowly rotated to reduce the
overlap between them. The main steps are described as follows.

At iteration , the conditional correlation matrix is computed
by

where the symbol denotes that the training sample belong-
ing to class has been misclassified into class .

Once the conditional correlation matrix is generated, the
correlation matrix for class is updated as follows:

where and are learning parameters, both usually with small
positive constant values. Then, the eigenvalues and eigenvectors
of are calculated to generate a new subspace of class . The
iterations end when either all the training data are fully recog-
nized or the maximum number of iterations has been reached.
Usually, by choosing the same subspace dimension and setting
the two learning parameters equal to each other, higher recogni-
tion accuracy can be achieved [21].

B. Grid Cell Process

We made grid square cells, each given a unique ID
number in the study area by using ArcGIS10 software. The
advantage of grid square cells is that it can avoid the potential
problem of changing boundaries of administrative units during
the time interval of interest. Here, we chose as the cell
size, because a cell covered more than 1000 TM pixels or
270 MSS pixels, and thus can facilitate our statistical analysis
purposes. Grid squares with unique cell IDs enable us to link
among land-cover maps for spatial–temporal land-cover change
analysis. To do this, it is necessary to represent the land-cover
maps in grid square cells.
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TABLE II
DESCRIPTION OF THE LAND-COVER CLASSIFICATION SYSTEM AND THE NUMBER OF TRAINING AND TEST SAMPLES FOR IMAGES ACQUIRED IN (A) 1978, (B) 1988,

(C) 1999, AND (D) 2011
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First, we merged similar categories of land cover into six main
land-cover classes for analysis convenience, namely, water,
forest, grassland, urban/bare, cropland, and coal. Here, we
aggregated the grassland, sparse, dense grass, and wetland into
a common “grassland” class and merged urban, bare soil, sand
dune, and alkali land into a single “urban/bare” class for each of
the four land-cover maps.

Second, we overlaid the reclassified images on the grid
cells to compute for each cell the percentage of the six land-cover
types within it and stored the results in a new attribute table.
When calculating the percentage of a land-cover type within a
cell, we divided the sumof the land-cover-type area by the area of
the cell.

It has to be decided how to process a pixel that is located on a
grid line (or spans multiple grid lines). A previous study had
assigned a pixel located on a grid line to the cell that covered the
largest part of the pixel [21]. However, this method introduces an
error due to the spatial resolution of the Landsat data, which may
affect the accuracy of the spatial–temporal analysis of land-cover
changes and of the calculation of the correlation coefficients. For
example, in the worst case, almost 50% of the pixel area (nearly

ofMSS or of ) may be incorrectly
assigned to neighbouring cells.

To reduce the error caused by the pixel size, we resampled
each of the four land-cover maps to a 1-m spatial resolution
pixel size. After resampling, the area inaccurately assigned to a

Fig. 2. Various landscapes in the study area: (a) water, (b) grassland, (c) woodland, (d) sandy land, (e) cropland, (f) wetland, (g) overburden dump at a coal-mining site,
(h) overburden dump covered with vegetation, and (i) coal-mining site.

Fig. 3. Flowchart for the procedures performed in the study.
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TABLE III
CONFUSION MATRICES OF OBTAINED LAND-COVER MAPS

UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy; Kappa, kappa coefficient.

QIAN et al.: SPATIAL–TEMPORAL ANALYSES OF SURFACE COAL MINING DOMINATED LAND DEGRADATION 1681



neighbouring cell’s pixel area became less than . We
then assigned such a pixel located on a grid line (or spanning
multiple grid lines) to the cell that covered the largest part of the
pixel.

Finally, the land-covermapswere expressed as a percentage of
each of the six land-cover types for each of the grid cells. Thus,
the grid cells enable us to aggregate the categories for each map
and to calculate their proportions in grid cells. Further-
more, they enable us to evaluate the spatial–temporal changes in
land-cover categories to allow a much easier statistical compari-
son of the land-cover changes.

Fig. 3 depicts the flowchart that explains how the research
data, methods, and analysis were organized in a brief way.

IV. RESULTS

A. Spatial–Temporal Changes of the Land-Cover Classes

The subspace method classification was performed for each of
fourmosaicked Landsat imageswith accuracies ranging between
71.4% and 84.6% for the test dataset (Table III). In this study, the
subspace dimensions were fixed as two for the 1978 MSS, and
three for the 1988 TM image, 1999 , and 2011 TM
images.

Class-specific accuracieswere satisfactory for landscape-scale
monitoring; in particular, the producer’s and user’s accuracies for
the most important coal class were better than 90% and 80%,
respectively. Grassland showed a high accuracy ranging from

Fig. 4. Time series of land-use and land-cover maps of the study area in: (a) 1978, (b) 1988, (c) 1999, and (d) 2011.
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77.92% to 93.91%. However, as shown in Table III, the barren
class was the most difficult of all categories to classify and was
confused mainly with sandy land and cropland for 1978 MSS,
sandy land and urban for 1988 TM, sandy land for 1999 ,
and alkali soils for 2011 TM datasets.

The low producer’s accuracy (68.86% in 1988 and 64.22% in
2011) and low user’s accuracy (63.56% in 1988 and 73.17% in
2011) of the urban class were possibly due to the fact that the
roofs of the houses in rural villages were usually soil-covered in
1978 and were made of adobe blocks after 1988. Thus, house
areas tended to be mislabelled as barren class.

The relatively low producer’s accuracies of the cropland class
(58.79% in 1978 and 55.41% in 1999) were because cropland
pixels could not be separated well from barren class pixels so
they were mislabelled as barren for the 1978 map. In the 1999
map, significant numbers of cropland pixelsweremisclassified to
water, grassland, sparse, and coal classes because of the exis-
tence of aquatic plants and crop cultivation combined with
pasture growing, as well as the difficulty in distinguishing
whether cropland had been abandoned. In the 1978 and 2011
maps, the producer’s accuracy for the dense grass class was as
low as 29.03% and 68.06%, respectively, because dense grass
was mislabelled as wetland or grassland.

As described in Section III, after aggregation, the final six
categories in the land-cover maps were water, forest, grassland,
urban/bare, cropland, and coal. After-aggregation land-cover
classification maps for each of the 4 years are shown in Fig. 4,
and detailed land-cover maps for the area around the Holingol
open pit coal mine are shown in Fig. 5 (see Fig. 1 for the location
of the detailed maps).

As can be seen in Figs. 4 and 5, there was a remarkable
increase in urban/bare and coal-mining areas, and a decrease in
grassland area.While the area of cropland increased from1978 to
1999, the cropland area tended to decrease from 1999.

The area of coal stockpiles in 2011 was more than 14 times the
area in 1988, an increase from 0.02% in 1988 to 0.29% in 2011.
The area of urban/bare has more than quadrupled over the past
three decades, increasing from 1.61% of the study area in 1978 to
7.18% in 2011. The area of grassland decreased from 86% in
1978 to 78.8% in 1999. However, after 1999, the area of
grassland increased to 80.5% by 2011.

Cropland at first rapidly increased from 1.07% in 1978 to
5.01% in 1999 and then decreased to 2.49% in 2011. In fact, a
policy of returning farmland to forest and grassland has been put
into practice, since 2000. As a result, in Huolinguole, cropland
decreased from 17 134 ha in 1998 [27] to 12 697 ha in 2010 [7].

Fig. 6(a) shows the grid-cell-based spatial change of urban/
bare area from 1978 to 2011. The value of each grid square cell
was calculated by subtracting the urban/bare area of 1978 from
that of 2011 in each grid cell and then dividing the changed area
by the cell area. As Fig. 6(a) illustrates, the urban/bare area
rapidly expanded around the three main coal fields (Fig. 1).

Fig. 6(b) shows the grid-cell-based spatial change of coal-
mining area from 1978 to 2011, whichwas calculated in the same
way as for Fig. 6(a). Typically, the coal-mining area increased
rapidly in the three coal fields.

Fig. 6(c) shows the grid-cell-based spatial change of grassland
area from 1978 to 2011, which was calculated in the sameway as

for Fig. 6(a). The grassland area decreased rapidly around the
three coal fields, but in some regions the grassland tended to
increase. The grassland increase trends were the result of two
government initiatives: the Sandstorm Source Control project
and the EcologicalMigration project. These government policies
led to an increase in grassland.

B. Relationship Among the Land-Cover Changes

To investigate the relationship among the land-cover changes
caused by coal-mine expansion, we calculated the correlation
coefficients ( ) of the land-cover categories (i.e., water, forest,
grassland, urban/bare, cropland, and coal) based on the
grid square cells. Table IV presents a summary of the linear
correlation coefficient matrix among the changes of land-cover
categories from 1978 to 2011 based on 10 383 grid cells
(samples).

As shown in Table IV, the linear correlation coefficient was
between coal and grassland classes, between

Fig. 5. Time series of detailed land-cover maps around Holingol open pit coal
mine in the study area for: (a) 1978, (b) 1988, (c) 1999, and (d) 2011. The location
of maps is shown in Fig. 1.
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urban/bare and grassland classes, 0.21 between coal and
urban/bare, between grassland and water, and
between grassland and cropland classes. The correlations
between coal, urban/bare, and grassland changewere statistically
significant.

In fact, in open-cast mining, the surface earth and under-
ground soil are peeled off and piled on the earth’s surface,
turning it into bare soil. This generally causes a decline in
herbaceous ground cover and marked increases in barren area
[28]. In addition, many mountains covered with grass were
stripped to providematerials (soil and rock) for the construction
of the necessary roads and urban and coal industrial parks.
Meanwhile, grassland correlated negatively with cropland
( ) owing to human population growth, which was
mainly migration attracted by the coal industry, and more and
more cropland was needed to feed them. As shown in Fig. 4,
during 1978–1998, a vast area of grassland area was turned into
cropland. Since 1999, this tendency has weakened owing to the
policy of the Sandstorm Source Control project and the Eco-
logical Migration project [29].

Fig. 7(a) shows the strong negative relationship between
urban/bare and grassland changes during 1978–2011. Fig. 7(b)
represents the positive relationship between coal and urban/bare
changes, which indicates that the rapid urbanization ofHolingol is
driven by the expansion of a coal energy-based industry, as no
other industry is available [27]. Fig. 7(c) shows the negative
relationship between coal and grassland changes. Fig. 7(d) shows
the how grassland and cropland are negatively correlated.

To better understand the trends of grassland changes, coal
mine expansion, urbanization, and other ecosystem dynamics,
we divided the land-cover changes during 1978–2011 into three
time intervals: 1978–1988, 1988–1999, and 1999–2011. Results
from our correlation analyses show that grassland was continu-
ally and negatively correlated with urban/bare ( , ,
and , respectively) and cropland ( , , and

, respectively). The correlation between grassland and
coal classes was very weak in 1978–1988 ( ) and in
1988–1999 (0.07). However, the correlation coefficient of coal
versus grassland turned negative ( ) in 1999–2011. This
change was due to the rapid expansion of coal-mining activities
that converted grassland into other land-cover types.

V. DISCUSSION

There were no mining activities at the study area in 1978,
except for the Holingol open pit coal mine, which was mostly
undergoing preparatory work for the coal-mining project. How-
ever, a large-scale surface coal-mining boom started during the

TABLE IV
CORRELATIONS AMONG LAND-COVER CATEGORIES DURING 1978–2011

Fig. 6. Spatial–temporal analysis from 1978 to 2011: (a) urban/bare, (b) coal
stockpiles, and (c) grassland.
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1980s. Table V shows the production capacity of exploiting coal
resources atHolingol coalmines from 1976 to 2004.As shown in
Table V, this period of expansion resulted in a quadrupling of
coal production capacity.

Coal mining is a major contributor to ecological and envi-
ronmental degradation [30]. Coal mining drastically destroys
grassland and generates waste materials from open-cast coal
occupying vast areas of grassland, which causes long-term
damage to the grassland ecosystem.

Meanwhile, heavy industries related to coal mines, such as
coal mining, coal-based power generation, and petrochemical
processing, are created with the sacrifice of a huge amount of
water resources. To meet the water demands of coal-based

industries, local rivers and their tributaries were dammed and
numerous wells were digged. This results in the drying up of
lakes, streams, and critical wetlands.

In addition, a government-planned migration of farmers to
cultivate the natural pasture of the Wulagai River region of East
Ujimqin Banner began around 1985. Moreover, accompanying
the coal-mining boom, many farmers also migrated into the
Holingol region, while grasslands reclamation was being intro-
duced largely to the west and north of the region. After 1999,
cropland cultivation stopped and tended to decrease owing to the
government initiative of returning cropland to grassland and
forest [31]. Our results confirm that the policy shift suppressed
cropland area in the Holingol region.

Other contributors to grassland degradation include rapidly
increased population growth, urbanization, and infrastructure
development, including planned roads and railroads. For exam-
ple, because of the rapid growth of coal mining, the overall
population of Huolinguole increased from 29 897 in 1985 to 82
430 in 2010, which caused large areas of grassland to be
transformed into coal-related industries and urban built-up area.
Roads and railroads built to transport coal not only cause
grassland degradation, but may be the greatest threat to biodi-
versity because roads and railroads can effectively divide for-
merly contiguous populations of terrestrial wildlife.

Fig. 7. Representative scatter plots of land-cover categories for 1978–2011. The total points are 10 383 samples (grid cells): (a) grassland change 1978–2011, (b) urban/
bare change 1978–2011, (c) grassland change 1978–2011, and (d) grassland change 1978–2011.

TABLE V
YEARLY PRODUCTION CAPACITY OF COAL MINES IN HOLINGOL, FROM 1976 TO 2004
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It should also be noted that for the subspace method, the
overlap between low-dimensional class subspaces is reduced
enough in the high-dimensional space, and thus the performance
using the subspacemethod on 1988 TM, 1999 , and 2011
TM gives higher overall classification accuracies (Table III).
However, on the 1978 MSS, the subspace method gives the
lowest overall classification accuracy (Table III). The reason for
this is mainly due to the overlap between class subspaces in low-
dimensional data space. As the subspace method can be directly
implemented on a high-dimensional dataset without band opti-
mization processing, it is possible to map the data space into a
higher dimensional feature space by kernel-based methods in
order to reduce the overlap between subspaces, while maintain-
ing computational simplicity of the subspace learning procedure.

VI. CONCLUSION

Grassland degradation and urbanization in theHolingol region
from 1978 to 2011 have been identified, quantified, and analysed
by using multi-temporal Landsat data. The expansion of mining
activities, coal-related industries, and population increases was
the major contribution to the conversion of grassland to other
land-use types. A grid-square-based spatial correlation analysis
showed that mining area expansion was strongly positively
correlated with urban area expansion and strongly negatively
correlated with grassland change. Furthermore, a spatial
correlation analysis of three time intervals (i.e., 1978–1988,
1988–1999, and 1999–2011) allowed us to describe the
spatial–temporal dynamics of the mine and urban growth
patterns in more detail.

The coal-mining boom and mine development are major
concerns for biodiversity over the next decade. Further study
should explore the land degradation and decline in biodiversity
caused by road construction.
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