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Abstract The soil erodibility factor of RUSLE is one of

the important indicators of land degradation. It can be

measured either directly under natural or simulated rainfall

condition or indirectly estimated by empirical models. A

geospatial variation of this factor is essential for prioriti-

zation of reclamation measures. However, geospatial up-

scaling of soil erodibility factor is very uncertain because

of its dynamic nature and dependent on the parameters

used in the model. This paper studies the geospatial com-

parison of the effectiveness of four different models to

predict the soil erodibility factor by means of the inde-

pendent role of each model parameter. 669 soil samples

were collected from different land uses of Central India on

grid basis and analyzed for physicochemical properties.

The soil erodibility factor was estimated using four dif-

ferent models. Geostatistical analysis was performed on the

point erodibility data of each model to obtain the spatial

pattern. Analysis of variance showed that soil properties

and erodibility factor varied significantly with various land

uses. Croplands showed higher susceptibility to erosion

than woodlands and grasslands. The erodibility equation

that used particle size with soil organic matter showed

better agreement with the variation of land use than the

equation used only particle size. Therefore, the models that

dynamically integrate soil intrinsic properties with land use

can successfully be used for geospatial upscaling of soil

erodibility factor.

Keywords Geospatial analysis � GIS � Land use �
Soil erodibility factor

Introduction

Soil erosion is a natural process to maintain the balance

between different ecosystem functionaries. However,

accelerated-soil-erosion-led-land-degradation, due to non-

environmental friendly anthropogenic activities, raises a

major concern among the scientists and policy makers

(Bathrellos et al. 2012, 2013; Klein et al. 2013; Youssef

and Maerz 2013). Moreover, soils are often exposed to

erosion due to faulty agricultural practices, deforestation,

overgrazing, forest fires and urbanization (Terranova et al.

2009). In a semi-arid region, such as Bundelkhand in

Central India, it is viewed as a serious problem, creating

negative impact on agricultural production, infrastructure

and water quality (Singh and Phadke 2006). Undoubtedly,

soil erosion is the most extensive process of land degra-

dation in arid and semi-arid regions of the world (Seager

et al. 2007; Ravi et al. 2010).

Best management practices of land resources are

essential to minimize the threat of soil erosion and to

maintain the sustainability of the production. Quantitative

P. P. Adhikary (&) � M. Madhu

Central Soil and Water Conservation Research and Training

Institute, Research Centre, Sunabeda, Koraput 763 002, Odisha,

India

e-mail: ppadhikary@gmail.com

S. P. Tiwari

Central Soil and Water Conservation Research and Training

Institute, Research Centre, Gwalior Road,

Datia 475 661, Madhya Pradesh, India

D. Mandal

Central Soil and Water Conservation Research and Training

Institute, 218 Kaulagarh Road, Dehradun 248 195, Uttarakhand,

India

B. L. Lakaria

Indian Institute of Soil Science, Nabibagh,

Berasia Road, Bhopal, India

123

Environ Earth Sci

DOI 10.1007/s12665-014-3374-7



assessment of land degradation can be possible by various

approaches using detailed and spatially distributed data.

There are numerous mathematical and process based

models to predict soil erosion (Smith et al. 1995; Bot-

terweg et al. 1998; Sparovek et al. 2000), but the Revised

Universal Soil Loss Equation (RUSLE) (Renard et al.

1997) is most widely used. It is simple, easy to use and

successfully integrate the ecosystem parameters. In RU-

SLE, one of the important parameters is soil erodibility

factor (K), which varies spatially under different land uses

(Bayramin et al. 2008).

Many empirical models are there to determine the

K factor of RUSLE based on geomorphological and soil

physicochemical parameters, but the selection of a model

for spatial simulation is very important. For a complex

physical model, the data requirement would be too large.

Moreover, if a complex model is applied with few data

points, and a large part of the area is simulated with data

assumed to be constant over a certain part of the area, the

results may be very unreliable (Nearing 2005). Therefore,

simple models are always better.

Torri et al. (1997) investigated the predictability of

K factor from soil clay content, the Naperian logarithm of

geometric mean particle diameter (Dg) and organic matter

(OM). Romkens et al. (1986) used a function, based on

particle size distribution (PSD) and four regression coef-

ficients to calculate the K factor. Wischmeir and Smith

(1978) used soil texture, structure, organic matter and soil

profile permeability to predict K factor. Mulengera and

Payton (1999) developed an equation to predict K factor for

the soils of tropical condition using soil texture, OM and

soil permeability data. All the models determine the

K factor with varying degree of perfection. However, they

cannot provide spatial distribution of soil erosion due to the

constraint of limited samples in complex environments.

Therefore, model selection to map soil erosion over large

areas is often very difficult (Lu et al. 2004).

Recently, Geographic Information System (GIS) and

geostatistics have widely been used in soil science to pre-

dict soil salinity (Douaik et al. 2005), soil hydraulic

properties (Herbst et al. 2006), soil organic matter (Chai

et al. 2008) and soil erosion (Saygm et al. 2014). To predict

soil erosion, combined use of USLE/RUSLE and GIS is

common (Lee 2004; Prasannakumar et al. 2011; Rozos

et al. 2013; Perovic et al. 2013). However, the spatial

prediction of K factor is very uncertain.

To overcome the uncertainty to predict K factor over

space, sequential Gaussian simulation (Baskan et al. 2010),

joint sequential simulation (Parysow et al. 2003) and

geostatistical simulation (Castrignano et al. 2008) may be

the options. Geostatistical simulation, as compared to an

optimal procedure of estimation, provides a more realistic

means of evaluating spatial variability of a variable

(Castrignano et al. 2008). This results in a large number of

equiprobable images (also called realizations) that honour

the sample data and reproduce statistical characteristics and

spatial features. Buttafuoco et al. (2012) quantified the

output error of a soil erodibility model, resulting from

uncertainties in the model inputs, to contribute towards an

overall uncertainty analysis of soil loss prediction.

K factor is not static, but highly dynamic. It accounts

for the effect of different intrinsic soil properties on ero-

sion (Wang et al. 2001), thereby dynamically linked with

climate, topography, vegetation, relief and time. There-

fore, prediction of the spatial distribution of K factor is

very uncertain and its geospatial upscaling is very sensi-

tive. Hence, the consistency of any model to predict

K factor, and its upscaling by geospatial analysis relies

mainly on its performance to represent characteristic

exchanges of the mineralogical, physical, chemical, and

biological soil processes within an ecosystem (Saygm

et al. 2011).

The quantification of spatial variation of soil erodibility

factor depends not only on external factors like land use/

cover, climate, topography, but also on the intrinsic prop-

erties of soils that promote their resistance to erosion

(Singh and Khera 2009). The main soil properties that

control this factor include particle size distribution, shape,

size and stability of aggregates, shear strength, bulk den-

sity, porosity and permeability, organic matter and clay

content, and chemical composition (Morgan 1995; Chen

and Zhou 2013). These properties vary with space and

time. Therefore, the models which include these properties

to calculate K factor are prone to severe limitations during

geospatial prediction of K factor.

The geospatial prediction of the K factor should vary

depending on the differences in ecosystem functions over a

research area, and therefore, any equation for estimating it

should have dynamic and interactive variables to account

for changing land properties (Saygm et al. 2011). There are

number of studies available to predict geospatial variation

of K factor using GIS. However, the spatial comparison of

predicting models over a large area is very rare. The

objective of the study is to geospatial comparison of the

effectiveness of four different models to predict the K fac-

tor by means of the independent role of each model

parameter.

Materials and methods

Study area

The study area, Bundelkhand region, straddling over

7.07 M ha in Central India, lies between 23�100 and 26�300

north latitude and 78�200 and 81�400 east longitude,
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comprises seven districts of Uttar Pradesh and six districts

of Madhya Pradesh (Fig. 1). It has been recognized as one

of the most degraded and threatened eco-systems of the

country (Ratha Krishnan 2008). The climate is tropical and

semi-arid with average annual rainfall ranges from

750 mm in the north-west to 1,250 mm in the south-east.

More than 94 % of the rainfall occurs between June and

September, with maximum during July–August. Rainfall

intensity often goes up to 30–50 mm per hour. Thus rain

water has little time to infiltrate, and aggravates the prob-

lem of soil erosion and poor groundwater recharge. The

temperature varies from -1.5 to 49 �C with hottest days

are in May and coldest days in December or January. The

land use of Bundelkhand is mainly classified as croplands,

fallowlands, woodlands and grasslands with few subclass-

es. In north Bundelkhand, the area under croplands is

significantly higher than the south, whereas the south

Bundelkhand comprises significant amount of woodlands.

Geology and topography

Granites of varying types from the lower Pre-Cambrian/

Archaen period are the predominant geological materials

found across the region. These are followed by gneisses

and sedimentary strata, such as sandstone and limestone.

Alluvial deposits of clay, silt and sand of sub-aerial and

fluviatile origin are the most recent geological deposits in

Bundelkhand, and are more predominant near the Yamuna

river and its tributaries. The topography is generally

undulating with rocky outcrops and boulder-strewn plains

that give the landscape a rugged look. Spectacular ravines

in the north and deep gorges in the south are the result of

the active erosion of the unconsolidated alluvial material

deposited by the major streams in the region; namely the

Betwa, Dhasan and the Ken. These ravines and gorges are

uncultivable and pose an increasing threat to nearby

farmland as they continue to expand.

Fig. 1 Map of the study area showing the location of soil sampling points
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Soils

The soils have been developed from Vindhyan rocks

abounding in gneiss and granites of the Deccan trap with

highly ferruginous beds and often limestones. The soils

are broadly divided into two main groups, red and black,

further subdivided as Rakar, Parua, Kabar and Mar

(Tiwari and Narayan 2010). Red soils have developed

over granite and gneiss parent material and they exist

mostly on uplands. Taxonomically, the soils are covered

under the order Alfisol and Entisol. The Rakar soils are

residual, slightly acidic, gravelly, shallow and exces-

sively permeable with low water holding capacity. The

Parua soils are alluvial and mildly alkaline with mod-

erate water holding capacity and fertility status. The

black soils Mar and Kabar are very deep and confined to

low lying landscape, possess fine texture and exhibit

swell–shrink property. The Mar soils pose drainage and

workability problems. These soils belong to the orders

Inceptisol and Vertisol.

Soil sampling and physicochemical analysis

669 surface (0–15 cm depth) soil samples (Fig. 1) were

used for this study. Geographical coordinates and ele-

vation of each sampling location was recorded using a

handheld global positioning system (GPS). A few loca-

tions were also cross-checked with a differential GPS.

Soil samples were analyzed for sand (S), silt (Si) and

clay (C) content by international pipette method (Piper

1966). Coarse and fine sand content was estimated by

wet sieving through 0.1 mm screen openings (Soil Sur-

vey Staff 1996). The method of Walkley and Black

(1934) was used to determine soil organic carbon (SOC).

Hydraulic conductivity was calculated from the values

recorded under saturated conditions with a constant head

permeameter (Klute and Dirksen 1986). Soil structure

was determined by a field method (Soil Survey Staff

1996).

Soil erodibility models

Soil erodibility depends on the intrinsic properties of the

soils. Many empirical models were developed to determine

the K factor of RUSLE based on the geomorphological and

soil physicochemical parameters. However, for this study,

four equations by Romkens et al. (1986), Mulengera and

Payton (1999), Wischmeir and Smith (1978) and Torri

et al. (1997) were evaluated.

Romkens et al. (1986) used the published global data on

particle size distribution to calculate the K factor in the

form of the following equation (R2 = 0.983).

K1 ¼/ þb exp � 1

2

log Dg þ v
c

� �2
( )

ð1Þ

where K1 is the soil erodibility factor (t ha h ha-1 MJ-1

mm-1), a, b, v, and c are the coefficient parameters. Romkens

et al. (1986) used the parameter values of 0.0034, 0.0405,

1.659, and 0.7101 for a, b, v, and c, respectively. Dg is the

geometric mean weight diameter of the primary soil particles

(mm), which is calculated by the following equation:

Dg ¼ 0:01 �
Xn

n¼1

fi ln mið Þ
( )

ð2Þ

where fi is the primary particle size fraction in percent

(percent sand (S), silt (Si), and clay (C) with i = 1, 2 and 3,

respectively) and mi is the arithmetic mean of the particle

size limits of the corresponding size (Shirazi and Boersma

1984).

The second model we used is the equation developed in

the framework of a research program initiated to identify a

suitable soil loss equation for use under tropical conditions

(Mulengera and Payton 1999). This equation is based on

the texture-derived parameters and soil permeability that

were found to be quite adequate for estimating the soil

erodibility factor in the tropics. The following equation

developed by these authors obtained the best correlation

coefficient (r = 0.911) between calculated and measured

values in Tanzania.

K2 ¼ 1:82247 � 10�5M þ 0:0045 � P� 0:0097 ð3Þ

where K2 is the soil erodibility factor (t ha h ha-1 MJ-1

mm-1), M is the product of the primary particle size

fractions [M = (si ? vfs) (si ? vfs ? s); si: percent silt

(0.05–0.002 mm), s: percent sand (0.2–0.10 mm), vfs:

percent very fine sand (0.10–0.05 mm)], P is the class of

soil profile permeability.

The third equation we used in our study is the most

famous and frequently used soil erodibility nomograph

(Wischmeir and Smith 1978) stated as below:

K3 ¼
1

759
2:1 � 10�4 12� SOMð Þ �M1:14
�

þ3:25 S� 2ð Þ þ 2:5ðP� 3Þg ð4Þ

where K3 is the soil erodibility factor (t ha h ha-1

MJ-1 mm-1), SOM is percent soil organic matter content,

M is the product of the primary particle size fractions

[M = (si ? vfs) (si ? vfs ? s); si: percent silt

(0.05–0.002 mm), s: percent sand (0.2–0.10 mm), vfs:

percent very fine sand (0.10–0.05 mm)], S is soil structure

code and P is permeability class (Renard et al. 1997).

The last equation used to determine K factor for our

study is the equation of Torri et al. (1997):
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K4 ¼ 0:0293 � 0:65� Dg þ 0:24D2
g

� �

� exp �0:0021
SOM

C

� �
� 0:00037

SOM

C

� �2
(

� 4:02C þ 1:72C2

)
ð5Þ

where K4 is the soil erodibility factor (t ha h ha-1 MJ-1

mm-1), SOM is the percent soil organic matter, C is the

percent clay content and Dg is the decimal logarithm of the

geometric mean of PSD, which is calculated using the

following equation:

Dg ¼
Xn

i¼1

fi � log10

ffiffiffiffiffiffiffiffiffiffiffiffi
didi�1

p� �
ð6Þ

where fi is the fraction of primary particles with sizes

within di and di-1 as defined by Shirazi et al. (1988).

The differences between Eqs. 1, 3, 4 and 5 are that,

Eq. 1 used only particle size distribution (PSD) data to

determine K factor, whereas Eq. 3 used soil profile per-

meability data besides PSD. The Eq. 4 used PSD, soil

profile permeability and soil organic matter data to deter-

mine K factor, whereas Eq. 5 used PSD and SOM data, but

not soil profile permeability. One of the disadvantages of

the Eq. 4 is that the results could be unreliable when

applied to soils with textural extremes as well as well

aggregated or no erodible soils (Romkens et al. 1986). As,

all the equations are dissimilar, their output values will be

diverse for the same sampling point with their empirical

lower and upper bounds obtained with different data sets. A

basic understanding of how physical parameters used in

these equations influence spatial patterns would ease the

interpretation of the K factor of the study area (Saygm et al.

2011).

Geostatistical analysis

Kriging is the optimal approach for spatial interpolation at

unsampled locations. It is flexible and permits the inves-

tigation of spatial autocorrelation of the variables. It pre-

sents the possibility of estimation of the interpolation error

of the values of the regionalized variable, where there are

no initial measurements. This feature offers a measure of

the estimation accuracy and reliability of the spatial dis-

tribution of the variable. The spatial dependence is quan-

tified using semivariogram (Burgess and Webster 1980).

The semivariogram is mathematically described by the

following equation (Journel and Huijbregts 1978):

c hð Þ ¼ 1

2NðhÞ
XNðhÞ
i¼1

z xi þ hð Þ � zðxiÞ½ �2 ð7Þ

where c(h) is the semivariogram expressed as a function of

the magnitude of the lag distance or separation vector

h between two points, N(h) is the number of observation

pairs separated by distance h and z(xi) is the random var-

iable at location xi. The experimental semivariogram c(h) is

fitted with a theoretical model, such as spherical, expo-

nential, linear, or Gaussian to determine three parameters,

such as the nugget (C0), the sill (C), and the range (A0).

During calculation of experimental semivariogram val-

ues, maximum separation distance was fixed as half of the

extent of the sampling area. The calculated experimental

semivariogram values were then fitted in the spherical

semivariogram model, which was found best during

weighted least square fitting and described below:

cðhÞ ¼ c0þ 1:5
h

A0

� �
� 0:5

h

A0

� �3
" #

h�A0

cðhÞ ¼ c0þ c; h[A0

ð8Þ

where C0 is the nugget variance, C is the sill variance, and

A0 is the range of distance parameter. Using this interpo-

lation technique, spatial variation maps of the soil erod-

ibility factor were prepared.

Spatial autocorrelation of soil erodibility factor

Variable, such as soil erodibility factor has discrete values

measured at several locations can be considered as random.

However, they show a certain degree of spatial correlation

with themselves. Therefore, to know the randomness of the

sample points, the arrangement pattern of the sampling

points was analysed. Moreover, the spatial autocorrelation

analysis was carried out using GS? software to understand

the correlation between the points for different shifts in

space and to visualize the spatial variability of the K factor.

Development of semivariogram model and cross validation

The normality of each data-set was checked by Kol-

mogorov–Smirnov test and different transformations, such

as log normal, square root were carried out to ensure nor-

mal distribution. Geostatistical software GS? was used to

generate the semivariogram parameters for each theoretical

model. The best-fitted theoretical model was selected based

on the highest R2 and lowest RSS. The corresponding sill,

nugget, and range values of the best-fitted theoretical

models were observed (Fig. 2). Subsequently, thematic

maps for K factor were generated using ordinary kriging.

The predictive performance of the fitted models was

checked by cross-validation tests. The values of coefficient

of determination R2, mean absolute error (MAE), mean

square error (MSE), kriged reduced mean error (KRME),
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and kriged reduced mean square error (KRMSE) were

estimated to ascertain the performance of the developed

theoretical models (Sarangi et al. 2005). The predictive

behaviors of the models were ascertained from the esti-

mated values approaching 0 or 1, as indicated below:

R2 ¼ 1� SSE

SST

ffi 1 ð9Þ

MAE ¼ 1

N

XN

i¼1

Zo;i � Zp;i

� 	
ffi 0 ð10Þ

MSE ¼ 1

N

XN

i¼1

Zo;i � Zp;i

� 	2ffi Minimum ð11Þ

KRME ¼ 1

N

XN

i¼1

Zo;i � Zp;i

� 	
S

ffi 0 ð12Þ

KRMSE ¼ 1

N

XN

i¼1

Zo;i � Zp;i

� 	2

S2
ffi 1 ð13Þ

where Zo,i is the observed value at location i, Zp,i is the

predicted value at location i, S2 is the estimated variance

and N is the number of pairs of observed and predicted

values. SSE and SST are the error sum of square and total

sum of square respectively. The ME and KRME values

near to zero is an indicator of better model prediction.

Results and discussions

Descriptive statistics of different soil parameters

and erodibility

Descriptive statistics of K factor calculated by different

models along with their input parameters is presented in

Table 1. The range, mean and standard deviation values

showed considerable heterogeneity within the input

parameters. Skewness and kurtosis, which measure the

distribution symmetry and distribution flatness/steepness

relative to a normal distribution, were checked to ascertain

the normality of the data-set (Cerri et al. 2004). Coeffi-

cients of skewness and kurtosis for soil profile permeability

(SPP) showed positively skewed and leptokurtic distribu-

tion. Kolmogorov and Smirnov test also indicated that all

the data except SPP, to compute erodibility factor, were

normally distributed at p \ 0.05. The log transformation

has transformed this distribution normal. CV is the first

approximation of not only sampling site heterogeneity for

Fig. 2 Semivariograms of soil erodibility factor in the Bundelkhand region obtained using four different models
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input parameters, but also the relative spatial distribution of

the equations in the area. Permeability values of soil

samples showed the highest CV (147.8 %). Relatively

lower CV values were obtained for S, Si, C and SOM

contents of the soil samples (51, 49.7, 45.6, and 60.3 %,

respectively). Higher variation of permeability was mainly

due to variation of land uses and management practices

(Saygm et al. 2011), since significant decrease in perme-

ability and SOM was observed in woodlands after their

conversion to croplands. For the K factor calculating

equations, relatively higher CVs were observed for K2

(54.1 %) and K3 (43.2 %) and lower for K1 (27.4 %) and

K4 (22.6 %). The higher CV of K2 and K3 could be linked

to the spatial variations of the input parameters of Eqs. 3

and 4. In both the equations, permeability was one of the

input parameters. A noticeably higher variation in the

permeability values of the soil samples interacted with

those of other input parameters and resulted higher CV

values of K2 and K3.

Variation of soil properties and erodibility

among different land uses

Land use and soil texture

Table 2 shows the analysis of variance to compare the

effect of different land uses on sand, silt, clay, SOM, SPP

and RUSLE K factor. The result indicated that land use

has profound influence on the variation of soil texture

(Bayramin et al. 2008). Highest (54.6 %) and lowest

(28.6 %) sand content was observed in grassland and

fallowland, respectively; whereas cropland and woodland

showed nearly a similar level of sand content. On the other

hand, clay content variation showed the opposite trend that

of sand. Highest (45.8 %) and lowest (29.3 %) clay con-

tent was observed in fallowland and grassland, respec-

tively. The variation of clay content between cropland and

woodland was statistically non-significant. The grasslands

were under high pressure from growing cattle population

and overgrazed, which induced accelerated soil erosion

and subsequent washing out of clay and silt, leaving the

sand particles in their original place (Tiwari and Narayan

2010). Thus, the grasslands showed highest sand and

lowest clay content. With regards to the variation of silt

content under different land uses, grassland showed the

lowest (16.1 %) and fallowland, highest silt content

(25.7 %). This can be explained by the fact that silt is the

most susceptible soil particle size fraction for water ero-

sion and the amount vary under various erosion circum-

stances. The fallowlands and croplands, because of their

inherent higher silt content, were more sensitive to water

erosion than woodland and grassland (Bayramin et al.

2008). On the other hand, due to overgrazing and high

biotic pressure on grassland, the silt has already been

eroded and hence showed its depletion in grassland. Under

cropland, fallowland and woodland, the variation of silt

content was statistically significant, but numerically very

close (between 21.4 and 25.7 %) to each other. Thus, one

can assume that an equilibrium condition has been attained

among land uses from the viewpoint of erosion processes.

Therefore, in terms of silt, the effect of textural compo-

sition on the sensitivity of soils to water erosion was

similar in the ecosystem of the Bundelkhand region of

Central India. In fact, the parent material and topography

as soil-forming factors together with biotically influenced

detachment, transport, and depositional processes could be

considered as factors characterizing the textural composi-

tion of soils in the study area.

Land use and soil organic matter

Conversion of the woodland and fallowland to the cropland

had a significant effect on the SOM in the study area. The

SOM of cropland has been depleted by 17.3 and 6.5 % as

compared to the woodland and fallowland, respectively.

The cultivation detached soil aggregates and exposed pre-

viously inaccessible organic matter to microbial attack and

accelerated the decomposition and mineralization of SOC

(Shepherd et al. 2001). Incorporation of lesser amount of

plant residues after harvest, continuous cropping and

Table 1 Descriptive statistics

of the soil erodibility factors

(K1, K2, K3 and K4) and their

input parameters

SD standard deviation, CV

coefficient of variation, SOM

soil organic matter, SPP soil

profile permeability

Parameter Minimum Maximum Mean SD Skewness Kurtosis CV

Sand (%) 4.0 92.0 40.4 20.6 0.4 -0.7 51.0

Silt (%) 4.0 76.0 26.0 12.9 0.7 0.7 49.7

Clay (%) 2.0 73.0 33.6 15.3 -0.1 -1.1 45.6

SOM (%) 0.2 4.9 1.3 0.8 1.0 0.8 60.3

SPP (cm h-1) 1.2 79.9 6.3 9.4 6.6 48.8 147.8

K1 0.0079 0.0439 0.0349 0.0095 -1.1 -0.1 27.4

K2 0.0051 0.1229 0.0372 0.0201 1.3 2.5 54.1

K3 0.0095 0.0932 0.0317 0.0137 1.4 3.2 43.2

K4 0.0204 0.0642 0.0322 0.0073 1.5 2.7 22.6
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frequent burning, faster decomposition rates of organic

matter, and greater erosion were the few reasons for

declining nature of SOC in the croplands (Rezapour 2014).

Furthermore, as a matter of fact, a variation of the SOC

content could be affected with soil detachment, transport,

and depositional processes, which could significantly result

from the land use changes (Basaran et al. 2008). The

analysis of Pearson’s correlation indicated that there was a

strong positive correlation between SOM and clay and

negative correlation between SOM and sand in fallowland.

Except these, SOM did not correlate with any other soil

parameters (Table 3). Clay is an important soil parameter

required for the accumulation and protection of SOM.

However, except fallowland, there was no significant cor-

relation between clay and SOM for other land use types.

This indicated the fragile nature of the ecosystem of

Bundelkhand region in terms of SOC.

Land use and soil permeability

The variation of SPP under different land uses followed the

same trend as that of sand content. The grassland showed

the highest (8.1 cm h-1) and fallowland, lowest

(3.2 cm h-1) SPP; whereas, the SPP of cropland and

woodland were 4.5 and 6.1 cm h-1, respectively (Table 2).

The high SPP of grassland may be attributed to the high

sand content and loosening of surface soil by trampling of

cattle, goat and sheep. Side by side, the fibrous root system

of grass had made the system conducive for high perme-

ability (Chen et al. 2009). The low SPP of fallowland may

due to high clay content of the surface soil layer. Good

correlations existed between SPP and sand, silt and clay for

all the land uses. As usual, the SPP was positively corre-

lated with sand content and negatively with clay and silt

content (Table 3). This confirmed the fact that, in the study

area, irrespective of the land use, sand was the governing

factor to determine SPP. Interestingly, SOM, one of the

important soil parameters governing the water movement

within the soil, showed no significant correlation with SPP.

This may be due to the presence of low amount of SOM in

Table 2 Analysis of variance (Mean ±SD) for soil properties and soil erodibility factors (K1, K2, K3 and K4) as affected by the different land

uses (p \ 0.05)

Parameter Cropland Fallow land Woodland Grassland

Sand (%) 37.57C ± 1.07 28.56D ± 3.19 42.93B ± 1.68 54.61A ± 3.42

Silt (%) 23.64AB ± 0.44 25.67A ± 1.62 21.40BC ± 0.71 16.11D ± 1.42

Clay (%) 38.78BC ± 0.75 45.78A ± 3.11 35.67BC ± 1.13 29.29D ± 2.11

SOM (%) 1.58B ± 0.02 1.68B ± 0.04 1.91A ± 0.17 1.27C ± 0.07

SPP (cm h-1) 4.54C ± 0.19 3.24D ± 0.26 6.10B ± 0.34 8.07A ± 0.83

K1 0.038B ± 0.001 0.041A ± 0.001 0.034C ± 0.001 0.031D ± 0.002

K2 0.035A ± 0.001 0.034A ± 0.002 0.026B ± 0.001 0.022C ± 0.002

K3 0.030A ± 0.001 0.029A ± 0.002 0.024B ± 0.001 0.023B ± 0.001

K4 0.029A ± 0.001 0.028A ± 0.001 0.030A ± 0.001 0.030A ± 0.001

Uppercase letters indicate statistically significant differences among soil properties affected by the different land uses

SD standard deviation, SOM soil organic matter, SPP soil profile permeability

Table 3 Pearson’s correlation coefficients among sand, silt, clay,

SOM and SPP for each land use type

Sand Silt Clay SOM SPP

Woodland

Sand 1

Silt -0.85* 1

Clay -0.94* 0.63* 1

SOM -0.10 0.14 0.06 1

SPP 0.96* -0.89* -0.86* -0.16 1

Cropland

Sand 1

Silt -0.827* 1

Clay -0.943* 0.592* 1

SOM 0.005 -0.039 0.016 1

SPP 0.894* -0.822* -0.794* -0.048 1

Fallowland

Sand 1

Silt -0.306 1

Clay -0.868* -0.208 1

SOM -0.348 -0.231 0.478 1

SPP 0.997* -0.321 -0.857* -0.373 1

Grassland

Sand 1

Silt -0.952* 1

Clay -0.979* 0.869* 1

SOM 0.274 -0.319 -0.229 1

SPP 0.944* -0.912* -0.914* 0.257 1

SOM soil organic matter, SPP soil profile permeability

* p \ 0.05
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the soils of the study area which practically lagged far

behind the textural effect to control and make any signifi-

cant impact on the SPP.

Land use and soil erodibility factor

Table 2 indicated that the soil erodibility factor (K) dif-

fered significantly among land uses (p \ 0.01), but the

degree of difference varied for different models used to

determine the K factor. K1, which depended on only PSD,

varied significantly among all the land uses. The trend of

variation of K1 under different land uses exactly followed

the same trend that of PSD. K1 was directly proportional to

the silt and clay content and inversely proportional to the

sand content. In fallowland, the presence of highest silt and

clay, and lowest sand content triggered the K1 value to be

highest and the inverse has been observed for grassland.

The K2, dependent on PSD and SPP, showed nearly the

same trend as that of the K1. The SPP was strongly cor-

related with PSD for all the land uses, therefore, the

combine effect of PSD and SPP, as effervesced in K2 fol-

lowed a similar pattern as that of the K1. For K3, which was

derived from PSD, SPP and SOM, grassland and woodland

behaved similarly and cropland and fallowland behaved

similarly. K3 differed from K2 only because it included

SOM as one of the input parameters. Therefore, the

importance of SOM to control the behavior of K factor was

significant when we compared cropland with woodland.

However, this importance has lost its significance when we

compared woodland with grassland. In grassland, besides

SOM, other factors like PSD, biogenic macropores and

fibrous root systems of grasses played a significant role in

determining the erosion potentiality of its soils (Basaran

et al. 2008). On the other hand, K4, which was derived from

PSD and SOM showed statistically insignificant difference

between different land uses. Overall, the K factors of

croplands and fallowlands were higher than woodlands and

grasslands. Continuous cultivation in croplands has made

the land surfaces more vulnerable to water erosion. In

contrast, fibrous root systems coupled with high coarser

soil particles in the grasslands and higher sand and SOM

content in the woodlands protect their soils from erosion

(Bayramin et al. 2008). Therefore, it can be incurred that,

input parameters of different soil erodibility models are

dynamically related to each other, which vary spatially and

temporally and influenced soil erodibility single and/or

combined.

Geospatial analysis

Spatial interdependence of different erodibility equations

Spatial autocorrelation measures the level of interdepen-

dence between different variables and the nature and

strength of that interdependence. The probability of finding

three, five, seven and nine other points within a specified

distance of any point showed a linear growth with distance.

The spatial autocorrelation coefficients or the Moran’s

I values for the four soil erodibility factors derived from

four different models along with their input parameters are

summarized in Table 4. The result indicated that sand,

clay, SOM and SPP showed very week positive autocor-

relation (average Moran’s I [ 0 but very close to zero),

while silt showed weak to moderate positive autocorrela-

tion. All the soil erodibility factors showed weak positive

autocorrelation (average Moran’s I [ 0 but close to zero).

Therefore, all the erodibility factors are independent of

each other and near randomly distributed within the study

area.

Spatial structure of soil erodibility factors

To ascertain normality of the data distribution, except for

K1, all other erodibility equations were transformed to

square root distribution. The directional anisotropy of the

semivariograms was checked and found that there was no

severe directional anisotropy. Therefore, omni-directional

semivariograms were obtained based on least square

technique. The theoretical semivariogram models were

examined and spherical model was considered as best-fit,

because of highest R2 value. The parameters of the best-fit

spherical model for the K factors are given in Table 5.

Nugget and sill were very low and varied from 0.002 to

0.018 and 0.008 to 0.219, respectively, for all the K fac-

tors. Nugget effect and nugget-to-sill ratio was also used

to classify the spatial dependence (Cambardella et al.

1994) of the variable. The nugget-to-sill ratio indicated

that all the soil erodibility equations were weakly spa-

tially correlated. The range was found between 1.97 and

Table 4 Statistical summary of the Moran’s I, the measure of spatial

autocorrelation

Moran’s I

Parameter Minimum Maximum Mean

Sand -0.011 0.274 0.119

Silt 0.233 0.409 0.302

Clay -0.098 0.216 0.026

SOM 0.127 0.418 0.195

SPP -0.128 0.272 0.138

K1 0.067 0.401 0.168

K2 0.104 0.423 0.211

K3 0.258 0.467 0.316

K4 0.204 0.403 0.246

SOM soil organic matter, SPP soil profile permeability
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7.07 km and also did not exhibit any trend (Fig. 2). From

the range values, it can be inferred that to predict the soil

erodibility of Bundelkhand region, the maximum sam-

pling distance should be 7.07 km. The Eq. 1 used only

PSD data to calculate K1 and showed the lowest range

value; whereas, two more parameters (SPP and SOM)

together with PSD triggered K3 to have the highest spatial

correlation among all the soil erodibility equations. K2

and K4 used PSD ? SPP and PSD ? SOM, respectively

showed higher spatial correlation than K1 but lower that

K3. Our findings confirmed the earlier result obtained by

Saygm et al. (2011) that the range of influence become

larger as the number of parameters for calculating the soil

susceptibility to erosion increases.

Table 5 Parameters of the

fitted semivariograms for the

soil erodibility factors obtained

by using four different models

Soil erodibility

factor

No. of

observation

Best fit

model

Nugget,

C0

Sill,

C0 ? C

Range,

A0

C0/(C0 ? C)

(%)

R2

K1 669 Spherical 0.002 0.008 1.97 25.00 0.925

K2 669 Spherical 0.011 0.219 6.43 5.02 0.900

K3 669 Spherical 0.018 0.131 7.07 13.74 0.963

K4 669 Spherical 0.012 0.072 6.17 16.66 0.991

Fig. 3 Map displaying the spatial variation of soil erodibility factor in the Bundelkhand region obtained using four different models
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Spatial map of soil erodibility factors

The spatial patterns of soil erodibility obtained through

four different models are presented in Fig. 3. Ordinary

kriging (OK) interpolation method was used to generate

the surface maps. The general trend was that lower soil

erodibility was observed in western and southeastern part

and higher soil erodibility was observed in the northern

part of the study area. The northern part of Bundelkhand

is called UP-Bundelkhand, situated on the southern bank

of the Yamuna river and intensively cultivated. The

intensive cultivation triggered the dominance of silt

particles and lack of SOM in the soil system. This

eventually led to the proneness to soil erosion. The

Table 6 Error statistics of the

soil erodibility factors obtained

by using four different models

Soil erodibility factor K1 K2 K3 K4

Mean error 7.32 9 10-4 -3.56 9 10-5 -1.03 9 10-4 -3.83 9 10-6

Root mean square error 0.015 0.011 0.008 0.006

Average standard error 0.025 0.013 0.005 0.009

Mean standardized error 0.023 0.010 0.003 0.007

Root mean square standardized error 0.775 0.872 1.074 0.976

Fig. 4 Error maps of soil erodibility factor in the Bundelkhand region obtained using four different models
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southern part of Bundelkhand, called MP-Bundelkhand is

bestowed with huge forest land. Higher SOM at wood-

lands reduced the risk of soil erosion. Apart from these

general trends there were differences in the interpolated

maps due to the differences in the input parameters of

different erodibility models. When SPP has been incor-

porated in the soil erodibility model K2, it brought some

additional area under high erosion risks which were

otherwise under low erosion risk as depicted by model

K1. The areal extent of high erosion risk as depicted by

models K1 and K2 was drastically reduced to moderate

and low risk area when calculated through the models K3

and K4. The incorporation of SOM in the models K3 and

K4 led to the reduction of high erosion risk area. This

suggested that SOM, which was used by Eqs. 4 and 5 as

a predictor parameter for K3 and K4 and not used by

Eqs. 1 and 3 for K1 and K2, together with PSD was the

critical variable to determine the RUSLE-K factor.

Similar findings were also observed by Saygm et al.

(2011) in Turkey. Land use types played the most

prominent role in determining the variation of soil

properties and thereby dictated the risk of soil erosion.

Performance of interpolation method

The performance of the ordinary kriging interpolation

method was analyzed through cross validation of the

observed and predicted values. To ascertain the predict-

ability of the developed semivariogram models, the pre-

diction error statistics were estimated (Table 6). For all the

models, the error terms, ME, MSE, ASE, and RMSE were

close to zero and RMSSE were close to one. This indicated

that the ordinary kriging interpolation method was ade-

quate and reliable to predict the spatial distribution of soil

erodibility. Out of the four models, the model developed by

Torri et al. (1997) performed best in the study area, fol-

lowed by the Wischmeir and Smith (1978) model. One

noteworthy finding was that the ME values of K2, K3 and

K4 were negative (Table 6). This was not an unusual result,

considering the unbiased nature of the geostatistical

methods. The negative ME suggested that the theoretical

model was overestimating the soil erodibility (i.e.,

observed \predicted).

To ascertain further reliability of the surface maps

developed by OK, the standard error maps were also cre-

ated using OK (Fig. 4). The error maps indicated that the

interpolated surface maps to predict the spatial variation of

soil erodibility were quite reliable and can be used for

developmental purpose. Noteworthy finding was that

higher error values were associated with the areas having

low sampling density and where higher potential erosion

risk was expected.

Conclusions

Geospatial upscaling of soil erodibility factor, calculated

from four commonly used models, which differed from

each other according to their input parameters, was done to

identify the suitability of the models. Soil erodibility varied

under various land uses, depending upon the soil proper-

ties. The soil erodibility factors of woodlands and grass-

lands were lower than croplands and fallowlands, which

were subjected to human induced degradation. Fibrous root

systems coupled with coarser soil particles in the grass-

lands and higher sand and SOM content in the woodlands

protect the soils from erosion. The spatial patterns of soil

erodibility factors obtained from the models were suc-

cessfully acquired over the study area and quite reliable.

These can be used for developmental purpose and for

planning from the perspective on land degradation assess-

ment. It can also be concluded that along with the intrinsic

soil properties, the dynamic soil properties, those changes

in land use, influence the spatial prediction of soil erod-

ibility factor. The model which used SOM along with PSD

agreed better with the variations in land use to predict

surface variation of soil erodibility factor.
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