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Aggregate stability is a useful soil physical dynamic index of soil resistivity to
surface wind and water erosion in all ecosystems, especially, in arid and semi-arid
regions. Two machine learning techniques including support vector machines
(SVMs) and artificial neural networks (ANNs) were used to develop predictive
models for the estimation of geometric mean diameter (GMD) of soil aggregates.
An empirical multiple linear regression (MLR) model was also constructed as the
benchmark to compare their performances. Furthermore, the influence of feature
space dimension reduction using parallel genetic algorithm (PGA) on the prediction
accuracy of all investigated techniques was evaluated. The ANN model achieved
greater accuracy in GMD prediction as compared to the MLR and SVM models.
The obtained ERROR% value in GMD prediction using the ANN model was
6.9%, while it was 15.7 and 10.6% for the MLR and SVM models, respectively. Fea-
ture selection using PGA improved the prediction accuracy of all investigated tech-
niques. The coefficient of determination (R2) values between the measured and the
predicted GMD values using PGA-based MLR, SVM, and ANN models increased
by 20.0, 12.2, and 8.8% in comparison with the proposed MLR, SVM, and ANN
models. In conclusion, it appears that the PGA-based ANN model could be con-
sidered as an alternative to conventional regression models for the GMD prediction.

Keywords artificial neural networks (ANNs), geometric mean diameter (GMD),
parallel genetic algorithms (PGAs), support vector machines (SVMs)

Aggregate stability (AS) is a useful physical dynamic index of soil resistivity to wind
and water erosion that can be evaluated by various laboratory-based techniques and
indices (such as geometric mean diameter, GMD; Calero et al., 2008). Nevertheless,
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most of these techniques are generally time-consuming and=or rather cumbersome,
particularly, when a large number of samples are required to be characterized
for application on a large scale. Therefore, it would be advantageous if AS could
be estimated indirectly from more easily available data.

Thus far, in many researches the emphasis has been placed on conventional lin-
ear regression methods (such as multiple linear regression, MLR) to predict AS while
they can only fit a linear function to predictor-AS data pairs. However, the effect of
the predictors on AS is not usually linear in nature. Recently, soil scientists have
shown a keen interest in developing nonlinear indirect approaches to overcome this
problem. Among the evaluated techniques, machine learning (ML) approaches have
attracted greater interest (Muttil & Chau, 2006; Twarakavi et al., 2009). The ML
techniques such as artificial neural networks (ANNs) and support vector machines
(SVMs) can be used to provide a low-cost approach with a tolerance of imprecision,
uncertainty and approximation, and to avoid over-fitting problems. This makes ML
capable of analyzing large-scale data and thus solving the problems which conven-
tional linear methods have not yet been able to solve in a satisfactory cost-effective
manner (Chau et al., 2005; Wang et al., 2009; Huang et al., 2010).

Various ML techniques have been studied and applied in the last decades for
scientific research and have been found to be useful in agricultural sciences (Muttil
& Chau, 2006; Qiao et al., 2010; Besalatpour et al., 2012). Owing to the large number
of them now available, finding an appropriate one to use for a site-specific problem
is becoming increasingly difficult for novice modelers. Therefore, it is distinctly desir-
able to introduce expertise in the system with a view to helping novice users to
choose an appropriate ML technique. Hence, this study was conducted to evaluate
the effectiveness of SVM and ANN techniques in developing prediction functions for
estimating soil aggregate stability by considering this hypothesis that: they may pro-
vide much lower variance and smaller magnitude of errors for the GMD prediction
in comparison with the commonly used linear regression prediction techniques. We
also expected that SVM technique will show a greater potential in the GMD predic-
tion in comparison with ANN technique.

On the other hand, in many scientific research and engineering applications,
researchers are interested in identifying the most important factors influencing a cer-
tain outcome of interest. In addition, original datasets often contain features some of
which are either redundant or irrelevant to the target concept (Fayyad et al., 1996).
Another objective of this study was to evaluate the effects of feature space dimension
reduction using parallel genetic algorithm (PGA) on prediction accuracy of the
investigated techniques.

Materials and Methods

Brief Description of the Modeling Approaches

Feature Selection Using Parallel Genetic Algorithm
Real-world datasets often contain a large number of features some of which are
redundant and=or irrelevant to the target variable(s). This usually happens when it
is unknown which features are related to a target concept and particularly when
domain knowledge is unavailable or incomplete. Many features are then introduced
to represent an unknown domain. The existence of irrelevant and=or redundant fea-
tures may make vague the distribution of really relevant features for a target concept
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and thus cause damage to the model. Data feature selection and reduction techni-
ques may be useful in solving this problem (Fayyad et al., 1996).

Different data feature selection techniques can be adopted for feature space
dimension reduction. Among them, the parallel genetic algorithm (PGA) outper-
forms all algorithms in complex real problems (Zhu and Chipman, 2006). PGAs
are an extension of the traditional genetic algorithm (GA) sequential models which
represent a new class of algorithms in that they search the space of solutions differ-
ently. A PGA basically consists of various GAs, each processing a part of the popu-
lation or independent populations, with or without communication between them.
The main advantage of a PGA over GA is to reduce the processing time required-in
order to achieve an acceptable solution-to explore a solution space.

Support Vector Machines (SVMs)
SVMs are extended based on statistical learning to solve a regression problem with a
given set of training data

D ¼ fðxi; yiÞgni¼1

where xi is the sample vector and xi2X, yi is the corresponding response, and yi2R,
and n is the total number of samples (Vapnik, 1995, 1998). The regression function of
SVM is represented as:

y ¼ f ðxÞ ¼ wi/iðxÞ þ b ð1Þ

/i is the input sample and wi and b are coefficients estimating by minimizing the risk
function:

rðCÞ ¼ C
1

N

XN
i¼1

leðdi; yiÞ þ
1

2
xk k2 ð2Þ

where

Leðd; yÞ ¼
d � yj j � e if d � yj j � e

0 otherwise

� �
ð3Þ

Then, Eq. (2) is transformed into the following constrained form:

1

2
xk k2þC

XN
i¼1

ðni þ n�i Þ ð4Þ

subject to:

xi/ðxiÞ þ bi � di � eþ n�i ;

di � xi/ðxiÞ � bi � eþ ni; ni; n
�
i ; i ¼ 1; 2; . . . ;N

where ni and n�i are the corresponding positive and negative errors at the i-th
point, respectively. The constrained optimization problem then solved using the
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Lagrangian theory by:

L ¼ 1

2
xk k2þC

XN
i¼1

ðni þ n�i Þ �
XN
i¼1

aiðxi/ðxiÞ þ b� di þ eþ niÞ

�
XN
i¼1

a�i ðdi � xi/ðxiÞ � bþ eþ n�i Þ �
XN
i¼1

ðbini þ b�i n
i
iÞ ð5Þ

Equation (5) is minimized with respect to primal variables xi, b, ni and n�i , and
maximized with respect to the non-negative Lagrangian multipliers a�i and b�i .
Finally, the Karush-Kuhn-Tucker conditions are applied to the regression to have
a dual Lagrangian form of:

nðai; aiiÞ ¼
XN
i¼1

diðai � a�i Þ � e
XN
i¼1

ðai � a�i Þ �
1

2

XN
i¼1

XN
j¼1

ðai�a�i Þðaj � a�j Þkðxi; xjÞ ð6Þ

The Lagrange multipliers ai and a�i are calculated and satisfying to the equality
ai; a�i ¼ 0 by using Eq. (6). The optimal desired weight vector of the regression hyper
plane is expressed as:

x� ¼
XN
i¼1

ðai � ajiÞkðx; xiÞ ð7Þ

Thus, the regression function can be explained as:

f ðx; a; a�Þ ¼
XN
i¼1

ðai � a�i Þkðx; xiÞ þ b ð8Þ

The K(xi, x) is named the kernel function. The radial basis function (RBF) was
used as the kernel functions in this study:

Kðxi; xÞ ¼ exp
xi � xk k
2r2

� �
ð9Þ

where r is kernel parameter (Cristianini and Taylor, 2000; Li et al., 2009).

Artificial Neural Networks (ANNs)
ANNs are an extension of ML methods made up of a number of interconnected pro-
cessing layers. Generally, an ANN is consisted of three parts: an input layer, one (or
several) hidden layer(s), and an output layer of neurons. Thus, the layers between the
input and output layers are called hidden layers which may contain a large number
of hidden processing elements. The weights are used to fully interconnect each neigh-
boring layer. The received information from the outside by the input layer neurons
are transmitted to the neurons of the hidden layer. Finally, the output layer neurons
produce the network estimations to the outside world (Qiao et al., 2010).

Compilation of the Data
The study area was a part of the Bazoft watershed (31� 370 to 32� 390 N and 49� 340 to
50� 320 E) located in northern part of Karun river basin in central Iran. Many parts
of the watershed are severely susceptible to wind and water erosion where surface
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soil aggregate stability could be a proper index of their resistivity to erosion and thus
its estimation can be a valuable source of information for other modelers. A total of
160 soil samples were collected (October 2010) from the top 5 cm soil layer to pro-
duce a measurement of the diversity of soil properties in those parts. The soil samples
were then air-dried and ground to pass a 2-mm sieve for the determination of intrin-
sic soil properties. Soil organic matter (SOM) content was determined by the
Walkley-Black method (Nelson and Sommers, 1986). Particle size distribution in
the soil samples (clay, silt, and sand) were measured using the procedure described
by Gee and Bauder (1986) and calcium carbonate equivalent (CCE) content was
determined by the back-titration method (Nelson, 1982).

The Kemper and Rosenau (1986) method was used to determine wet-aggregate
stability and geometric mean diameter (GMD) of the aggregates was determined as
an indicator of AS. Briefly, 50 g of the <4.75mm aggregates were placed on the
topmost of a nest of sieves of mesh size 2, 1, 0.5, and 0.25mm. The samples were first
immersed in the water and then sieved by moving the sieve set vertically. The soil
mass on each sieve was dried at 105�C for 24 h, weighted and corrected for the
sand=gravel particles to obtain the proportion of the water-stable aggregates. The
GMD (mm) of water-stable aggregates was calculated using the following equation:

GMD ¼ exp
Xn
i¼1

WiLogXi

" #
ð10Þ

where Xi is the arithmetic mean diameter of each size fraction (mm), and Wi is the
proportion of the total water-stable aggregates in the corresponding size fraction
after deducting the weight of sand=gravel particles as previously indicated.

The topographic attributes of the representative points including elevation,
slope, and aspect were characterized using a 20-m by 20-m digital elevation model
(DEM). For quantifying the vegetation in each representative point, the normalized
difference vegetation index (NDVI) was derived using Indian Remote Sensing (IRS)
satellite photo of April 2008 at a spatial resolution of 24-m by 24-m (Indian Space
Applications Centre, Ahmedabad, India).

Two different sets of the available properties were then prepared as inputs to
each investigated model. The first set consisted of all measured parameters and
the second set included selected features resulted from the PGA analysis. Each data
set was divided into two sets consisted of training and testing. The training set of 113
samples was obtained out of total 160 and the remained 47 soil samples were used as
the testing set. The Clementine software (International Business Machines Corpor-
ation, Chicago, USA) was used to build the models. For the SVM analysis, the
RBF was used as the kernel function and a feed forward neural network with back
propagation training algorithm was employed for the development of the ANN
models. The number of hidden neurons and epochs in the ANN analysis as well
as number of generations and parallel paths in the PGA analyses were determined
by a trial and error procedure. The mean square error (MSE), mean absolute error
(MAE), and error percentage (ERROR%) between the measured and the predicted
GMD values were used to evaluate the performance of the models.

Results

Based on the PGA analysis, the clay, NDVI, and aspect parameters were accounted
as the redundant features among the input parameters (i.e., clay, sand, silt, SOM,
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CCE, slope, aspect, elevation, and NDVI) for the GMD prediction and thus they
were not included in the databases used to build the models combined with PGA
(PGA-based models).

Data redundancy reduction using PGA improved the model performances in the
GMD prediction (Table 1). For instance, the obtained MSE value in GMD esti-
mation by PGA-MLR model was 9% lower than that obtained by the constructed
MLR model using the original data set (all of the features). The MAE and
ERROR% values for the PGA-based MLR model were 8.9% and 15.5%, respect-
ively. A similar trend in GMD prediction using both constructed MLR models
was also observed for most of the samples (Figure 1). According to the evaluation
indices, it appears that the conventional MLR model did not perform well in esti-
mating the GMD. The high observed error values in GMD prediction using both

Table 1. Goodness-of-fit of the proposed MLR, SVM, and ANN models for the
prediction of GMD

Model type

Evaluation criterion

ERROR (%) MAE (%) MSE (%)

MLR 15.7 9.0 1.2
PGA-MLR 15.5 8.9 1.1
SVM 10.6 6.0 0.5
PGA-SVM 6.9 4.0 0.2
ANN 6.9 4.0 0.2
PGA-ANN 5.6 3.2 0.1

Note: MAE: mean absolute error, MSE: mean square error, GMD: geometric mean diam-
eter, MLR: multiple linear regression, SVM: support vector machine, ANN: artificial neural
network, and PGA: parallel genetic algorithm.

Figure 1. Comparison of the measured and predicted GMD values using the MLR (a), SVM
(b), and ANN (c) models with and without PGA (GMD: geometric mean diameter, MLR:
multiple linear regression, SVM: support vector machine, ANN: artificial neural network,
PGA: parallel genetic algorithm).
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MLR models (Figure 2) also confirm this finding that MLR models seem to be
unreliable for the GMD prediction in the study area.

Table 2 shows the values of SVM parameters for the two proposed SVM
models (i.e., the SVM and PGA-SVM models). Whilst the SVM parameters resulting
from both SVM models may be satisfactory in terms of C and r parameter values,
the PGA-based SVM model seems to be better. For accuracy measures, the SVM

Figure 2. Comparison of the observed errors in the GMD prediction using the MLR (a), SVM
(b), and ANN (c) models with and without PGA (GMD: geometric mean diameter, MLR:
multiple linear regression, SVM: support vector machine, ANN: artificial neural network,
PGA: parallel genetic algorithm).

Table 2. SVM parameter values for the prediction of GMD

Model type

SVM parameter

Kernel parameter (r)
Insensitive

parameter (E)
Punishment

coefficient (C)

SVM 0.5 0.1 10
SVM with PGA 0.4 0.05 30

Note: GMD: geometric mean diameter, SVM: support vector machine, and PGA: parallel
genetic algorithm.

Table 3. ANN parameter values for the prediction of GMD

Model type

ANN parameter

No. of hidden neurons No. of epochs Learning function

ANN 15 32 TRILMN
ANN with PGA 7 21 TRILMN

Note: GMD: geometric mean diameter, ANN: artificial neural network, and PGA: parallel
genetic algorithm.
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technique provided lower variance and smaller magnitude of errors in the GMD pre-
diction than the MLR models (see Table 1 and Figures 1 and 2). The MAE, MSE,
and ERROR% values for the GMD prediction using the SVM model were 6.0, 0.5,

Figure 3. Scatter plots displaying relationships between the measured and the predicted GMD
values for the test sample sets of the MLR (a), SVM (b), and ANN (c) models (GMD: geo-
metric mean diameter, MLR: multiple linear regression, SVM: support vector machine,
ANN: artificial neural network).

Figure 4. Scatter plots displaying relationships between the measured and the predicted GMD
values for the test sample sets of the PGA-based MLR (a), SVM (b), and ANN (c) models
(GMD: geometric mean diameter, MLR: multiple linear regression, ANN: artificial neural
network, PGA: parallel genetic algorithm).
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and 10.6%, respectively (Table 1). Application of the PGA-based SVM model also
resulted in the lower ERROR% value of 6.9% compared with the SVM model.

In neural network analysis, 15 and 7 hidden neurons and epoch set numbers of
32 and 21 were generated as the satisfactory results (evaluated by the network
performances) for the PGA-ANN and ANN models, respectively (Table 3). The
advantage of ANN was more pronounced in the GMD prediction, where lower
relative errors have been encountered and the predicted GMD values were in close
proximity of the observed values (Figures 1 and 2). The MAE and MSE values
for the constructed ANN model with all of the features were 4.0 and 0.2%, respect-
ively (Table 1). The coupling of ANN and PGA improved the prediction accuracy
where the ERROR% in the GMD prediction decreased by around 23% using the
PGA-based ANN model as compared to the ANN model without PGA.

Comparing the obtained results from the proposed MLR, SVM, and ANN
models also revealed that the PGA-based ANN model was better in predicting the
soil aggregate stability among the evaluated models (see Table 1). The obtained coef-
ficients of determination (R2) values between the measured and the predicted GMD
values using all investigated approaches also confirm this finding (Figures 3 and 4).

Discussion

In the PGA analysis, the sand, silt, SOM, CCE, slope, and elevation parameters were
accounted as important features affecting the GMD prediction. In many researches,
the direct and indirect effects of these soil properties and topographic parameters
on AS are reported (Amezketa, 1999; Canton et al., 2009). Soil particles influence
aggregation because of their specific surface area, cation exchange capacity, and other
their physical and chemical properties. SOM content is also considered as a cementing
agent for aggregation and can affect GMD value by stabilizing the aggregates. CCE
content also influences soil aggregation through its cementing effects and preventing
aggregate dispersion. Topography characteristics also affect AS, in particular, through
their influences on the dynamics of soil structure and soil properties such as soil water
content, SOM, soil texture, carbonate concentration, mineralogy, and plant establish-
ment and development. In addition, they may influence the rate of weathering and
erodibility of soils and thus geometric mean diameter of soil aggregates.

From the obtained results in the GMD prediction, it appears that MLR and
SVM approaches may be poorer in predicting the GMD than ANN technique. How-
ever, the predictive accuracy of the proposed SVM models (especially, the
PGA-based SVM model) was not considerably lower than that of ANN technique.
The main reason for these findings is that the effect of the predictors on the GMD
may not be linear in nature. While the investigated linear models can only fit a linear
function to input-GMD data pairs, the nonlinear ML models were probably capable
of contorting themselves into a complex form to accommodate the spatial and tem-
poral changes of the input-GMD data pairs. Another reason may be attributed to
less data availability for developing reasonable MLR models for the GMD esti-
mation. ANNs, in contrast, can recognize the relationships between input-GMD
data pairs with relatively less data because of their distributed and parallel comput-
ing nature. Also, in constructed SVM models with the kernel function, the original
inputs are first nonlinearly mapped into the feature space and the resulted E-SVM
becomes so flexible that can be used to model complicated nonlinear relationships
(Li et al., 2009). Therefore, it appears that in the case of insufficient data for reliable
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regression models to predict GMD, advanced models such as ANNs show a better
performance.

Stated plainly, the optimal feature set obtained from the PGA analysis resulted
in maximizing the performance of investigated methods for the GMD prediction.
The coupling of investigated methods and PGA improved the model performances
since it takes advantages of the local optimization of the ML techniques and the glo-
bal optimization of PGA. It is reasonable that a ML-PGA model with no irrelevant
and redundant features is more flexible than a ML model with real-world dataset
that often contain a large number of features some of which are redundant and=
or irrelevant to the GMD (Chau et al., 2005). In addition, existence of irrelevant
and redundant features in the input data sets will increase the dimensionality of
the feature space which can lead to increasing the complexity of interactions among
the features and thus the degree of noise in the GMD prediction.

There are limited published studies dealing with the use of nonlinear approaches
for the prediction of AS and the emphasis has been placed on the use of conventional
linear regression models in many researches. Bazzoffi et al. (1995), for instance, eval-
uated the efficacy of different linear models for predicting AS from intrinsic soil
components and reported that the model developed from soil chemical properties
was the most reliable for estimating the AS; however, its construction is very
time-consuming. Scheyer (1998) used a linear model to quantify the contributions
of different parameters to the composition and size distribution of water-stable
aggregates and found that the chemical binding of water-stable aggregates smaller
than fine sand size was a function of organic carbon content, iron oxide content,
and clay activity. Skidmore and Layton (1992) developed an empirical linear model
to predict dry soil aggregate stability from non-easily available soil properties (spe-
cific surface area, water content at -1500 J=Kg, clay content, and geometric mean
diameter of primary particles). They reported that the relationship between AS
and specific surface area was better than that with geometric mean diameter of pri-
mary particles, but neither predicted AS as well as water content and clay fraction.

Conclusion

The presented method in the current study provides a robust statistical framework to
compare models developed under distinct learning techniques and feature sets for the
geometric mean diameter of soil aggregates. The optimal feature set obtained from
the PGA analysis resulted in maximizing the performance of all investigated meth-
ods. A vast difference appears to be between the investigated techniques by consider-
ing their prediction accuracies: ANN and SVM techniques provided much lower
variance and smaller magnitude of errors as compared to MLR technique. Whereas
the results from both PGA-based ANN and SVM models may be satisfactory, the
performance comparison between them shows that ANN technique may provide
smaller magnitudes of errors in the GMD estimation. Nevertheless, as other res-
earchers have reported a better prediction performance of SVM as compared to
ANN (Twarakavi et al., 2009, for instance), we hypothesize that it might be worth-
while to use a combined SVM-ANN model (complemented by PGA) for the predic-
tion of aggregate stability. However, further researches in this area should be
conducted and need to be validated in the future, especially, for soils in different
management systems. Finally, we believe that the introduced methods here will
provide a novel tool for quantitative estimation of soil aggregate stability as an
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alternative to existing conventional linear models for soil scientists who look for an
aggregate stability prediction tool to achieve smallest error and highest efficiency.
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