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Digital soil mapping (DSM) involves acquisition of field soil observations and
matching them with environmental variables that can explain the distribution of soils.
The harmonization of these data sets, through computer-based methods, are increas-
ingly being found to be as reliable as traditional soil mapping practices, but without
the prohibitive costs. Therefore, the present research developed decision tree models
for spatial prediction of soil classes in a 720 km2 area located in an arid region of cen-
tral Iran, where traditional soil survey methods are difficult to undertake. Using the
conditioned Latin hypercube sampling method, the locations of 187 soil profiles were
selected, which were then described, sampled, analyzed, and allocated to six Great
Groups according to the USDA Soil Taxonomy system. Auxiliary data representing
the soil forming factors were derived from a digital elevation model (DEM), Landsat
7 ETMþ images, and a map of geomorphology. The accuracy of the decision tree
models was evaluated using overall, user, and producer accuracy based on an inde-
pendent validation data set. Our results showed some auxiliary variables had more
influence on the prediction of soil classes which included: topographic wetness index,
geomorphological map, multiresolution index of valley bottom flatness, elevation,
and principal components of Landsat 7 ETMþ images. Furthermore, the results have
confirmed the DSMmodel successfully predicted Great Groups with overall accuracy
up to 67.5%. Our results suggest that the developed methodology could be used to
predict soil classes in the arid region of Iran.
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Introduction

Traditionally, soil mapping in Iran involves soil sampling, classification, and the
extrapolation of this information using aerial-photograph interpretation and expert
knowledge. However, this approach is labor-intensive, subjective, time-consuming,
and expensive. This is problematic in countries such as Iran where large agricultural
areas are yet to be mapped with fine scales. In order to develop detailed knowledge
regarding the spatial distribution of the soil resource, digital soil mapping (DSM)
techniques are increasingly being employed to add value to traditional soil maps
(McBratney et al., 2003). The basic premise that underlies DSM is various soil form-
ing factors need to be considered during the development of a soil map. In order to
generate maps of these factors cost-effectively, auxiliary data variables that are avail-
able throughout the area are used as surrogate information (McBratney et al., 2003).
In arid areas, soil forming factors such as parent material, relief, and age of land sur-
face can easily be obtained from geological maps, remote sensing data, and digital
elevation models (DEM) (e.g., Canton et al., 2003).

A further requirement in DSM is that the relationship between soil and auxiliary
variables is implemented by applying empirical models (Kempen et al., 2009). Vari-
ous modeling techniques have been used for the digital mapping of soil classes. These
methods include logistic regressions (Hengl et al., 2007; Jafari et al., 2012), artificial
neural networks (McBratney et al., 2003), machine learning systems (Lacoste et al.,
2011), and decision tree analysis, which is perhaps the most commonly employed.
One of the earliest studies using this approach (Bui et al., 1999) extracted predictive
soil decision rules from a geological map (i.e., parent material), climate maps, and
terrain attributes (i.e., relief). This approach was further improved upon by Moran
and Bui (2002) who added remotely sensed satellite imaging data. Luoto and Hjort
(2005) used several methods, including regression, decision tree analysis, and neural
networks for mapping geomorphic surfaces in Finland. They concluded that decision
tree analysis performed much more strongly than the other methods. Similarly,
Moonjun et al. (2010) tested whether artificial neural network and decision tree
model could be used to predict soil classes in Thailand. They point out decision tree
model had higher performance. Scull et al. (2005) reported similar success with
decision tree analysis when using quite different auxiliary data to predict soil units
in a desert ecosystem in the USA. Caten et al. (2012) also reported high performance
of decision tree model for spatial prediction of soil classes in Brazil. Furthermore,
Grinand et al. (2008) applied the decision tree model to predict the soil units at an
unvisited area. Despite the rapid progression of DSM across varied landscapes
and land uses, few studies have attempted to map soil classes in arid regions of
Iran. At present, the only available soil map in Iran is a recently prepared national
soil map, at a scale of 1:1,000,000. Hengl et al. (2007) applied different approaches
to predict World Reference Base (WRB) soil groups in Iran. They used the soil
data base of Iran to test different soil-class interpolators such as supervised classi-
fication using maximum likelihoods, multinominal logistic regression, regression
kriging on membership, and classification of taxonomic distances. They concluded
the best prediction was achieved using regression kriging of memberships. However,
although these maps are suitable for national planning, they lack fine detail.
Jafari et al. (2012) used indirect method to predict the presence of diagnostic hori-
zons using decision tree and binary logistic models, and a direct method that used
multinomial logistic regression approaches to predict soil Great Groups in Zarand,
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Iran. In the present research we proposed a simpler method to predict directly
soil Great Groups using decision tree analysis. Jafari et al. used simple stratified
random sampling method but we used conditioned Latin hypercube sampling that
targets the full distribution of covariates. They also used a 30m DEM from ASTER
to compute terrain attributes but our DEM is derived from more accurate RADAR.
In addition, we conducted wavelet analysis to remove noise and artifacts from the
DEM. Overall, in the present study, our objective is to predict a soil map of taxo-
nomic level up to Great Groups using digital soil mapping technique (i.e., decision
tree analysis) in an arid area where traditional soil survey methods are difficult to
undertake.

Material and Methods

Study Area

The study area was the Ardakan region in the province of Yazd located in central
Iran. It covers an area of 72,000 ha (Figure 1a). The region experiences an arid cli-
mate with a mean annual precipitation of 75mm and minimum and maximum tem-
perature of 7.2�C and 43�C, respectively. The soil moisture and temperature regimes
are aridic and thermic, respectively. The major geological units are composed of red
gypsiferous marls and brown to grey limestone. The major landforms of the region
are—from east to west—mountain, alluvial fans, salt plain, coalescing alluvial fans
(Bajadas), and gypsiferous hills, respectively (Figure 1b).

Acquisition of Auxiliary Data

The digital soil mapping approach used in this paper is the scorpan model
(McBratney et al., 2003):

S ¼ f s; c; o; r; p; a; nð Þ þ e;

where S, the soil class to predict, is a function of soil (s), climate (c), organisms (o),
relief (r), parent materials (p), age (a), and spatial position (n); and where e is the
error. In a DSM approach, a set of one or more continuous (i.e., digital elevation
model and remote sensing) or categorical (i.e., geomorphology map) variables could
represent each of the soil forming factors.

Terrain Attributes

Primary and secondary DEM variables or terrain attributes are commonly used in
predictive soil models. In the present research, multiresolution ridgetop flatness
index (MrRTF; Gallant and Dowling, 2003), multiresolution index of valley bottom
flatness (MrVBF; Gallant and Dowling, 2003), valley depth (Abdel-Kader, 2011),
elevation (National Cartographic Center, 2010), altitude above channel network
(Olaya, 2004), modified catchment areas (Olaya, 2004), mid-slope position (Bohner
and Antonic, 2009), topographic wetness index (Moore et al. 1991), and catchment
slope (Scull et al., 2005) were derived from a DEM (Figure 2a) (grid size of
10� 10m; National Cartographic Center, 2010). Figure 2a illustrated that most part
of the study area (i.e., especially in the middle part) is dominantly flat. Given that
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soils occurring in a flat area are not strongly influenced by local topographic
characteristics, we do not regard local terrain attributes such as slope or slope
curvatures as important auxiliary data (Scull et al., 2005).

Figure 1. (a) Location of the Ardakan region study area in central Iran and (b) spatial distri-
bution of soil units draped over Landsat ETMþ image (False color composite of bands 1, 2,
and 3) [A: Mountain landscape with rock surfaces, B: Alluvial fan, C: Playa, with fine and to
some extent coarse alluvial sediment, D: coalescing alluvial fans (Bajadas), E: gypsiferous hills,
F: Pistachio orchard].
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Figure 2. Digital elevation models (a) and delineated geomorphic surfaces (b) (codes refer to
Table 2).
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Remote Sensing

We initially computed some band ratios and normalized difference vegetation index
(Boettinger et al., 2008) was found to be the best representation of the vegetation
variable. Other band ratios (i.e., clay index (Boettinger et al., 2008), carbonate
index (Boettinger et al., 2008), gypsum index (Nield et al., 2007), salinity index
(Metternicht and Zinck, 2003), and brightness index (Metternicht and Zinck,
2003) were also computed to represent parent material and soil factors at the study
area. In addition, principal component analysis (PCA) was computed on the ETMþ

bands, based on its correlation matrix (Nield et al., 2007). PCA is an effective
approach to discriminate saline soils in arid regions (Metternicht and Zinck, 2003).

Geomorphology Map

A geomorphology map for the study area was also prepared, based on a nested
geomorphic hierarchy approach defined by Toomanian et al. (2006). In this
approach, aerial photographs (1:50,000) were used to delineate geomorphological
entities in four levels, which included: landscape (1:250,000), landform (1:100,000),
lithology (1:100,000), and geomorphological surface (1:50,000). After ortho-photo
geo-referencing of aerial photographs, delineated boundaries of geomorphological
surfaces were inserted in a GIS environment. The study area had 25 geomorpho-
logical units (Figure 2b and Table 1).

For representing continuous spatial variations and data modeling, all data
layers were registered to a common grid of 30m spacing.

Wavelet Analysis

In this study, the DEM was originally prepared from RADAR images (National
Cartographic Center, 2010), and consequently contained a substantial amount of
noise. Therefore, a two-dimensional discrete wavelet transformation was carried
out using MATLAB software (MathWorks, 2010) in order to spatially decompose
the terrain attribute layers (Lark and Webster, 2004; Lark and McBratney, 2002)
and remove the noise and artifacts. Finally, the data layers were decomposed
into four levels: L1, L2, L3, and L4. These levels corresponded to pixel sizes of
20, 40, 80, and 160m, respectively.

Data Collection and Soil Sample Analysis

Latin hypercube sampling (LHS) is a procedure that ensures a full coverage of the
range of each covariate by maximally stratifying the marginal distribution. LHS
involves sampling n values from the prescribed distribution of each of k (in this
case¼ 10) covariates X1, X2, . . .Xk. The cumulative distribution for each covariate
is divided into n equi-probable intervals. A value is selected randomly from each
interval. The n values obtained for each variable are matched randomly with those
of the other variables (Minasny and McBratney, 2006). The locations of 187 soil
samples were selected based on the Latin hypercube sampling method. The model
used ten auxiliary variables showing the most variation based on the coefficient of
variation. Auxiliary variables used for sample selection include; Length slope factor,
stream power, slope length, slope, aspect, geomorphology units, and ETMþ images
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(bands 3, 4, 5, and 7). Figure 1b shows the location of the 187 soil profiles. At each
site, pedons were dug down to 1.5m and then the horizon characteristics were
described and allocated to classes according to the US Soil Taxonomy up to Great
Group level (Soil Survey Staff, 2010). The soil profiles were allocated into two orders
(i.e., Aridisols and Entisols), five sub-orders (i.e., Calcids, Cambids, Gypsids, Salids,
and Orthents), and six Great Groups (Haplocalcids, Haplocambids, Calcigypsids,
Haplogypsids, Haplosalids, and Torriorthents). The samples, taken from all genetic
horizons, were air-dried at room temperature and ground to pass through a 2-mm
sieve prior to analysis. The particle size distribution was determined using the
hydrometer method (Gee and Bauder, 1986). Electrical conductivity (EC) and soil
reaction (pH) were measured using a conductivity meter (PW-9527 Philips, Poland)
and pH meter (EYELA-2000, Rikakikai, Japan), respectively, after preparation
of saturation pastes of the soil samples. Organic carbon was determined using
the Nelson and Sommers (1982) method. The saturation percentage (SP) was mea-
sured using the gravimetric method and the calcium carbonate equivalent using
the volumetric method. The level of soluble ions (i.e., carbonates, bicarbonates,
sodium, potassium, chlorine, sulfate, calcium, and magnesium) was determined using
common experimental methods (Sparks et al., 1996). Table 2 shows the basic soil
morphological and physico-chemical properties of representative Great Group soil
profiles.

Decision Tree Analysis

A decision tree correlates several independent variables (i.e., auxiliary variables) with
direct or indirect relationships to a target variable (i.e., soil classes) with a tree struc-
ture, generated by partitioning the data recursively into a number of groups. Here,
the See5 decision tree analysis software (Quinlan, 2001) was used to predict soil
classes from the auxiliary data.

Evaluation of Models

In order to test the accuracy of our predictions, the data was divided randomly into
two sets. The larger set was used for training (i.e., 150 points; 80%) and the smaller
set was set aside for validation (i.e., 37 points; 20%) (Schmidt et al., 2008). Accu-
racy of the decision tree model for prediction of soil classes (i.e., Great Groups
level) was evaluated in the error data matrix using descriptive statistical methods
such as user accuracy, producer accuracy, and overall accuracy (Jensen, 1996).
The simplest descriptive statistical method is overall accuracy which is computed
by dividing the total correct (i.e., the sum of the major diagonal) by the total num-
ber of pixels in the error matrix. Producer accuracy, a measure of omission or
exclusion errors, shows how successful the model is in prediction. It is calculated
by dividing the total number of correctly predicted pixels of an individual category
by the total number of pixels given to that category from the reference data. User
accuracy, a measure of commission or inclusion errors, shows how well these map
predictions are represented in reality. It is calculated by dividing the total number
of correctly predicted pixels of a category by the total number of pixels that were
actually classified in that category (Stehman and Czaplewski, 1998; Elnaggar, 2007;
Brus et al., 2011).
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Results

Descriptions of Soil Classes

Rather than presenting descriptive data for all sampling points, short descriptions
are provided for six pedons (i.e., Great Group level) which were selected as represen-
tative (Table 2).

. The mountainous area was dominated by Torriorthents. These profiles are
largely non-saline, with electrical conductivity of saturation paste (ECe) lower
than 2 dSm�1.

. Haplocalcids are mainly formed on limestone parent materials. The diagnostic
features of these profiles are a calcic subsurface horizon, overlain by an ochric sur-
face horizon. The accumulation of carbonates as nodules and pendants can be
found at depths of 15–70 cm. The texture in the surface horizon is clay loam;
and changes to sandy clay loam with depth. Most of the soil observations related
to these taxa are located in a pistachio orchard in the central part of the study
region (Pl111).

. Haplocambids having a cambic horizon covered just 3% of the soil observations
and to some extent was located in combination with Typic Haplocalcids.

. Calcigypsids were characterized by a calcic and gypsic subsurface horizon. Accu-
mulation of gypsum occurred as pendants mostly at depths of 50–100 cm, while
pendants and nodules of carbonates were present in the upper part of profile
(15–50 cm). The surface had finer texture (sandy clay loam) compared with deeper
horizons (sandy loam).

. Haplogypsids exhibited a gypsic horizon characterized by accumulation of
gypsum as pendants, with sizes ranging from 1 cm to over 10 cm. Most soil obser-
vations related to these taxa were found in the gypsiferous hills.

. Haplosalids have a fine texture throughout the profile and the salinity level parti-
cularly in the subsurface horizons was very high, sometimes exceeding 60 dS �m�1.

Descriptions of Auxiliary Data

Principal Component Analysis of the Landsat ETMþ Images
To reduce the total number of ETMþ data, a principal component analysis (PCA)
based on a correlation matrix was computed. Principal component analysis of the
Landsat ETMþ images revealed that the first three components (PC1, PC2, and
PC3) represent 99% of the variation within the images. The first component defined
90% of image variation, and this one is correlated to band 2, which covers the green
range of the spectrum. Figure 3 shows the spatial distribution of the first two prin-
cipal components (PC1 and PC2) of the Landsat ETMþ images. According to
Figure 3a, the largest values for PC1 coincide with the playa landform in middle
of the study area, while the lowest values are associated with mountainous landform.
In PC2 (Figure 3b), the largest values coincide with the irrigated areas and some of
the vegetated areas in the central part of the study area.

Spatial Distribution of the Auxiliary Data
From all the auxiliary variables used at this study, only two of them, which are con-
sidered as the most important predictors and calculated from DEM, are explained
here.
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Figure 3. Some auxiliary data of the Ardakan plain derived from ETMþ images which
included: PC1 (a) and PC2 (b).
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Figure 4. Some auxiliary data of the Ardakan plain derived from DEM which included:
wetness index (a) and MrVBF (b).
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TWI: Figure 4a shows the spatial distribution of the topographic wetness
index. Small values (ffi7) are generally associated with the mountainous area.
Intermediate-large values (between 7 and 14) are associated with parts of the bajada
landforms. High values (>14) corresponded with the playa landform, which showed
a high potential for accumulation of salt materials. The location of the playa region
at the outlet of Ardakan basin suggests that it has received considerable additions of
soluble materials, washed out from the entire watershed. Studies by Moore et al.

Figure 5. The rules defined by decision tree to predict soil Great Group. (WI: wetness index,
MrVBF: Multi-resolution index of Valley Bottom Flatness, PC: Principal component, DEM:
digital elevation model, AaCN: Altitude above channel network, MCA: Modified catchments
area, VD: Valley depth, MSP: Mid-slop position, MrRTF: Multi-resolution ridgetop flatness
index; Refer to Table 1 for definition of geomorphology codes).
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(1991) and Jafari et al. (2012) showed that there is a high correlation between soil
salinity and the wetness index. MrVBF: The multi-resolution valley bottom flatness
index (MrVBF) indicates flat valley bottoms, the depositional areas within
landscapes. Spatial distribution of MrVBF (Figure 4b) shows a similar trend to that
exhibited for the wetness index. For example, the lowest value of MrVBF was
strongly associated with the more elevated parts of the study area. The highest
values corresponded with the central study area, which could be a potential zone
of transport for many materials during excess water flow.

Selection of Auxiliary Data for Decision Tree Analysis
The significance of each type of auxiliary data represented as an attribute percentage,
essentially the percentage of training cases for which the value of that covariate is
used in predicting a class. Analysis of decision tree models showed that some auxili-
ary variables, including wetness index (100%), geomorphology surfaces (84%),
MrVBF (27%), PC2 (13%), DEM (11%), and altitude above channel network
(11%), had the strongest influence (i.e., relative influence of model) on the prediction
of soil Great Groups. Topographic wetness index was the most powerful predictor,
and was utilized by the model for every prediction. Figure 5 also showed the decision
rules for soil groups; it can be easily inferred from this figure that topographic wet-
ness index was the most important predictor. The second most important predictor
was the geomorphological surface map, which was used by the model in 84% of
Great Groups predictions. This emphasizes the role of geomorphologic processes
in soil development as reported in many soil-geomorphology studies (Jafari et al.,
2012; Toomanian et al., 2006). The MrVBF was also incorporated in the model,
though at a lower rate of 27%. However, indices derived from the Landsat images
such as NDVI, clay index, gypsum index, salinity index, and brightness index had
very little influence in mapping of soil classes.

Spatial Distribution of Soil Classes
For prediction of soil classes at the Great Group level, we initially calculated terrain
parameters from original DEM (i.e., 10m pixel size) and its four levels of decom-
posed (i.e., 20, 40, 80, and 160m pixel sizes). Then, we compared the original
DEM and its four levels of decomposed terrain attribute layers. Our results showed

Table 3. Overall accuracy (%) of training and validation data for original DEM and
each of the decomposed levels

DEM Training (%) �RIT (%) Validation (%) RIV (%)

Original DEM (10m) 73.3% 0 54.1% 0
L1 (20m) 84.7% 16.0% 59.5% 9.0%
L2 (40m) 81.3% 11.0% 62.2% 15.0%
L3 (80m) 71.4% �2.0% 56.8% 5.0%
L4 (160m) 86.0% 17.0% 67.6% 25.0%

RIT: Relative Improvement of Training data set; RIV: Relative Improvement of Validation
data set.
RI ¼ Overall accuracy of original DEMð Þ�ðOverall accuracy of decomposed LayersÞ

ðOverall accuracy of original DEMÞ .
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that for prediction of the target variable (Great Group soils), the decomposed data
layers (L1, L2, and L4) had larger accuracy than data layers that were derived from
the original DEM. The data in Table 3 indicates that decomposed data layer L4 pro-
duced the best model and could enhance prediction accuracy by about 25% and 17%
for validation and training data sets compared to the original DEM.

Overall, this model successfully predicted six Great Groups with reasonable
accuracy, up to 67.5% and 92% based on the validation and training data sets,
respectively (Table 4). The confusion matrix for the training data set showed that
the highest accuracy belonged to Haplosalids, with 98% user accuracy, followed
by Torriorthents with 95% user accuracy. In contrast, the worst predictions
were for Haplocambids, with just 50% user accuracy. This low level of accuracy
occurs because the Haplocambid Great Group constituted the smallest number of
observations, and only covered less than 2% of the study area. Similar to training
data set, the confusion matrix for the validation data set (Table 4) showed that
the highest accuracy belonged to Haplosalids, with 86% user accuracy, followed
by Torriorthents and Haplogypsids with 66% user accuracy; Meanwhile,
Haplogypsids have 44% producer accuracy, which is less than producer accuracy
of Torriorthents (i.e., 66%). Similar to training data set, the worst predictions were
obtained for Haplocambids, with 0% user and producer accuracy (Table 4). It means
that the decision rules could not classify this soil Group Group properly due to that
the Haplocambid Great Group constituted the smallest number of observations. The
rules defined by this decision tree analysis (Figure 5) were applied to predict Great
Groups across the study area using the kriging method (Figure 6). It can be seen that

Figure 6. Digital soil map of Great Groups using decision tree analysis.
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Entisols occur primarily in the highlands, where they cover 12% of the area, whereas
Aridisols are mostly located in the lower parts of the region in different
landforms, including bajada, alluvial fans, and playa landforms. Haplosalids with
salic horizons can be found across most of the study area and are particularly
prevalent in the center, which partially coincides with the playa landform. Calcigypsids
and Haplogypsids having just gypsic horizons were strongly associated with geological
units. Most of the Haplocalcids with calcic horizons occur in the center of the study
area (Pl111); wheras, other Haplocalcids occur to some extent in combination with
other Great Groups across the study area.

Discussion

Auxiliary Data Used in Predictive Models

Terrain attributes, such as wetness index and MrVBF, were found to be the most
effective characteristics for explaining the distribution of soil classes. Geomorpho-
logical surface was also important, as an indicator of parent material. Remote
sensing data (PC2) helped to characterize parent materials and the distribution of
vegetation, as well as various soil properties across the study area.

Topographic wetness index, which could depict stationary water content in soils,
indicated the potential areas where salic horizons may be present. MrVBF was also
an effective index in the flat areas, especially for identifying flat valley bottoms
and, consequently, indicated potential zones of transport for sediment and other
materials. Jafari et al. (2012) also confirmed the potential of these covariates for
discrimination of saline soils. According to Figure 4, the soils in the middle part
of the region have the highest potential to receive materials washed out from upper
lands and, as a result, this part of the area was occupied with saline soils (Haplosalids)
(Figure 6). Our results also indicated that soils found in upper land were coarse
textured and showed low levels of salinity, whereas soils located in lower part of
the area were more likely to be saline and finely textured (Table 2). Therefore, these
indices (MrVBF and wetness index) helped to discriminate some Great Group soils
(i.e., Torriorthents and Haplosalids).

Results also suggested that the geomorphological map provided the second most
important auxiliary data which is in line with results of Jafari et al. (2012). Their
findings showed that geomorphological surfaces are the most important factor for
spatial modeling of soil classes in Zaran, Iran. This may result from the fact that
the geomorphological surfaces have formed recently, and hence have good relation-
ship with soil processes in the arid regions. Our results also indicated that most of the
Aridisols are located in the lower part of the region, across different landforms which
included bajada, alluvial fans, and playa. These landforms have received more
soluble salts washed out from upper areas. In addition, saline and gypsiferous parent
materials in these landforms helped the formation of salic and gypsic horizons.
Therefore, Gypsic Haplosalids with gypsic and salic horizons dominated the study
area, which is consistent with the findings of Hengl et al. (2007) and indicates a high
probability of the occurrence of Gypsisols and Solonetz soils in central Iran.
Similarly, Jafari et al. (2012) indicated high probability of saline soils in arid regions
of Iran. Furthermore, these landforms had poor vegetation coverage (Figure 1b),
which could further indicate the presence of salic horizons. Calcigypsids and
Haplogypsids have strong association with geomorphical units because they were
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frequently found where the lithology is gypsiferous marls; most of the Haplogypsids
were found in gypsiferous hills. Haplocalcids can be found in the middle part of the
area; but also can be found in combination with other Great Groups that have
calcareous parent materials.

Accuracy of Predictive Models

Applying these auxiliary data, decision tree analysis predicted the spatial location of
soil classes in Great Group level with overall accuracy of 67.5%, which is similar to
the results obtained by other researchers (Moran and Bui, 2002; Bui et al., 1999;
Henderson et al., 2005; Luoto and Hjort, 2005; Jafari et al., 2012). Scull et al.
(2005) reported 65–70% accuracy for prediction of Great Groups in the Mojave
Desert eco-region of California in the United States of America. An advantage of
using tools such as decision tree analysis is that it can be applied to areas with restric-
tive conditions, such as central Iran, and the results may help to design a bigger pro-
ject in the future. Decision trees are easy to interpret and can handle both continuous
and categorical data.

Table 4 further showed that the highest accuracy for prediction of Great Groups
belonged to Haplosalids with 98% and 86% user accuracy based on training and vali-
dation data sets. That this class can be found in 51% of the soil observations might
be one reason why Haplosalids had the highest accuracy. Supporting this suggestion
is the poor prediction of Haplocambids, which were only represented by a few obser-
vations (2% of total). Jafari et al. (2012) mentioned that the size of sampling units
relative to total study area is an important factor determining the purities of a
map; hence the smaller sample size contributes to uncertainty. Furthermore, results
indicated that Torriorthents were also predicted with high levels of accuracy (95%
user accuracy) as compared with soil classes in flat areas (with the exception of
Haplosalids, as previously discussed). This may occur because soils that evolved in
the mountain landforms have a good relationship with terrain attributes. This result
is consistent with findings of Scull et al. (2005) who concluded that soil units in
mountainous areas had better relationships with terrain parameters compared with
soil units located in flat regions. Similarly, Jafari et al. (2012) mentioned that
Haplosalids, Haplogypsids and Torripsamments that are highly influenced by
topographic and geomorphic characteristics in the study area were predicted more
accurately than those only slightly influenced by topographic and geomorphic
characteristics. However, our results showed better accuracy (i.e., overall accuracy
based on validation data set: 0.67%) than obtained by Jafari et al. (2012) (i.e., purity
of soil map in Great Group level: 0.58). This can be attributed to several factors.
First, we used wavelet analysis to remove the artifact from the DEM. We showed
in Table 3 that with wavelet filter, DEM at a broader scale gives a better prediction
for flat areas. In fact, the filtering and pre-processing of DEM is important, and
wavelet analysis is a useful tool to achieve this. Second, the higher overall accuracy
at present research than obtained by Jafari et al. (2012) might be related to the effect
of the size of sampling units relative to the total study area (i.e., 0.26=km2 vs. 0.148=
km2). In fact, the small number of locations involves uncertain purity estimates
(Kempen et al., 2009). In addition, the soil sampling method (i.e., Latin hyper cube
method versus a simple stratified random method) is an important factor. In the
Jafari et al. (2012) work, the distribution of the samples was stratified randomly over
strata determined from ancillary data, and not all the soil types present were equally

Digital Mapping of Soil Classes 165

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
T

as
m

an
ia

] 
at

 0
0:

56
 1

3 
N

ov
em

be
r 

20
14

 



represented. Meanwhile, in the present research, we applied LHS to cover the distri-
bution of all covariates and, hence, it provided better accuracy.

Conclusions

This study described the prediction of the spatial distribution of soil classes in
Ardakan-Yazd plain of central Iran, using a decision tree technique. During the
application of this method, we used a variety of auxiliary variables derived from
different sources.

Expansion of agricultural production in the future is likely to encroach on dry
lands, where irrigation will be necessary for success. The annual rainfall of just
75mm in the Yazd-Ardakan plain is considered to be the major challenge for
agricultural production. The low rainfall is far more prohibitive than other natural
factors such as desertification or human factors such as increasing emigration.
Therefore, one of the major projects that the Iranian government has determined
to address these issues is to develop qualitative and quantitative land suitability maps
for drip irrigation. One of the main requirements of such a project is detailed knowl-
edge regarding soil distribution, which can be achieved through DSM. Our results
confirmed that decision tree analysis was a reliable approach that could be success-
fully used to prepare continuous soil maps, up to the Great Group level. Therefore,
we recommend the use of this approach to map the soils in other parts of Iran.
Future work is needed to define the level of confidence in the maps predicted using
this technique.
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