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Abstract Forecasting monthly precipitation in arid and
semi-arid regions is investigated by feed forward back-propa
gation (FFBP), radial basis function, and generalized regres-
sion artificial neural networks (ANNs). The ANN models are
improved by incorporating a Markov chain-based algorithm
(MC-ANNSs) with which the percentage of dry months is de-
termined such that the non-physical negative values of pre-
cipitation generated by ANN models are eliminated. Monthly
precipitation data from three meteorological stations in Jor-
dan are used for case studies. The MC-ANN models are com-
pared based on determination coefficient, mean square error,
percentage of dry months and additional performance crite-
ria. A comparison to ANN models without MC incorporated
is also made. It is concluded that the MC-ANN models are
slightly better than ANN models without MC in forecasting
monthly precipitation while they are found appropriate in
preserving the percentage of dry months to prevent genera-
tion of non-physical negative precipitation.
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1 Introduction

Agricultural and socio-economical activities, and increas-
ing human and environmental demands are all strongly con-
nected to the planning and management of water resources.
Precipitation, as one driven factor of water, has always been
important. It has been so in arid and semi-arid regions par-
ticularly; as, in such regions, surface water courses either do
not exist or they are generally intermittent or ephemeral, thus
making groundwater storage the unique water income fed by
precipitation, the unique source of water. As a result of this
fact, analysis of precipitation is important in dry regions.
As a complex natural process, precipitation is variable
both in time and space. It is observed and recorded on a net-
work of meteorological stations each representing one point
on the earth surface. A well-distributed observation network
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of stations is required to distribute point-scale precipitation
to area-scale. The spatial distribution does not necessarily be
homogeneous although stations might cover all around study
area, and their heterogeneous scatter might result in signifi-
cant differences than results obtained through their individual
use [1-3].

Studies devoted to the analysis of precipitation data in the
arid Middle East (Jordan in particular) are rare. Variability in
the precipitation data of Jordan was analyzed by Shehadeh
[4] and recently by Freiwan and Kadioglu [5], its periodicity
by Tarawneh and Kadioglu [6], and the structural characteris-
tics by Dahamsheh and Aksoy [7] and Freiwan and Kadioglu
[8]. For modeling purposes, Freiwan and Cigizoglu [9], Da-
hamsheh and Aksoy [10], and Aksoy and Dahamsheh [11]
worked for forecasting precipitation in Jordan using the data-
driven technique, artificial neural network (ANN). Freiwan
and Cigizoglu [9] used the feed-forward back-propagation
(FFBP) artificial neural networks (ANNSs) to predict monthly
precipitation in the Amman meteorological station; and Da-
hamsheh and Aksoy [10] developed FFBP ANN models for
Amman, Baqura, and Safawi. In addition to the FFBP model,
Aksoy and Dahamsheh [11] developed radial basis function
(RBF) and generalized regression (GR) ANNSs for the three
meteorological stations named above together with the mul-
tiple linear regression (MLR). Two more particular exam-
ples of using ANN in arid environments are given by Han
and Felker [12] and Yang et al. [13], the former applied the
method for estimation of daily soil evaporation from aver-
age relative air humidity, air temperature, wind speed and
soil water content in a cactus field in Texas, USA while the
latter used the same technique for the prediction of ground-
water levels in the arid and semi-arid regions of Western Jilin
province of China.

In this study, based on their well-established foundation
of modeling hydrometeorological processes as summarized
above, ANNs are used for the purpose of forecasting 1-month
ahead precipitation in an arid region. This study improves
ANN models of Aksoy and Dahamsheh [11] by incorporat-
ing Markov Chains (MCs) into the ANN models. This is an
innovative way to remove the physically meaningless nega-
tive forecasts.

Following sections of this study introduce first data used.
The models are then explained after which results are pre-
sented. Finally, conclusions are listed together with possible
future studies.

2 Study Area and Data Analysis

Jordan is a country in the semi-arid to arid climatic region in
the Middle East that suffers from water scarcity and its un-
even distribution. More than 90 % of the country receives an
annual total precipitation less than 200 mm on average, and
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Fig. 1 Thelocation of the Baqura, Amman, and Safawi meteorological
stations in Jordan

the amount of water that evaporates back to the atmosphere
exceeds 90 % of precipitation. Important basins such as Azraq
supplying Jordanian major cities with drinking water started
to suffer from depletion of groundwater levels, and became
completely dry due to the fact that the total water demand in
the country is as almost twice as the conventional water sup-
ply that includes the safe yield of all available groundwater
and surface water resources [14].

Three meteorological stations of Jordan Meteorological
Department were selected in this study as used by Aksoy
and Dahamsheh [11]. Stations are seen in Fig. 1 together
with their statistical characteristics given in Table 1 from
which it is seen that precipitation is the highest in Baqura and
lowest in Safawi due to their locations in the mountain and
desert regions, respectively. When variability is concerned,
the desert station intends to be more variable than the other
two stations. Frequency distributions of the recorded precip-
itation are far from being normal and the interdependency
between the subsequent years has a negative correlation. A
detailed analysis of structural characteristics of the data can
be found in Dahamsheh and Aksoy [10] who concluded that
precipitation in Jordan was skewed and obeyed non-normal
distributions.

3 ANN Models and MC Incorporation

The methods like ANN type models have been enormously
applied in different disciplines since more than a decade
[15-20]. In this study, the impact of MC incorporation into
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Table 1 Characteristics of Baqura, Amman, and Safawi meteorological stations and statistics calculated from the annual total precipitation data

Station Observation Latitude Longitude Elevation Mean

Standard Median Cy, Cs 1|

Maximum Year Minimum Year

period N E (m) (mm) deviation (mm) (mm) maximum (mm) minimum

(mm) observed observed
Baqura 1968-2005 32.63 35.62 —170 397.6  125.9 377.0 032 1.13 —-0.110 822.7 1992 168.2 1999
Amman 1923-2005 31.98 35.98 772 270.4  90.0 263.3 0.33 0.30 —0.133 476.5 1938 98.0 1995
Safawi 1943-2005 32.20 37.13 672 719 393 64.7 0.55 1.37 —0.083 213.5 1988 7.5 1958

Latitudes and longitudes are provided in degrees. C Coefficient of variation, Cs Skewness coefficient, r; Lag-one autocorrelation coefficient

the ANN-based data-driven models has been assessed for
monthly precipitation forecast. Three ANN models, namely,
FFBP, RBF, and GR ANNSs, were established. Various archi-
tectures were tried to reach the desired architecture to give the
best forecasting performance. The ANN models have already
been well documented in literature (e.g., [21]); therefore here,
they are only briefed from Aksoy and Dahamsheh [11].

3.1 Feed-Forward Back-Propagation ANN

The FFBP ANN consists of three or more layers, namely, in-
put layer, hidden layer(s) and output layer, each with a certain
number of neurons. The number of input (independent) vari-
ables directly gives the number of neurons in the input layer.
Similarly, the number of dependent variables is equal to the
number of neurons in the output layer. The number of neurons
in the hidden layer is subject to determination by a trial-and-
error procedure with which the error between the observed
variable and the model output is minimized. Using a proper
activation function f, the input variables (x;,i = 1, ..., n)
are processed in the hidden layer as:

n
ijf(zxiwij+bj), ji=1,....h (1)

i=1
where w;; is the weight of the connection from the ith input
neuron to the jth hidden neuron, and b is the bias for the jth

hidden neuron. The activation function in the hidden layer is
given by

1
[1 + exp(—n)]

where n is the free variable. In this study, the network has only
one hidden layer. Itis noted, from Eq. (1), that 2 neurons exist
in the hidden layer. In order to obtain the model output, the
outputs of the hidden layer (z;, j =1, ..., h) are transformed
by

logsig(n) = (2)

h
w=f Zijjk-I—bk , k=1,...,m 3)
j=1

where w ji is the weight of the connection from the jth hid-
den neuron to the kth output neuron, and by is the bias for

the kth output neuron. The same activation function as in the
hidden layer [Eq. (2)] was used in the output layer. It is noted,
from Eq. (3), that m neurons exist in the output layer. The
activation function [Eq. (2)] requires that the data are nor-
malized. Therefore, data were normalized to range between
0 and 1 using

X0 — Xmin

Xpn= ——— )
Xmax — Xmin

where x;, and x( represent the normalized and original train-

ing data, and xmin and xmax correspond to the minimum and

maximum values among the training data.

3.2 Radial Basis Function ANN

The RBF ANN consists of three layers, namely, input, pattern
and output layers. In the pattern layer, a RBF is fixed to
transform the input vector (x) in a non-linear fashion on a
new vector as

zj=¢X),j=1,....h (5)
and to produce the output of the model by

h

yk=Zijjk+bk,k=1,...,m (6)
Jj=1

3.3 Generalized Regression ANN

The GR ANN consists of four layers: input, pattern, summa-
tion, and output. The input layer is made of input vectors.
Each unit in the input layer is connected to the pattern layer.
The summation layer has two neurons called S-summation
and D-summation. The final layer covers the output vector
obtained for each input vector x,i=1,.., p, where p is
the number of elements in the training patterns. The output
is then given by

> wiexp[—D(x, x;)]
>P exp[—D(x, x;)]

where w; is the weight of the connection between the ith
unit in the pattern layer and the S-summation neuron. D is

yi(x) = (N
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a function (also known as Gaussian D function) used to pass
the input layer units to the pattern layer.

3.4 Markov Chain-Incorporated ANN Models

In this study, MCs were incorporated into the existing ANN
models of Aksoy and Dahamsheh [11] with the aim to im-
prove their ability in forecasting number of months with and
without precipitation. The models are denoted as MC-ANN
and called MC-incorporated ANN models. In the MC-ANN
models, as shown in Fig. 2, it is first determined if a partic-
ular month is wet or dry using MC. A 1/0 MC can be used
for forecasting the state of the month (wet or dry), where ‘1’
stands for the occurrence of precipitation (wet month) and ‘0’
for the non-occurrence (dry month). When MC forecasts that
the month has no precipitation, the model skips the ANN part
of the model and returns back to the next month to determine
its state (wet or dry).

Markov chains are based on the transition probabilities
matrix, which, for a two-state MC, can be given as

P11 P1o
P 8
Pi.j [IXH Poo} ®

where p;; shows probability of transition from a month with
state i to a month with state j. If n;; is the total number of
months of observation in state j with the previous state i,

Month

MC

Precipitation = 0

ANN model

A

Precipitation

<
<

A

Next month

Fig. 2 Flowchart of MC-ANN model
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probability of transition from state i to state j can be calcu-
lated as

pij = el—i i j=0, 1 ©)
j— < _ 5 — Y,

i

The probabilities are determined for each month of the year
due to seasonal effects. The sum of each row in the matrix
(Eq. 8) equals one:

> pij=1 (10)
J

Thus, the number of parameters required is two, resulting in
24 parameters in total at monthly basis.

4 Model Calibration (Training)

The MC-ANN models were applied on the monthly total
precipitation of the three meteorological stations: Baqura,
Amman, and Safawi. Monthly data of the first 28, 73, and
53 years (i.e., 336, 876, and 636 months) of each station
were used to calibrate the models. For the three stations, the
last 10 years (120 months) covering the common period of
1996-2005 were used for validation.

Calibration of MCs covers determination of transition
probabilities using the calibration data set. Presented in
Table 2 are transition probabilities calculated from the
monthly total precipitation of each station. Dash given in
September for Amman should be interpreted that this partic-
ular month has never been wet during the calibration period.
Similarly, the period from January to March has never been
dry. The same interpretation is valid for other stations.

In the calibration stage of ANN models, appropriate in-
put vector, number of neurons, type of activation functions,
spread coefficients (when applicable), etc. were decided to
construct the ANN model. In this study, different combina-
tions of the antecedent precipitation and a periodic compo-
nent were used to construct the appropriate input vector of
the forecasting model by minimizing the mean square er-
ror (MSE) calculated for each case from the observed and
forecasted precipitation as:

E:ﬁ;l(fkj — P;;)?
N

MSE =

(1)

where Pr; and P,; show, respectively, the forecasted and
observed total precipitation in month i, which goes up to
the total number of months N. The determination coefficient
(R?), as an additional measure to quantify the linear rela-
tionship between the observed and forecasted precipitation
is maximized as
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Table 2 Transition probabilities

of the 1/0 MC Month Baqura Amman Safawi
P11 Poo P11 Poo P11 Poo
January 1.000 - 1.000 - 0.960 0.000
February 1.000 - 1.000 - 0.961 0.000
March 1.000 - 0.986 - 0.902 0.000
April 0.929 - 0.931 0.000 0.688 0.200
May 0.462 0.500 0.647 0.600 0.595 0.750
June 0.154 1.000 0.065 0.963 0.000 0.963
July 0.000 1.000 0.000 0.986 0.000 1.000
August - 1.000 0.000 1.000 - 1.000
September - 0.893 - 0.918 - 0.943
October 1.000 0.160 0.667 0.239 0.667 0.540
November 0.958 0.000 0.964 0.056 0.840 0.179
December 1.000 0.000 1.000 0.000 0.932 0.000
N 5 5 2 regulate zero values, and to improve generalization capabili-
R? 2iz1 Pou = Po)(Pri — P) (12)  ties of the ANN models, early stopping method is used in the

\/ZlNzl (Po,i = Po)z\/Z,N:l (Pri — Pr)?

The periodic component is calculated as

p . 2t 2t 13
er(t) = sin (T) + cos (T) (13)

where ¢ is the number assigned to months starting from Jan-
uary as ¢ = 1 to December as = 12.

Among combinations of input vectors investigated for the
FFBP ANN model, the best performance was achieved when
P,_1, Pi_3, Pi_12, and Per(t) are used as the input vector.
Here P corresponds precipitation, Per is the periodicity as
defined in Eq. (13), and ¢ the number assigned to months
again as above. It might be important to note that the pre-
vious year’s precipitation [P;_12] is included in the input
vector. Note also that the periodic component [Per] was also
used. This shows the importance of the periodicity in the
precipitation process in the study area.

After a trial-and-error procedure, number of neurons in
the hidden layer to connect the inputs with the outputs was
decided as 7 for Baqura and Amman, and 5 for Safawi. As
the activation function between the hidden and output lay-
ers, the sigmoid function was used. The model inputs and the
output were scaled appropriately to fall within the function
limit (zero to one). The FFBP ANN was trained by using the
Levenberg—Marquardt training algorithm. After the training
was over, the weights were used to test the network perfor-
mance on the test data. The ANN models were trained for 25
epochs. Jordan weather can be classified as arid or semi-arid
climate, and most of rainfall in Jordan fall in the 4-month
period from December to March, the rest of the year is dry.
For this reason, rainfall data in this study consists of a huge
amount of zero values (dry months). In order to adapt and

ANN training, and therefore, the ANN models were trained
for only 25 epochs.

The adaptive scalar that controls the learning process was
set to 0.001. On the other hand, another trial-and-error pro-
cedure resulted in an RBF ANN with 26, 38, and 37 neu-
rons in the pattern layer for Baqura, Amman, and Safawi,
respectively. The final RBF ANN models were then 4-26-1
for Baqura, 4-38-1 for Amman, and 4-37-1 for Safawi. The
spread parameter was taken 5 again by the trail-and-error pro-
cedure. Similarly, the GR ANN structure became 4-x-1 for
the three stations, in which the spread parameter for the se-
lected stations was found to be equal to 0.06. For both RBF
and GR ANNSs, the Gaussian activation function was used
for pattern layers and the linear function for output layers.
The model input and output were scaled appropriately to fall
within the function limit (zero to one).

Table 3 shows the performance measures of the calibration
stage of the models for the three stations. Additional perfor-
mance measures other than MSE and R? were adopted: MAE
(mean absolute error given as the average of the absolute val-
ues of the errors); and a and b (the slope and the intercept)
in the best-fit linear line of the scatter diagram between the
observed and the forecasted precipitation. It was seen that the
FFBP ANN model was slightly better calibrated. Also noted
was that wetter the region, better the calibration was.

5 Model Validation (Testing)

In Table 4, results obtained from the validation of the mod-
els were presented and compared by the same performance
measures used in the calibration stage. FFBP seemed to be
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Table 3 Performance measures for the calibration period

Station Baqura Amman Safawi

Model MC-FFBP MC-RBF MC-GR MC-FFBP MC-RBF MC-GR MC-FFBP MC-RBF MC-GR
R? 0.71 0.60 0.65 0.54 0.49 0.53 0.42 0.32 0.38
MSE (mm?) 714.5 971.7 881.1 614.6 685.1 633.0 70.0 82.8 76.8
MAE (mm) 15.0 20.2 17.0 14.3 15.4 14.7 5.0 53 5.3

A 0.71 0.60 0.57 0.54 0.49 0.47 0.43 0.32 0.31

B 8.6 13.0 13.0 10.0 12.0 11.0 3.5 4.2 3.9
Table 4 Performance measures for the validation period

Station Baqura Amman Safawi

Model MC-FFBP MC-RB MC-GR MC-FFBP MC-RBF MC-GR MC-FFBP MC-RBF MC-GR
R? 0.51 0.45 0.23 0.58 0.57 0.25 0.30 0.30 0.24
MSE (mm?) 1,128.5 1,243.9 1,831.9 380.8 380.9 726.3 54.2 54.2 62.3
MAE (mm) 20.1 20.7 233 11.6 11.6 154 4.0 4.1 43

A 0.57 0.51 0.32 0.66 0.62 0.38 0.31 0.35 0.34

B 12.0 17.0 16.0 9.1 9.9 10.0 2.9 3.1 29

better than the other models for Baqura, while RBF per-
formed as good as FFBP for Amman and Safawi.

Results were drawn in Figs. 3, 4, and 5 for the Amman
station only, in a more detailed way using additional graphi-
cal performance measures explained as follows: The 10-year
(120 month) time series of the observed and the forecasted
monthly total precipitation were presented [(a) in Figs. 3,
4, 5] together with the scatter diagram of the observed and
the forecasted precipitation [(b) in Figs. 3, 4, 5]. In the pop-
ular ANN literature, these two graphs are commonly used
for comparison. The time series [(a) in Figs. 3, 4, 5] simply
compares the observed and the forecasted monthly total pre-
cipitation. The scatter diagram [(b) in Figs. 3, 4, 5] shows
how the observed versus the forecasted precipitation scatter
around the 1:1 perfect line together with the best-fit linear line
of the forecast. The fitted linear equation was given above the
scatter diagram.

For understanding how well the proposed model performs
throughout the validation period, the residual time series [(c)
in Figs. 3, 4, 5] was obtained. Here, the residual is defined
as the difference between the forecasted and the observed
monthly total precipitation given by

R=P — P, (14)

Monthly mean residuals were plotted [(d) in Figs. 3, 4, 5]
to know in which month the model performs well. For this
purpose, both the absolute and the relative errors were cal-
culated. Absolute value of the error is important to show
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the fluctuation of the forecasted values from their observed
counterparts. The relative error is required to see if the model
under- or over-estimates. For comparable results, the dimen-
sionless version of the residual was calculated [(e) in Figs. 3,
4, 5] by dividing the mean residual by the mean value of the
total precipitation of each month. In months with zero total
precipitation, the dimensionless residual was not calculated.

Analysis of Figs. 3, 4, and 5 shows that the MC-FFBP and
MC-RBF ANN models are as well as each other replicating
the observed precipitation time series and clearly better than
the MC-GR ANN model. The MC-FFBP is slightly better
than the MC-RBF. An argument to support this statement
is that the slope of the best fit line is closer to one, and the
intercept is closer to zero in case of FFBP model in Fig. 3
than the RBF in Fig. 4. In addition, maximum values were
relatively better captured by FFBP than RBF. It is noted that
highest maxima were generated by the GR model, but in an
inappropriate time.

Similar results were obtained for the Baqura station while
results for the other station, Safawi, were not satisfactory.
This is important to note that the performance of the ANN
models becomes worse with the aridity of the region studied,;
e.g., forecasts for the Safawi station is the worst due to its
location in the desert region of the country.

Also compared are the mean, standard deviation, maxi-
mum, and minimum values of the forecasted monthly total
precipitation as well as annual total precipitation. These sta-
tistics were also calculated at the seasonal scale and com-
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Fig. 4 Results using the MC-RBF ANN model for the validation data set of Amman station (explanation of sub-figures as in Fig. 3)

pared to their observed counterparts in Table 5. At annual
scale, the mean annual total precipitation is best modeled by
RBF for Baqura and Safawi stations and by GR for Am-
man. The worst forecasts with respect to preservation of
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the mean value were obtained by GR for Baqura, RBF for
Amman, and FFBP for Safawi. This is such a result that
does not allow one to conclude on the best performed
model.
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Comparing the mean values of each season in Table 5
shows that RBF performed well in winter and FFBP in spring.
In autumn, GR performed better in wet stations (Baqura and

6

7 8 9 10 11 12
Month

Amman), while RBF was better in Safawi, the dry region sta-
tion. In summer, all models performed perfectly forecasting
no precipitation at all.
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Table 5 Annual, seasonal, and monthly analysis of observed and forecasted precipitation

Baqura Amman Safawi
Obs MC-FFBP MC-RBF MC-GR Obs MC-FFBP MC-RBF MC-GR Obs MC-FFBP MC-RBF MC-GR

Annual

Mean (mm) 385.6 359.4 401.1 317.8 232.5 263.3 263.6 210.0 654 555 60.0 56.7

SD (mm) 979 629 38.7 41.7 66.0 314 20.7 58.0 27.1 79 12.0 11.9

Max (mm) 5124 454.0 456.9 410.0 325.6 308.0 296.5 313.3 103.0 64.2 71.9 71.4

Min (mm) 168.2 284.8 350.1 267.2 109.4 220.4 223.1 113.7 329 438 36.7 32.6
DJF

Mean (mm) 2554 213.6 226.7 157.4 161.7 165.0 163.1 117.2 389 314 33.6 32.0

SD (mm) 99.4 454 42.6 29.1 474 259 21.9 40.0 14.1 7.1 10.3 13.6

Max (mm) 491.5 308.3 329.4 203.9 267.5 191.2 185.0 192.8 559 455 46.9 48.5

Min (mm)  120.8 158.8 162.2 113.5 90.7 119.8 1159 58.3 9.0 20.6 14.2 10.0
MAM

Mean (mm) 79.9 83.8 103.1 113.9 47.8  63.8 65.3 73.1 14.1 14.5 15.8 15.7

SD (mm) 455 372 33.2 61.8 23.1 134 9.4 30.8 11.5 3.6 3.8 5.4

Max (mm) 137.7 114.9 167.9 249.6 772  86.5 80.2 122.6 39.3 19.6 20.4 22.6

Min (mm) 10.5 0.0 62.0 45.8 18.7 394 52.3 28.3 1.2 88 10.4 7.2
JJA

Mean (mm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

SD (mm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Max(mm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Min (mm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SON

Mean (mm) 452 549 63.6 422 21.6 292 30.9 18.7 13.8 8.5 9.3 8.5

SD (mm) 429 10.0 12.3 29.8 20.5 7.7 6.0 15.3 15.0 3.6 4.8 4.3

Max (mm) 154.6  66.6 82.8 117.0 66.1 458 38.9 50.8 45.1 13.1 15.6 13.7

Min (mm) 04 377 46.4 11.4 0.5 21.1 23.2 5.5 0.0 4.1 0.0 22
Monthly

Mean (mm) 32.1  29.9 33.4 26.5 194 219 22.0 17.5 55 46 5.0 4.7

SD(mm) 475 378 35.7 31.5 29.7 258 24.3 229 88 5.0 5.7 6.1

Max (mm) 243.8 165.3 184.0 187.9 140.1  89.7 77.0 122.2 45.0 21.6 20.6 33.6

Min(mm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DJF December—February, MAM March—May, JJA June—August, SON September—November

At monthly scale, FFBP was the best and GR was the
worst in Baqura and Amman. In Safawi, it was the opposite
case; e.g., FFBP was the worst and GR was the best.

When the ANN models were used without MC incorpo-
rated [11], physically meaningless precipitation was fore-
casted. Forecasting of dry months by means of MCs has been
the main focus in this study. This is considered an important
improvement to the presented models.

Table 6 shows how well the number of dry months was
generated. In ANN models without MCs incorporated, there
were no months forecasted without precipitation. Negative
precipitations generated in the previous study [11] were all
in summer season which has been replaced by zero precip-
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itation after using MCs in the model structure. In addition,
two criteria (MSE and R?) were provided to roughly com-
pare the models with and without MCs. It is seen that the
improvement in that sense is not considerable; however, it
is considerably important that the negative forecasts were
completely eliminated.

The ANN-based forecasting models established for arid
region precipitation are not satisfactory in approaching the
maxima observed in the time series. This has been the main
drawback of previous models developed by Freiwan and Ci-
gizoglu [5], Dahamsheh and Aksoy [10], and Aksoy and Da-
hamsheh [11]. Forecasts of Freiwan and Cigizoglu [5] were
strictly limited to a threshold that was much lower than the
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Table 6 Performance of models in forecasting number of dry and wet
months, and comparison to ANN models with and without MC incor-
porated

Station  Model MSE (mm?) R? Dry months (%)
Observed Forecasted
Baqura  FFBP 1,102.7 0.51 37 0
MC-FFBP 1,128.5 0.51 37 51
RBF 1,246.6 045 37 0
MC-RBF 1,313.3 042 37 43
GR 2,129.7 0.17 37 0
MC-GR 2,105.0 0.18 37 38
Amman FFBP 379.9 0.58 38 0
MC-FFBP 380.9 0.58 38 40
RBF 383.1 0.57 38 0
MC-RBF 381.0 0.57 38 43
GR 1,096.3 0.12 38 0
MC-GR 1,094.3 0.13 38 40
Safawi ~ FFBP 55.3 0.28 45 0
MC-FFBP 54.3 0.30 45 47
RBF 52.2 0.32 45 0
MC-RBF 54.2 0.30 45 48
GR 97.2 0.09 45 0
MC-GR 94.5 0.12 45 44

observed maximum, thus maximum precipitations were con-
siderably underestimated. Dahamsheh and Aksoy [10] were
also not successful in approaching the maxima although
slightly better results were obtained. This problem has been
given an important and particular attention by Aksoy and Da-
hamsheh [11] in the development of the model architecture
such that higher maxima can be obtained, but results were
still not perfect. As a continuation of the mentioned effort,
this study as well cannot be considered fully successful in
that sense. Still, improvements are needed to forecast the
maxima as high as observed maxima.

Based on all these findings, finally, it should be empha-
sized that none of the models are found to be outstanding in
forecasting the observed monthly total precipitation although
results were considerably improved compared to the results
in Freiwan and Cigizoglu [5]. The main improvement in this
study is the removal of negative forecasts although they were
rare in number and small in quantity when ANN and MLR
models were used without MC incorporated.

Artificial neural networks are data-based models for which
huge amount of data is required for their calibration (train-
ing). As it was the case in this study, in reality, existing data
are usually much less than needed. Therefore, data extension
by data generation techniques might be helpful in some cases
[22]. Extension of data can further be investigated to possibly
improve results of ANN models developed in this study.

6 Conclusions and Further Studies

Based on present results, following conclusions and ideas to
further study may be drawn:

1. The ANN models are constructed based on a trial-and-
error procedure. Therefore, none of the ANN models in
this study turned out to be a best choice, as there may
always exist better models to be constructed on the basis
of a trial-and-error procedure, with a different architec-
ture, different activation functions or spread coefficients
(when applicable).

2. Higher variability of arid region precipitation results in
worse performance of ANN models, i.e., increasing vari-
ability reduces the success of the models in approaching
the observed precipitation sequence. Therefore, intermit-
tent monthly precipitation data of semi-arid to arid re-
gions should be analyzed with more care than perennial
precipitation time series of the humid regions.

3. In this study, for each station, monthly precipitation data
have been combined together and analyzed as a whole
without considering if a month is wet or dry. Clearly, dry
months reduce the model efficiency. This limitation of
the models can be eliminated and improvements in model
performance can be achieved by considering monthly
analysis. Monthly models can be proposed at the expense
of increase in the model parameters, weights and biases.
If a parsimonious model is desired, and if the monthly
analysis is therefore found very costly with respect to
model parameters, then dry and wet periods in the year
can be modeled separately. The observed data can sim-
ply be divided into two periods; for instance, above and
below the long-term average precipitation to be taken as
a threshold. Models can then be constructed separately
for each period.

4. If it becomes necessary to analyze the intermittent
monthly precipitation record as a whole, then some help-
ing tools should be incorporated into the forecasting
models. For instance, MCs among these are used in this
study together with ANNs. Good results with forecast-
ing precipitation, particularly in dry months of the year,
were obtained and negative precipitations forecasted by
ANN models were eliminated.

5. Datarequired for calibration of ANN models can be gen-
erated by means of artificial data generation methods ex-
isting in stochastic hydrology. This can further be inves-
tigated to possibly eliminate limitations of ANN models.
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