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Abstract Ecosystem dynamics may exhibit alternative sta-
ble states induced by positive feedbacks between the state
of the system and environmental drivers. Bistable systems
are prone to abrupt shifts from one state to another in
response to even small and gradual changes in external
drivers. These transitions are often catastrophic and difficult
to predict by analyzing the mean state of the system. Indi-
cators of the imminent occurrence of phase transitions can
serve as important tools to warn ecosystem managers about
an imminent transition before the bifurcation point is actu-
ally reached. Thus, leading indicators of phase transitions
can be used either to prepare for or to prevent the occurrence
of a shift to the other state. In recent years, theories of lead-
ing indicators of ecosystem shift have been developed and
applied to a variety of ecological models and geophysical
time series. It is unclear, however, how some of these indi-
cators would perform in the case of systems with a delay.
Here, we develop a theoretical framework for the investi-
gation of precursors of state shift in the presence of drivers
acting with a delay. We discuss how the effectiveness of
leading indicators of state shift based on rising variance
may be affected by the presence of delays. We apply this
framework to an ecological model of desertification in arid
grasslands.
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Introduction

In the last four decades, research in ecology has investi-
gated the emergence of multiple stable states in ecosystems.
Shifts between states often occur as abrupt and somewhat
irreversible transitions (e.g., Noy-Meir 1975; May 1977;
Walker et al. 1981; Carpenter 2005; Rietkerk and Van de
Koppel 1997; Scheffer et al. 2001; Runyan et al. 2012).
Bistable dynamics can be observed in a variety of envi-
ronments and their emergence typically occurs in nonlinear
systems as the result of positive feedbacks with process
controlling, for instance, resource availability or the distur-
bance regime (e.g., Walker and Salt 2006; Scheffer 2009).
In most cases, the response of bistable systems to changes
in environmental conditions is discontinuous because of the
existence of a first-order phase transition evidenced by a
fold-type bifurcation. Thus, small changes in environmental
drivers can lead to a sudden shift in the state of the system.
Eutrophication, desertification, and deforestation are just
some of the examples of possible abrupt ecosystem shifts
to a less desirable state (Carpenter 2005; D’Odorico et al.
2013; Runyan et al. 2012); they typically occur over rela-
tively short time scales and are hard to revert. To prepare
for or prevent shifts to undesirable states, environmental
managers are interested in finding some criteria to iden-
tify warning signs of imminent transitions before they occur
(Brock and Carpenter 2006; Carpenter and Brock 2006;
van Nes and Scheffer 2007; Guttal and Jayaprakash 2008;
Carpenter et al. 2011).
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Linear stability analyses indicate that as the system
approaches a critical transition, its response to small per-
turbations of its stable state(s) tends to become slower
(Strogartz 1994). Known as critical slowing down, this phe-
nomenon can be used as a leading indicator of state shifts in
ecosystems (van Nes and Scheffer 2007). It can be shown
that this effect is associated with an increase in the auto-
correlation and the variance in systems driven by additive
noise (Carpenter and Brock 2006; Scheffer et al. 2009;
Dakos et al. 2012). Because the estimation of changes in
autocorrelation and variance requires relatively long time
series that are seldom available, other leading indicators of
state shift try to capitalize on changes in the spatial config-
uration of the system. For instance, an increase in spatial
autocovariance (Dakos et al. 2010) or changes in the geom-
etry of spatial patterns (van de Koppel et al. 2002) can be
interpreted as precursors of state shifts.

Despite these recent contributions to the study of leading
indicators of state shifts, it is still unclear how the exist-
ing theories would perform in the case of systems affected
by a delay. A number of systems in biology, earth sciences,
engineering, and economics are affected by processes that
act with a delay (e.g., Just et al. 2010). In other words,
these systems respond to external drivers with a delay after
an initial incubation period, τ , has elapsed. Typical exam-
ples include the spread of infectious diseases (e.g., Thomas
et al. 2009), delayed population dynamics (Gurney et al.
1980; May 1980; D’Odorico et al. 2012), the behavior of
commodity markets (MacKey 1989), and the response of
excitable systems (Lefebvre et al. 2010).

Delayed processes may induce a variety of interesting
behaviors in dynamical systems even without invoking the
effect of interactions with nonlinearities and noise. A linear
dependence on a delayed variable may lead to the emer-
gence of instabilities, oscillations, and Hopf bifurcations in
deterministic systems (e.g., Gyori 1991), while the interac-
tion of delayed dynamics with a random forcing may induce
noise-sustained fluctuations and other counterintuitive
behaviors (D’Odorico et al. 2013). Despite recent advances
in the study of stochastic systems with a delay (MacKey
and Nechaeva 1995; Frank and Beek 2001; Frank et al.
2003; Frank 2005, 2006; Guillouzic et al. 1999), a theory of
precursors of state shifts in delayed nonlinear dynamics is
still missing. In this paper, we develop a theoretical frame-
work to investigate leading indicators of state transition in
univariate delayed systems driven by additive noise.

Methods

We consider the case of a spatially implicit (i.e., zero dimen-
sional) dynamical system with only one state variable, x.
The system is forced by a state-dependent process that acts

on the temporal dynamics of x(t) with a delay, τ . Thus, the
delayed dynamics depend in general on xτ = x(t − τ), i.e.,
the value of x at time t − τ . The system is forced by a zero-
average additive white Gaussian noise, ξ with unit intensity.
Thus, the overall dynamics of x can be expressed as

dx(t)

dt
= f (x, xτ , a) + σξ(t) (1)

where a is a parameter. Because at equilibrium x(t) =
x(t − τ) ≡ x∗, the equilibrium states of the underly-
ing deterministic dynamics are obtained as the solutions
of f (x∗, x∗, a) = 0. The additive character of the noise
term in Eq. 1 ensures (see Horsthemke and Lefever 1984;
Ridolfi et al. 2011 that these states are also the preferential
configurations (i.e., the modes) of the stochastic dynamics
(Eq. 1). f (x∗, x∗, a) is, in general, a nonlinear function of
x∗. We focus on dynamics with multiple equilibria within
a certain range of the parameter, a, and with a first-order
phase transition at a = ac.

In systems with no delays, as the bifurcation point is
approached (i.e., a → ac), precursors of phase transi-
tions from an attractor to the other (e.g., from x∗

1 to x∗
2 )

are typically sought in changes (increase) in the variance
or in the autocorrelation function of fluctuations of x(t)

about the stable equilibrium state, x∗
1 (Carpenter and Brock

2006; Held and Kleinen 2004). The increase in variance and
autocovariance is associated with the phenomenon of crit-
ical slowing down, whereby, as the system approaches the
bifurcation point, the recovery of a stable equilibrium con-
figuration after a small perturbation, ε, becomes slower and
slower. Similarly, here, we focus on infinitesimal fluctua-
tions, ε(t), of x(t) about x∗

1 (i.e., ε(t) = x(t) − x∗
1 ) and use

a Taylor’s expansion to linearize Eq. 1 in the neighborhood
of x∗

1 :

dε(t)

dt
= −Aε(t) − Bετ + σξ, (2)

where ετ = xτ − x∗
1 , and the coefficients A and B are

functions of the parameter a:

A = −∂f (x, xτ , a)

dx |x,xτ =x∗
1

B = −∂f (x, xτ , a)

dxτ |x,xτ =x∗
1

. (3)

In the absence of delays (i.e., τ = 0), Eq. 2 is
an Ornstein–Uhlenbeck process and its variance is (e.g.,
Gardiner 1986, p. 103)

σ 2
ε (t) = σ 2

2(A + B)

[
1 − e−2(A+B)t

]
(4)

where, in this case, A + B = −(∂f/∂x)x=x∗
1

is the eigen-
value of Eq. 1. Because x = x∗

1 is a stable state, A + B is
positive. Moreover, as a → ac, A + B tends to zero and
the convergence to zero of a small perturbation, ε(t), of the
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equilibrium state x∗
1 becomes increasingly slow. This phe-

nomenon is known as “critical slowing down” (van Nes and
Scheffer 2007). Thus, based on Eq. 4, the variance σ 2

ε of
the fluctuation ε increases (σ 2

ε → ∞) as a tends to the
bifurcation point, ac. The effect of rising variance is often
considered as a suitable precursor of a phase transition in
systems driven by additive noise. This leading indicator of
state shift has been used both in economics and ecosystem
science (Brock and Carpenter 2006; Carpenter et al. 2011;
Dakos et al. 2008).

We now generalize this framework in the case of a
delayed process (i.e., τ �= 0) and investigate whether the
rising variance remains a consistent precursor of state tran-
sition in the presence of a delay. To this end, we use the
expression of the steady-state variance of ε(t) obtained from
Eq. 2 (Frank et al. 2003):

σ 2
ε =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2

2

(
1+Bω −1sin(ωτ)
A+Bcos(ωτ)

)
A < B (5a)

σ 2

2

(
1+Bω −1sinh(ωτ)

A+Bcosh(ωτ)

)
A > B (5b)

σ 2

2

(
1+Bτ
A+B

)
, A = B (5c)

(5)

with ω = √|B2 − A2|. This expression of σ 2
ε (Eq. 5) is

here used to investigate the increase in variance as a lead-
ing indicator of state shift in delayed dynamics. Similarly
to the case of Eq. 4, because as a → ac A + B tends to
zero, the variance of the fluctuations ε(t) has to increase
(σ 2

ε → +∞) as the system approaches the bifurcation point
a → ac. Thus, rising variance appears to be a leading
indicator of state shift even in systems with a delay.

To evaluate how the effectiveness of this indicator is
affected by the delay, we take the limit for A + B → 0 of
σ 2

ε (τ = 0)/σ 2
ε (τ ). We find that if A > 0 > B ,

σ 2
ε (τ = 0)

σ 2
ε (τ )

→ (1 + Aτ) > 1 (ifA > 0 > B) (6)

In this case (i.e., A > 0 > B), the effect of the delay is to
decrease the variance of ε with respect to the case with no
delay. Thus, the ability of σ 2

ε to serve as a leading indicator
of a state shift is reduced as discussed in the example pre-
sented in the following section. Conversely, if A > B > 0,

σ 2
ε (τ = 0)

σ 2
ε (τ )

→ 1

1 + Aτ
< 1 (ifA > B > 0). (7)

In this case, the delay increases the variance of ε with
respect to the case with no delay

(
in fact, σ 2

ε (τ ) > σ 2
ε (τ =

0)
)
. Thus, σ 2

ε becomes a better leading indicator of state
shift.

The effect of the delay in systems with B > A is more
complex because, in this case, the state x∗ becomes unstable
when the delay exceeds a critical value τ1 = arccos(−A/B)√

B2−A2

(e.g., D’Odorico et al. 2012). If τ < τ1, x∗ is stable and σ 2
ε is

a precursor of state shift as shown by Eq. 5a. The analysis of

the limit for A+B → 0 shows that σ 2
ε (τ=0)

σ 2
ε (τ )

→ (1+Aτ) < 1

if B > 0 > A. Thus, the effectiveness of the precursor is
enhanced by the delay. Conversely, if B > A > 0, the limit

becomes σ 2
ε (τ=0)

σ 2
ε (τ )

→ (1 − Aτ) > 1 and the phenomenon of

rising variance is weakened.

A case study

To show how the delay may affect the variance of x(t) and
its ability to serve as a precursor of state shift, we consider
as an example the dynamics of desert grasslands, with grass
biomass, x, growing logistically:

dx

dt
= βx (xcc − x) + σξ (8)

where ξ is an additive Gaussian noise with unit intensity,
β is the reproduction rate of the logistic process, and xcc is
the carrying capacity, i.e., the maximum value of x that is
sustainable with existing resources (e.g., water, soil nutrient
content). In arid landscapes, grass cover plays a crucial role
in sheltering the soil surface from erosion agents (wind and
water). Loss of vegetation cover may lead to soil erosion and
land degradation, thereby inducing a decrease in carrying
capacity. Thus, xcc can be expressed as an increasing func-
tion of the grass cover, x. However, we notice that a loss in
grass biomass does not immediately lead to a decrease in xcc

because erosion processes do not instantaneously remove
the soil resources. In other words, a delay, τ exists in the
process of land degradation; thus, at time t , the carrying
capacity of x depends on the value of xτ = x(t − τ).

Moreover, because other factors beside erosion-induced
depletion of soil resources are likely to limit grass produc-
tivity, xcc is a nonlinear function of x, which asymptotically
tends to a maximum for high values of the grass cover.
Thus, we use an s-shaped function (Fig. 1) to express the
dependency of xcc on xτ :

xcc = ax2
τ(

1 + ax2
τ

) (9)

0.2 0.4 0.6 0.8 1
x
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Fig. 1 Carrying capacity, xcc, as a function of grass cover, x (Eq. 9)
calculated for a = 6)
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where a is a shape parameter. The stable and unstable states
of the dynamics expressed by Eqs. 8 and 9 are the solutions
of dx/dt = 0, namely,

x∗
1 = 0 x∗

2 = 1

2

(
1 −

√
a − 4

a

)

x∗
3 = 1

2

(
1 +

√
a − 4

a

)
(10)

For small values of a, the carrying capacity (Eq. 9) is
small and the grass density tends to zero regardless of the
antecedent grass cover conditions (xτ ). In this case, the
grass-soil erosion feedback is too weak to allow for the sta-
bilization of the system in a vegetated state. In other words,
even in the presence of a full grass cover, vegetation would
not be able to prevent the loss of soil resources and the
system would soon converge toward an unvegetated and
degraded state. When a is greater than a critical value (ac),
the feedback is strong enough to lead to the emergence of
an alternative state with a stable grass cover. In this case, if
the system is in a vegetated state, grasses can stabilize the
soil surface, prevent soil erosion, and maintain an adequate
pool of soil resources. Conversely, unvegetated conditions
are associated with soil degradation, which prevents grass
establishment. These properties of the dynamics are shown
in Fig. 2: the state (x∗

1 = 0) is stable for any value of a.
Moreover, a bifurcation occurs at ac = 4. As a increases
above ac, two new equilibria emerge: a stable equilibrium
(x∗

3 ) and an unstable one (x∗
2 ). Thus, a first-order phase

transition occurs for ac = 4.
The coefficients of the linearized model around x∗

3 are

A = 1

2

(
1 +

√
a − 4

a

)
B = −2

a
(11)

and their dependence on a is shown in Fig. 3. Thus,
A + B > 0 (hence, x∗

3 is a stable state) and A2 > B2

(hence, x∗
3 remains stable for any value of τ (e.g., D’Odorico

et al. 2012).

2 4 6 8 10
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x

Fig. 2 Stable (solid) and unstable (dashed) states of the system (Eq.
10) as a function of the parameter a
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Fig. 3 A plot of the parameters A (solid) and B (dashed) (Eq. 11) as
a function of the parameter a

Moving along the upper branch, x = x∗
3 , of the bifurca-

tion diagram (Fig. 2), the variance of x increases as a →
a+

c = 4 (Fig. 4) . However, in this case (A > 0 > B), as the
delay, τ , increases, the increase in variance occurs when the
system is closer to the transition point. As an effect of the
delay, the rising variance becomes less effective as a leading
indicator state shift (Fig. 4, see also “Methods” section).

Discussion and conclusions

This manuscript developed a theoretical framework for the
study of leading indicators of state shift in ecosystems
affected by delayed processes. The framework is used to
evaluate whether the variance of fluctuations of the state
variable increases as the system approaches the bifurca-
tion point. We find that the variance of the state variable
does increase when the system is close to a critical transi-
tion. This result provides a generalization to variance-based
theories of precursors of state shift. Thus, the rising vari-
ance can be used as a leading indicator of imminent state
changes also in delayed systems driven by additive noise. It
is important to stress, however, that this result applies only
to univariate systems driven by additive noise. In the case
of systems with multiplicative noise (i.e., with a noise term

2 4 6 8
a

1

2

3

4

5

2

Fig. 4 Variance of the fluctuation, ε, of x(t) about the stable state x∗
3

(upper branch of the bifurcation diagram, Fig. 2) for τ = 0 (solid line),
τ = 1 (longer dashed line), and τ = 5 (shorter dashed line)
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multiplying a function of the state variable x), the rising
variance is not necessarily a leading indicator of state shift
(Dakos et al. 2012).

This study has also shown that the delay has an impact on
the effectiveness of the rising variance as a leading indicator
of state shift. In fact, depending on the parameter values, the
delay may either cause an increase or a decrease in the vari-
ance, thereby enhancing or weakening the effectiveness of
this leading indicator of state shift with respect to the case
with no delay. In other words, the delay can either increase
or reduce the ability of the rising variance to anticipate the
occurrence of the transition when the system is still far from
the bifurcation point. More specifically, if the dependency
of the linearized dynamics on the current state of the sys-
tem, x, is stronger than that on xτ (i.e., A2 > B2), the delay
reduces or enhances the effectiveness of raising variance as
a leading indicator, depending on whether these dependen-
cies have a concurrent (i.e., A > B > 0) or an opposite
(i.e., A > 0 > B) effect on the dynamics, respectively.
Conversely, if the dependency on the past state is stronger
than that on the present configuration of the system (i.e.,
B2 > A2), the effectiveness of this precursor is enhanced by
the delay if B and A have opposite sign, while it is reduced,
otherwise.

In most empirical applications, it will be difficult to
discern whether the system is driven by additive or mul-
tiplicative noise. Moreover, the sign and magnitude of the
dependency of the linearized dynamics on the system’s
present and past conditions are hard to evaluate. Regardless
of these limitations, the theory presented in this manuscript
supports the use of the rising variance as a leading indica-
tor of state shift in delayed ecosystem dynamics driven by
additive noise.

References

Brock WA, Carpenter SR (2006) Variance as a leading indicator of
regime shift in ecosystem services. Ecol Soc 11(2):9

Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability
and soil phosphorus. Proc Natl Acad Sci USA 102:10002–10005

Carpenter SR, Brock WA (2006) Rising variance: a leading indicator
of ecological transition. Ecol Lett 9:311–318

Carpenter SR, Cole JJ, Pace ML, Batt R, Brock WA, Cline T, Coloso
J, Hodgson JR, Kitchell JF, Seekell DA, Smith L, Weidel B (2011)
Early warnings of regime shifts: a whole-ecosystem experiment.
Science 332:1079–1082

Dakos V, Scheffer M, van Nes EH, Brovkin V, Petoukhov V, Held HH
(2008) Slowing down as an early warning signal for abrupt climate
change. Proc Natl Acad Sci USA 105:14308–14312

Dakos V, van Nes E, Donangelo R, Fort H, Scheffer M (2010) Spatial
correlation as leading indicator of catastrophic shifts. Theor Ecol
3:163–174

Dakos V, van Nes EH, D’Odorico P, Scheffer M (2012) How robust
are variance and autocorrelation as early-warning signals for
critical transitions? Ecology 93(2):264–271

D’Odorico P, Laio F, Ridolfi L (2012) Noise-sustained fluctuations in
stochastic dynamics with a delay. Phys Rev E 85(041106)

D’Odorico P, Bhattachan A, Davis KF, Ravi S, Runyan CW (2013)
Global desertification: drivers and feedbacks. Adv Water Res
51:326–344

Frank TD (2005) Delay Fokker–Plank equations, perturbation the-
ory, and data analysis for non-linear stochastic systems with time
delays. Phys Rev E 71(031106)

Frank TD (2006) Time-dependent solutions for stochastic systems
with delays: perturbation theory and applications to financial
physics. Phys Lett A 357(275):275–283

Frank TD, Beek PJ (2001) Stationary solutions of linear stochastic
delay differential equations: applications to biological systems.
Phys Rev E 64(2 Pt 1):021917

Frank TD, Beek PJ, Friedrich R (2003) Fokker-Plank perspective on
stochastic delay systems: exact solutions and data analysis of
biological systems. Phys Rev E 68(2 Pt 1):021912

Gardiner CW (1986) Handbook of stochastic methods. Springer,
Berlin

Gurney W, Blythe S, Nisbet R (1980) Nicholsons blowflies revisited.
Nature 287:17–22

Guillouzic S, L’Heureux I, Longtin A (1999) Small delay approxi-
mation of stochastic delay equations. Phys Rev E 59(4):3970–
3982

Guttal V, Jayaprakash C (2008) Changing skewness: an early warning
signal of regime shifts in ecosystems. Ecol Lett 11:450460

Gyori I (1991) Oscillation theory of delay differential equations.
Clarendon, Oxford

Held H, Kleinen T (2004) Detection of climate system bifurcations by
degenerate fingerprinting. Geophys Res Lett 31:L23207

Horsthemke W, Lefever R (1984) Noise-induced transitions: theory
and applications in physics, chemistry, and biology. Springer,
Berlin

Just W, Pelster A, Schanz M, Scholl E (2010) Delayed complex
systems: an overview. Philos Trans R Soc A 368:303–304

Lefebvre J, Longtin A, Leblanc VG (2010) Oscillatory response
in a sensory network of ON and OFF cells with instantaneous
and delayed recurrent connections. Philos Trans R Soc A 368:
455

MacKey M (1989) Commodity price fluctuations: price dependent
delays and nonlinearities as explanatory factors. J Econ Theory
48:497–509

MacKey M, Nechaeva I (1995) Solution moment stability in
stochastic differential delay equations. Phys Rev E 52:3366–
3376

May RM (1977) Thresholds and breakpoints in ecosystems with a
multiplicity of stable states. Nature 269:471–477

May R (1980) Mathematical models in whaling and fisheries manage-
ment in some mathematical questions in biology, vol 13. American
Mathematical Society, Providence, p 164

Noy-Meir I (1975) Stability of grazing systems an application of
predator prey graphs. J Ecol 63:459–481

Ridolfi L, D’Odorico P, Laio F (2011) Noise-induced phenomena
in the environmental sciences. Cambridge University Press, New
York, p 314

Rietkerk M, van de Koppel J (1997) Alternate stable states and
threshold effects in semiarid grazing systems. Oikos 79(69):
76

Runyan CW, D’Odorico P, Lawrence D (2012) Physical and bio-
logical feedbacks on deforestation. Rev Geophys 50:RG4006.
doi:10.1029/2012RG000394

Scheffer M (2009) Critical transitions in nature and society. Princeton
University Press, Princeton

Scheffer MS, Carpenter SR, Foley JA, Folke C, Walker BH (2001)
Catastrophic shifts in ecosystems. Nature 413:591596

http://dx.doi.org/10.1029/2012RG000394


270 Theor Ecol (2013) 6:265–270

Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR,
Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G
(2009) Early-warning signals for critical transitions. Nature 461:
5359

Strogartz SH (1994) Nonlinear dynamics and chaos with applications
to physics, biology, chemistry, and engineering. Perseus Books,
Reading

Thomas DM, Weedermann, Billings L, Hoffacker J, Washington-
Allen R (2009) When to spray: a time-scale calculus approach to
controlling the impact of west nile virus. Ecol Soc 14:771–781

van Nes EH, Scheffer M (2007) Slow recovery from perturbations
as a generic indicator of a nearby catastrophic shift. Am Nat
169:738747

van de Koppel J et al (2002) Spatial heterogeneity and irre-
versible vegetation change in semiarid grazing systems. Am Nat
159(2):209218

Walker BH, Ludwig D, Holling CS, Peterman RM (1981) Stability of
semi-arid savanna grazing systems. J Ecol 69(2):473–498

Walker BH, Salt D (2006) Resilience thinking. Island Press,
Washington, DC


	Precursors of state transitions in stochastic systems with delay
	Abstract
	Introduction
	Methods
	A case study
	Discussion and conclusions
	References


