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Abstract Microclimatic loggers are increasingly used to
collect data from various habitats and interpolate ecologi-
cally meaningful landscape-scale topoclimatic grids.
However, it is unknown how sensitive these grids are to
finer-scale variations in microclimate. We performed a sen-
sitivity analysis using three microclimatic loggers at 27 sites
for 5 months in a semi-arid region of Western Australia. We
partitioned the within- and between-site variance in temper-
ature and produced 100 different topoclimatic models using
a random sensor from each site. For the coldest temper-
atures, we found within-site variance was negligible (3 %),
and models were strong (r2=0.74) and the coefficients con-
sistent. However, for the hottest temperatures, there was
substantial within-site variance (39 %), and models were
weaker (r2=0.27) and more sensitive. We concluded that
careful site design is needed to maximise the reliability of
topoclimatic grids, including using large sample sizes, en-
suring there is low predictor collinearity and sampling full
environmental gradients.

1 Introduction

It is widely accepted that climate affects the distribution of
biodiversity. As such, ecologists regularly make direct use
of climatic data from the nearest standardised weather sta-
tion (i.e. Stevenson screens ∼1.5–2 m above flat, cleared

areas) or estimate climate using macroclimatic surfaces that
have been interpolated from these observations (e.g.
Hijmans et al. 2005). However, many have questioned the
appropriateness of using such observations for understand-
ing biodiversity–climate relationships (Wolfe 1945;
Kennedy 1997; Lookingbill and Urban 2003; Ashcroft et
al. 2008; Suggitt et al. 2011; Graae et al. 2012). Criticisms
include (1) standardised weather stations shelter instruments
from conditions that most organisms experience (Wolfe
1945); (2) observations are made at a height of 1.5–2 m
and do not reflect the conditions relevant for ground-
dwelling fauna, germinating seeds, tender saplings or eco-
logical processes (Geiger 1971; Ashcroft et al. 2008; Graae
et al. 2012); (3) observations are made on largely flat,
unvegetated land and do not reflect the environments (e.g.
gorges/forests) that many species actually live in (Geiger
1971; Kennedy 1997; Suggitt et al. 2011) and (4) neither
standardised weather station data nor interpolated macro-
climatic grids capture the fine-scale climatic variations that
actually occur at regional and landscape scales (Wolfe 1945;
Lookingbill and Urban 2003; Dixit and Chen 2011; Scherrer
and Körner 2011; Ashcroft and Gollan 2012).

To address these four criticisms, there has been a surge in
studies placing large numbers of microclimatic data loggers
across different environments and interpolating topoclimatic
grids. These grids have grain sizes as fine as 5–100 m and
consider a broad range of fine-scale climate-forcing factors
such as cold air drainage, topographic exposure and canopy
cover (Lookingbill and Urban 2003; Ashcroft et al. 2008;
Fridley 2009; Vanwalleghem and Meentemeyer 2009; Dixit
and Chen 2011; Shoo et al. 2010; Holden et al. 2011;
Ashcroft and Gollan 2012). While the intent is to produce
climatic grids that better capture ecologically meaningful
fine-scale variations in climate, it is worth considering the
degree to which the above four criticisms are actually over-
come. For example, microclimatic loggers have been placed
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on the shady side of trees (Lookingbill and Urban 2003;
Fridley 2009), wrapped in foil (Suggitt et al. 2011) or placed
inside polyvinyl chloride (PVC) containers or other radia-
tion shields (Lundquist and Huggett 2008; Vanwalleghem
and Meentemeyer 2009; Dixit and Chen 2011; Shoo et al.
2010; Holden et al. 2011; Ashcroft and Gollan 2012).
Therefore, the fine-scale grids are still produced using sen-
sors that are protected from the conditions that many organ-
isms experience. Similarly, these requirements for shelter
can also introduce a bias in the environments where sensors
are placed (e.g. only forests if you rely on shade from trees),
so they still may not reflect the climate in all species’
habitats. Finally, sensors are also placed at a variety of
heights including 1–2 cm below the soil surface (Ashcroft
et al. 2008; Graae et al. 2012), 5 cm above the surface
(Ashcroft and Gollan 2012) and 1–2 m above the surface
(Lookingbill and Urban 2003; Fridley 2009; Vanwalleghem
and Meentemeyer 2009; Shoo et al. 2010; Holden et al.
2011). If ground level observations are important for most
species and processes (as suggested by Geiger 1971; Graae
et al. 2012), then, many grids are still based on observations
at other heights.

Therefore, at least three of the above four criticisms of
macroclimatic grids can still be directed at many fine-scale
topoclimatic grids produced using large networks of microcli-
matic loggers. However, topoclimatic grids will still be an
improvement if they better capture ecologically meaningful
variations in climate at landscape or regional scales (the fourth
criticism). An outstanding issue in this respect is how much
variability is captured by topoclimatic grids with grain sizes of
5–100 m and how much variability is not captured because it
still occurs at finer scales within these cells. For example, in a
global study, Hijmans et al. (2005) suggested 30 arc second
(∼1 km) cell sizes were better than 10 arc minute (∼20 km)
cells because there could be up to 33.8 °C difference in mean
annual temperature (mean 1.8 °C) within the larger cells sizes.
However, assessing ∼1-km cells using ∼25-m resolution top-
oclimatic grids in a large (300 km by 200 km) and topograph-
ically complex (e.g. elevational range of ∼1,400 m) temperate
landscape in eastern Australia (Ashcroft and Gollan 2012)
shows that there are still large variations in climate within 1-
km grid cells. For example, in terms of the hottest temper-
atures, there was up to 14.2 °C variation within 1-km cells
(mean 4.6 °C), and in terms of the coldest temperatures, there
was up to 11.2 °C variation (mean 4.5 °C). Ashcroft and
Gollan (2012) suggested that there were still microclimatic
variations within their 25-m cells, and moving all sensors a
few metres would change observations noticeably at some
individual sensors (see also Scherrer and Körner (2011) for
an analysis of fine-scale microclimatic variations). However,
these variations would not affect the overall topoclimatic
models if the relationships between climate and climate-
forcing factors were unchanged. In effect, fine-scale variation

might affect the residuals (errors) in topoclimatic models but
have little effect on the models themselves. This is an impor-
tant issue to address, as it is important for understanding the
usefulness and accuracy of the resulting topoclimatic grids
and assessing whether it is sufficient to place one sensor at
each site as all topoclimatic studies we are aware of to date
have done.

The objective of this study was to quantify how sensitive
topoclimatic grids are to within-cell variations in microclimate.
The specific aims were (1) to quantify the variation in micro-
climate within topoclimatic cells relative to the overall varia-
tions between sites, (2) to determine how fine-scale variability
affects the coefficients and performance of topoclimatic mod-
els and (3) to determine the effect of random variations in
predictor variables, as fine-scale variation in the predictors
themselves may also affect topoclimatic models. In essence,
the focus of this article is on sensitivity analysis (how much do
models vary) rather than on producing one best model.

2 Methods

2.1 Study area and data

Our study was conducted across a ∼10 km by 6 km area near
the town of Newman in the Pilbara bioregion, Western
Australia (∼23.5oS, 119.5oE). The Pilbara is within a zone
characterised by a hot and semi-arid climate. The climate at
the nearby Bureau of Meteorology weather station at
Newman Airport (∼18 km to the east of the study area) is
dry (mean annual rainfall of 310 mm) and hot (mean daily
maximum temperature of 31.4 °C). The elevation varies
from ∼550 to 800 m (Fig. 1). The landscape is dominated
by rocky hills and stony plains, with stony soils and shallow
red loams (Hamersley Plateau Zone in Tille 2006).

Grazing is the dominant (∼60 % by area) land use in the
Pilbara bioregion (Fisher et al. 2004), but it is also rich in
several minerals including iron ore. Large-scale develop-
ments worth billions of dollars are either underway or pro-
posed for the region, and the ecology of the region has a
large influence on land management decisions. Short-range
endemic invertebrates are a particularly important group of
fauna, as development proposals are thoroughly scrutinised
by state government agencies to ensure their protection.
These range-restricted species favour isolated, moist, cool
patches in the landscape (Harvey 2002), and it is important
to understand fine-scale variations in climate in this region
in order to quantify and locate these microrefugia (e.g.
Ashcroft et al. 2012).

Three microclimatic loggers were placed at each of 27
sites within the study area (Fig. 1), which is typical of the
number of sites used by other topoclimatic studies (e.g.
Lookingbill and Urban 2003; Ashcroft et al. 2008; Dixit
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and Chen 2011; Shoo et al. 2010 all use between 21 and 50
sites). While larger sample sizes should be beneficial and
have become more common (e.g. Vanwalleghem and
Meentemeyer 2009; Holden et al. 2011; Ashcroft and
Gollan 2012 use hundreds of sites), all these studies have
only used one sensor per site. Placing multiple sensors per
site allowed us to examine the amount and effects of within-
cell variation in microclimate and examine the inherent
trade-off between the number of sensors per site and the
number of sites that can be used for a given budget. While
the number of sites is lower than some of the more recent
studies mentioned above, this was beneficial to the present
study as it would better highlight the sensitivity of models.

Sites spanned broad habitat types that were present across
the study area and the region as a whole. Habitat types
included floodplain woodlands, deep and densely forested
gullies and gorges, steep slopes with various aspects and
sparsely vegetated ridges. Common canopy trees included
mulga (Acacia aneura) and snappy gum (Eucalyptus leuco-
phloia), shrubs included hop bush (Dodonia spp.) and low-
growing Acacia species, and the understorey was dominated
by spinifex (Triodia spp.). A range of topographic positions
and habitat types were selected to capture the broad range of
climates experienced by biota within the region.

Sensors at each site were separated by 10–20 m and were
placed within the same habitat type. Some sensors failed or
were disturbed by wildlife, leaving three sites with one sensor,
six sites with two sensors and 18 sites with three sensors. The
sensors were DS1923 hygrochron iButtons (Maxim/Dallas)
that were housed ∼5 cm above the soil surface inside PVC
shelters according to the methodology of Ashcroft and Gollan
(2012). Sensors recorded hourly temperature and humidity
from 17 March to 9 August 2010. Temperature data were
software corrected using internally stored calibration data
and were accurate to within 0.5 °C between −10 and 65 °C.

As observations were made near ground level, minimum
temperatures could be lower those reported by standardised
weather stations, and maximum temperatures could be as
much as 10–20 °C higher (Geiger 1971; Campbell and
Norman 1998). Humidity observations saturate under moist
conditions and can exceed 100 %. Based on 3 years of
observations at 250 sites in eastern Australia (Ashcroft and
Gollan 2012), it is clear that the amount of saturation varies in
different iButtons. We, therefore, applied a correction where-
by we calculated the 95th percentile of daily maximum hu-
midities for each sensor and then linearly scaled humidity
observations such that 100 % humidity corresponded with
the top 5 % of maximum humidities. This correction reduced
bias between iButtons and will be valid whenever there is
occasional rainfall or sharp declines in overnight temperatures
such that the air saturates at each site.

We calculated the daily maximum and minimum temper-
ature and humidity for each sensor and then calculated the
95th percentile of maximum temperatures as an indication
of the hottest conditions, the fifth percentile of minimum
temperatures as an indication of the coldest conditions and
the fifth percentile of minimum humidity as an indication of
the driest conditions. Extreme conditions occur under spe-
cific weather conditions, and percentiles allow a focus on
those extreme conditions even if they do not occur simulta-
neously or on consecutive days (Ashcroft and Gollan 2012).

A wide variety of climate-forcing factors can be influen-
tial at fine scales (Daly 2006), but given the low number of
sites in our study (n=27), we were cautious to include no
more than three climate-forcing factors per model. As the
coast was more than 350 km away, coastal influences were
not expected to have a significant effect and were not
considered. Exposure to cold air drainage was estimated as
the difference between the elevation at a site and the mini-
mum elevation within 500 m of a site. Sites that are near the

Fig. 1 The topography of the
study area in the Pilbara
bioregion of western Australia
(∼23.5oS, 119.5oE). Black dots
illustrate the locations of 27
sites where three microclimatic
loggers were installed
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local topographic minima are exposed to cold air pooling,
while perched sites are not exposed because the cold air can
drain away downhill. This ‘relative elevation’ predictor has
been shown to be a good method of predicting cold air
drainage elsewhere (Daly et al. 2007; Bennie et al. 2010;
Ashcroft and Gollan 2012). Elevation and cold air drainage
were highly correlated (r2=0.92) in this study area. Given
that elevation has a stronger effect on maximum temper-
atures and minimum humidities than cold air drainage
(Ashcroft and Gollan 2012), we used only elevation in
models for these factors. Cold air drainage was used in the
models for minimum temperatures as this has a stronger
effect than elevation.

Canopy cover was estimated as a percentage based on
visual observations at each of the 27 sites. This is a commonly
used approach, and although there can be a large variation
between observers, all our observations were made by the
same person (JG), and this method is sufficiently accurate
for our purposes as most observers rank sites in similar order
(Gorrod and Keith 2009; Gollan et al. 2012). Radiation was
estimated using the Area Solar Radiation tool of ArcMap 9.3
(ESRI) and based on Julian days 76–86, corresponding with
the hotter temperatures near the start of our observations.
Exposure to the north-west was calculated using the method
of Ashcroft et al. (2008), with an azimuth of 315o used as this
is the direction that has been associated with the cool, moist
habitats that terrestrial short-range endemic invertebrates are
reported to favour (Harvey 2002). There were moderate cor-
relations between radiation and the other two of these predic-
tors (canopy cover r2=0.38, t=−3.88, P=0.0007; exposure to
north-west r2=0.34, t=−3.57, P=0.001), and we cautiously
preferred canopy cover and exposure to north-west in models
as they were slightly less correlated (r2=0.20, t=2.51, P=
0.019). Therefore, the models we used were

Tmin ¼ a0 þ a1�cadþ a2�canopyþ a3�expNWþ err

Hmin or Tmax ¼ a0 þ a1�elevþ a2�canopyþ a3�expNWþ err

where Tmin, Tmax and Hmin represent the fifth percentile of
minimum temperatures, 95th percentile of maximum temper-
atures and fifth percentile onminimum humidities, respective-
ly; a0 to a3 are the coefficients in the regional regression
models; err is the error term; and, cad, canopy, expNW and
elev represent cold air drainage, canopy cover, exposure to the
north-west and elevation, respectively. We also produced
models with radiation instead of expNW to test the effect of
including predictors with higher collinearity.

2.2 Analysis

We first examined how much of the variation in our observa-
tions could be attributed to within-site microclimatic variability

rather than topoclimatic differences between sites. For each of
the three response variables (fifth percentile minimum temper-
atures, 95th percentile maximum temperatures, fifth percentile
minimum humidities), we conducted an ANOVAwith the 69
samples (27 sites×3 sensors per site—12 missing samples) to
determine if site had a significant effect on observations and to
partition the variance into within- and between-site variance.

We then examined how much intra-site climatic variability
affected model performance and coefficients by selecting one
sensor at random from each of the 27 sites and producing
topoclimatic models for each of the three response variables
using the models detailed above.We repeated this process 100
times using different random combinations of sensors and
calculated the mean, standard deviation and range of model
performance (r2 of regional regressions detailed below) and
coefficients (examined as the effect size=coefficient×range of
predictor so that different predictors could be directly com-
pared). The intent was not to produce one best model but to
assess how sensitive the models were.

The models were produced using a regional regression
approach (Lookingbill and Urban 2003; Daly 2006;
Ashcroft and Gollan 2012), with the response modelled as
a linear combination of the three selected predictor variables
(as detailed above). The cold air drainage predictor was
transformed as log(relative elevation×1,000) to ensure lin-
earity, whereas the other predictors could be used directly as
relationships were already linear.

We then tested the effect of small variations in two arbi-
trarily selected predictor variables, using cold air drainage and
minimum temperatures as one example and exposure to the
north-west and maximum temperatures as the other. Response
variables were calculated as the average of the 1–3 sensors at
each site. Errors in the predictor variables were introduced
using a normal distribution (mean=0, standard deviation
(s.d.)=0.1), where 0.1 represented 6.2 and 6.7 % of the range
of the respective predictor variables above. We have observed
differences approximately of this magnitude when comparing
predictors generated using different digital elevation models
(DEMs) in another study area (unpublished data).We repeated
the process 100 times using randomly generated errors in the
predictors and once again noted the effects on the variability
of model performance and coefficients as above.

3 Results

3.1 Within-site variation

The observed fifth percentile of minimum temperatures
ranged from 5.8 to 14.8 °C (mean 12.0 °C; s.d.=2.4 °C).
The average within-site variation was comparatively low
(mean s.d.=0.45 °C; Fig. 2a), and the ANOVA showed that
within-site variance accounted for just 3.4 % of the total
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variance (total variance=403.5; within-site variance 13.8;
between-site variance 389.7; F=45.7; degrees of freedom
(d.f.)=26, 42; P<0.0001).

In contrast, there was far more within-site variation in both
the 95th percentile of maximum temperatures and the fifth
percentile of minimum humidities (Fig. 2b, c). The 95th

percentile of maximum temperatures ranged from 36.8 to
53.8 °C (mean 47.3 °C; s.d.=3.1 °C), with an average
within-site standard deviation of 2.0 °C. Within-site variance
accounted for 39.2 % of total variance (total variance=659.2;
within-site variance=258.4; between-site variance=400.8; F=
2.51; d.f.=26, 42; P=0.004). The fifth percentile of minimum

Fig. 2 The mean temperatures
and humidities recorded by one
to three microclimatic sensors
at 27 sites in the Pilbara region
of Western Australia. Error
bars show within-site standard
deviation, with larger error
bars in panels b and c due to
greater within-site climatic
variability
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humidities ranged from 4.0 to 19.7 % (mean 12.6 %; s.d.=
2.8%) with an average within-site standard deviation of 1.8 %.
Within-site variance accounted for 37.1 % of total variance
(total variance=547.7; within-site variance=203.0; between-
site variance=344.7; F=2.74; d.f.=26, 42; P=0.002).

3.2 Effect of within-site variation on model coefficients
and performance

The hundred different models for the fifth percentile of
minimum temperatures performed consistently well (mean
r2=0.74; s.d.=0.02; range 0.68–0.77). Models were domi-
nated by the cold air drainage term, which had a strong and
consistent effect (mean effect size=6.6 °C; s.d.=0.34 °C;
range 5.9–7.6 °C; Fig. 3a). Canopy cover (mean effect size=
1.8 °C; s.d.=0.54 °C) and exposure to the north-west (mean
effect size=1.4 °C; s.d.=0.4 °C) had smaller but still rela-
tively consistent effects. The relatively low standard devia-
tions indicate that the 100 replicates produced similar
models, and fine-scale climatic variability had little effect
on the models for minimum temperature.

The hundred models for the 95th percentile of maximum
temperatures (mean r2=0.27; s.d.=0.09; range 0.10–0.56) and
the fifth percentile of minimum humidities (mean r2=0.26;

s.d.=0.12; range 0.07–0.58) were poorer and more variable
than those for minimum temperatures. Both models
were dominated by canopy cover (mean effects sizes −4.5
°C/4.9 % relative humidity (RH); s.d.=1.2 °C/1.3 % RH;
Fig. 3b, c). The effect of elevation was small due to a low
elevational range (mean effect sizes −2.2 °C/1.4 % RH; s.d.=
1.2 °C/0.8 % RH) and was very variable (ranges −5.0 to 0.3
°C/−0.5 to 3.6 % RH). The effect of exposure to the north-
west was even smaller and more variable (mean effect
sizes −1.3 °C/−0.4 % RH; s.d.=1.0 °C/0.9 % RH). The higher
variability in the models for maximum temperatures and min-
imum humidities compared to those of minimum temperature
indicated that they were more sensitive to which sensors were
selected from each site, and therefore, the models were less
reliable. That is, if we only placed one sensor at each site, as is
usually the case, the models would be sensitive to the place-
ment of those sensors within each site.

When radiation was included instead of exposure in
models for the 95th percentile of maximum temperature,
the variation in all coefficients was higher (Fig. 3c, d).
This is likely due to the tendency for correlated predictors
to lead to biased estimates of coefficients, and therefore, the
models were less reliable, even though radiation had a larger
effect than topographic exposure.

Fig. 3 The mean effect sizes (predictor range×coefficient) for 100
models produced using a randomly selected sensor from each of 27
sites. Predictors used were canopy cover (canopy), exposure to the

north-west (exp315), elevation (Elev), radiation (Rad) and a cold air
drainage term calculated using the log of relative elevation (logre).
Error bars show standard deviation
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3.3 Effect of predictor error on model performance
and coefficients

Introducing errors (mean=0; s.d.=0.1) to the cold air drain-
age predictor had a similar effect on models to the intra-site
variability in temperature. The performance of models was
still strong and consistent (mean r2=0.73; s.d.=0.04), but
the effect size of cold air drainage was slightly smaller
(mean effect size=6.3 °C; s.d.=0.37 °C; Fig. 4a). The errors
introduced to the exposure predictor had little effect on
results for the 95th percentile of maximum temperatures
(mean r2=0.36; s.d.=0.01), and there was little variation in
model coefficients (s.d. of effect sizes <0.3 °C; Fig. 4b).

4 Discussion

Our study produced mixed results on the amount and effects
of fine-scale variability in climate. In terms of the coldest
temperatures, there was little within-site variation in temper-
atures (3.4 % of total variance), and topoclimatic models
were consistently strong (mean r2=0.74) and dominated by
cold air drainage (mean effect size 6.6 °C, effect of other
predictors <1.8 °C). In this case, topoclimatic models ade-
quately captured the trend in climate, and fine-scale micro-
climatic variation was relatively unimportant. This suggests
that one sensor per site would be sufficient to capture top-
oclimatic trends in minimum temperatures and within-cell
microclimatic variability could generally be ignored.

The dominant cold air drainage predictor we used in this
study was based on the elevation relative to the minimum
elevation within a 500-m radius. This predictor has been
shown to be the dominant predictor of minimum temper-
atures in pre-alpine/arctic England (Bennie et al. 2010),
temperate/sub-tropical eastern Australia (Ashcroft and
Gollan 2012), and now semi-arid western Australia. The
elevation relative to the mean elevation does not appear to
work as well (Hjort et al. 2011). This demonstrates that even
small elevational differences can have large effects on min-
imum temperatures (e.g. 6.6 °C in this study with sensors
spanning ∼200 m) across a variety of biomes, and this effect
operates at fine scales (i.e. 500-m radius) that are below the
resolution of global datasets such as the 1-km resolution
Worldclim climate grids (Hijmans et al. 2005). Therefore,
climate grids with a grain size of approximately 25–100 m
appear to be necessary for mapping minimum temperatures,
although even finer resolutions may be needed where there
are deep, narrow gorges (e.g. Holec and Wild 2011).

In contrast to minimum temperatures, there was more
fine-scale variation in maximum temperatures and minimum
humidities. Given maximum temperatures and minimum
humidities are not completely independent (as temperatures
rise the relative humidity generally falls) and the results for

the two were similar, we restrict our discussion here to
maximum temperatures. The within-site variation in maxi-
mum temperatures was high (average within-site s.d.=
2.0 °C), and this made up 39.2 % of the total variance.
Even if we reduced the spatial resolution of our topoclimatic
grids dramatically, there are likely to be differences over
distances of a few centimetres according to variations in
shading from tree trunks and canopies and small variations
in topographic exposure. Effects are likely higher than min-
imum temperatures due to higher radiation fluxes during
daylight hours. Topoclimatic models for maximum temper-
atures have consistently been weaker than those for mini-
mum temperatures (e.g. Lookingbill and Urban 2003;
Ashcroft et al. 2008; Fridley 2009; Ashcroft and Gollan
2012), and the higher residual errors in these models prob-
ably reflect the greater within-site variations in maximum
temperature. Topoclimatic models for maximum tempera-
tures will still be capturing the overall climatic trend, but the

Fig. 4 The mean effect sizes (predictor range×coefficient) for 100
models produced with random errors added to the cold air drainage (a)
and exposure to north-west (b) predictors at each of 27 sites. Predictors
used were canopy cover (canopy), exposure to the north-west
(exp315), elevation (elev) and a cold air drainage term calculated using
the log of relative elevation (logre). Error bars show standard
deviation
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lower performance indicates there is substantial variation
within each cell.

The models for maximum temperature were also more
sensitive to the within-site variation in climate, with more
variation in both model performance and coefficients
(Fig. 3). This can be attributed to at least two factors.
When model performance is low, the underlying relation-
ships are weaker and more sensitive to the noise introduced
by within-site variation in climate. Secondly, the models for
maximum temperature were affected by predictor collinear-
ity, especially when radiation was included instead of expo-
sure to the north-west (Fig. 3). To reduce this sensitivity to
within-site variation, it is important that sensors are placed
wisely. As already suggested (Ashcroft and Gollan 2012),
sensitivity will be reduced if the full range of predictors are
sampled, spatial autocorrelation is minimised, predictor col-
linearity is reduced as far as possible, and large sample sizes
are employed. Indeed, the low sample size (n=27 sites),
high predictor collinearity (e.g. r2 of 0.38 between canopy
cover and radiation), and low elevational range (∼200 m) in
the present study probably meant that our results are a worst
case-scenario, and indeed, the performance of our models
for maximum temperature are lower than those reported
elsewhere (Lookingbill and Urban 2003; Ashcroft et al.
2008; Ashcroft and Gollan 2012). Therefore, although
within-site variation in maximum temperatures will affect
all models to some extent, careful design can ensure models
are less sensitive than indicated by this study. However, it
should be noted that such careful design will only ensure
that the mean temperature of cells can be predicted more
accurately. Models will still not be capable of capturing
within-cell climate range unless multiple sensors are placed
at each site to estimate such variation.

Predictor accuracy can also be an issue that reduces
model performance (e.g. McInerny and Purves 2011).
Errors can be introduced by small positional inaccuracies
or variations in the boundaries or resolutions of DEMs that
change the perceived environmental factors at sites where
sensors are located. We found that the variation introduced
by these errors had similar but smaller effects to fine-scale
climatic variations (Figs. 3 and 4), and efforts should also be
made to minimise errors. For example, reducing the resolu-
tion of DEMs will help ensure the accuracy of predictors in
small gorges (e.g. Holec and Wild 2011), where cold air
drainage and topographic exposure can vary dramatically
over short distances.

In conclusion, fine resolution (5–100 m) topoclimatic
grids can capture landscape-scale climatic patterns more
accurately than macroclimatic surfaces because they consid-
er a broader range of fine-scale climate-forcing factors and
are based on observations from a wider variety of habitats.
However, there are still large within-cell variations in cli-
mate for topoclimatic grids of maximum temperature in

particular. These fine-scale variations in microclimate can
reduce model performance and affect model coefficients if
care is not taken to reduce predictor collinearity, ensure
samples span the full range of each predictor and obtain
large sample sizes.
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