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Soil moisture from ERA-Land, a revised version of the land surface components of the European Centre for
Medium-RangeWeather Forecasts Interim reanalysis (ERA-Interim), is used tomonitor at a global scale the con-
sistency of a new microwave based multi-satellite surface soil moisture date set (SM-MW) over multi-decadal
time period (1980–2010). ERA-Land results from Land Surface Model simulations forced by high quality atmo-
spheric forcing data. It was shown to adequately capture the temporal dynamic of soil moisture. ERA-Land's
large scale nature, frozen configuration, global availability and ability to accurately represent soil moisture
variability make it suitable to complement typical validation approaches of soil moisture from remote sensing
based on ground measurements. Considering locations that have significant correlations for each 3-year sub
periods within 1980–2010, averaged soil moisture correlations of SM-MW with ERA-Land (at 95% Confidence
Interval) are increasing steadily from 1986 to 2010 (from 0.52 ± 0.10, to 0.66 ± 0.04). The lower correlations
mirror the periods where only passive microwave from the Special Sensor Microwave/Image (SSM/I, Ku band
at 19.3 GHz) sensor was used, highlighting the importance of multi-sensor capabilities. Overall SM-MW is
relatively stable over time with respect to ERA-Land. Good agreement is obtained in semi-arid areas, whilst the
tropics and high latitudes (and altitudes) present lower correlations values.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

It has been widely recognized that soil moisture is one of the main
drivers of the water, energy and carbon cycles (Legates et al., 2011). It
is a crucial variable for numerical weather prediction (NWP) and cli-
mate projections because it plays a key role in hydro-meteorological
processes. A good representation of soil moisture conditions can help
in improving the forecasting of precipitation, temperature, droughts
and floods (Brocca et al., 2012; Chen, Crow, Starks, & Moriasi, 2011;
Koster et al., 2004; Miralles, van den Berg, Teuling, & De Jeu, 2012;
Taylor, De Jeu, Guichard, Harris, & Dorigo, 2012). For many applications
global or continental scale soil moisture maps are needed. As a conse-
quence, a significant amount of studies have been conducted to obtain
such information. For that purpose, land surface modelling (Dirmeyer,
Dolman, & Sato, 1999; Georgakakos & Carpenter, 2006 amongst others),
remote sensing techniques (Dorigo et al., 2012, Kerr, 2007; Kerr et al.,
2010; Njoku, Jackson, Lakshmi, Chan, & Nghiem, 2003; Wagner,
Lemoine, & Rott, 1999; Wagner et al., 2007) or a combination of both
ium-Range Weather, Forecasts
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gel).
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through Land Data Assimilation Systems (LDAS, Albergel, Balsamo, de
Rosnay, Muñoz-Sabater, & Boussetta, 2012a; de Rosnay, Balsamo,
Albergel, Muñoz-Sabater, & Isaksen, 2012a; de Rosnay, Drusch,
Vasiljevic, Balsamo, Albergel, & Isaksen, 2012b; Dharssi, Bovis,
Macpherson, & Jones, 2011; Sabater, Jarlan, Calvet, Bouyssel, & de
Rosnay, 2007) are used.

Assessing the quality of these products is required and for instance,
the release of a new harmonized soil moisture product from remote
sensing (SM-MW) within the framework of the European Space
Agency's Water Cycle Multi-mission Observation Strategy (WACMOS)
and Climate Change Initiative (CCI) projects in 2012 (more information
at http://www.esa-soilmoisture-cci.org/; Wagner et al., 2012) triggered
several evaluation studies. SM-MW benefits from the synergy between
different active and passive microwave soil moisture products merged
into a single multi-decadal soil moisture dataset (Liu et al., 2011, 2012).

A first global trend analysis of SM-MW was conducted by Dorigo
et al. (2012) who found a general decrease of soil moisture over a 23-
yr period (1988–2010). Also, they concluded that most significant
trends found in SM-MW were visible in other independent datasets,
including NDVI from AVHRR-based Global Inventory Monitoring and
Modelling Studies (GIMMS) and surface soil moisture from GLDAS-
Noah model. Albergel et al. (2012b) confronted then SM-MW trends
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with soil moisture from two revised re-analyses; ERA-Land (Balsamo
et al., 2012), an update of the land surface component of the ERA-
Interim reanalysis (Dee et al., 2011) from the European Centre for
Medium-Range Weather Forecasts (ECMWF) and MERRA-Land
(Reichle, 2012; Reichle et al., 2011), an enhanced land surface data
product based on MERRA reanalysis (Rienecker et al., 2011) by the Na-
tional Aeronautics and Space Administration (NASA). Albergel et al.
(2012b) found that most of the major trends found in ERA-Land were
also present in SM-MW.

The typical validation approach for model and satellite based data
products is to compare them to in situ observations. Albergel et al.
(2012b) also evaluated ERA-Land, MERRA-Land and SM-MW using
ground measurements of soil moisture over 2007–2010. In situ mea-
surements from almost 200 stations from five networks in different
countries (USA, Spain, France, China and Australia) were considered
for the evaluation. In general, the three products were shown to capture
the temporal dynamic of observed surface soil moisture well with
averaged correlations (95% Confidence Interval) of 0.66(±0.038),
0.69(±0.038) and 0.60(±0.061) for ERA-Land, MERRA-Land and
SM-MW, respectively. This study revealed that SM-MW agrees well
with ground-based observations, but that its performance stays in most
cases behind that of the latest generation of global Land Surface Models.
Dorigo et al. (2013a) provided a more in-depth validation of SM-MW
using ground-based observations of 932 sites from 29 different historical
and active monitoring networks worldwide from the International Soil
Moisture Network (ISMN, http://www.ipf.tuwien.ac.at/insitu/, Dorigo
et al., 2011, 2013b). Whilst SM-MW performance appeared to be
relatively stable over time, with average Pearson and Spearman correla-
tions around 0.5 and unbiased root mean square differences around
0.05 m3 m−3, large differences between networks were observed.

The verification of the soilmoisture products using groundmeasure-
ments is not trivial. Even if in the recent years huge effortsweremade to
make such observations available in contrasting biomes and climate
conditions, long term and large scale ground measurements networks
are still sparse. Additionally, different networks will present different
characteristics (e.g. measurement methods, installation depths and
modes, calibration techniques, measurement interval, and temporal
and spatial coverage). Using in situ measurements, the quality of
retrieved soil moisture can be accurately assessed for the locations of
the stations. By their nature such assessment does not provide spatially
complete error fields that are important for understanding the variable
product quality across different environment. That iswhy it is of interest
to conceive new validation methods, complementing the existing soil
moisture networks (Wagner et al., 2007). Land Surface Models (LSM)
can be used to upscale the in situ surface soil moisture observations
and complete the evaluation of satellite derived products, assuming
that land surface models, forced with high quality atmospheric forcing
data, adequately capture the soil moisture temporal dynamic (Albergel
et al., 2010). The quality of ECMWF soil moisture products has been
highlighted by many studies (Albergel et al., 2012a, 2012b, 2012c,
2012d; Balsamo et al., 2009). It makes them suitable to complete the
evaluation of remotely sensed surface soil moisture. The improvements
in the operational ECMWF LSM scheme this past few years, in particular
with respect to soil moisture, provided the motivation for producing an
updated land surface reanalysis of ERA-Interim using offline (land-only)
LSM simulations; ERA-Land. It is used in this study as a reference to
monitor the consistency of the multi-decadal SM-MW product over
1980–2010. ERA-Land is currently the most suitable ECMWF product
for this study. Unlike the operational soil moisture product from
ECMWF which is based on a continuous effort to improve the analysis
and modelling systems, resulting in frequent updates (and possible
shift in the signal), it has a fixed configuration that guarantees a high
level of consistency (e.g. in skill) over time. Unlike ERA-Interim, it bene-
fits from ECMWF's most recent advances in land surface modelling.

The ability of ERA-Land to reproduce soil moisture annual variability
is first briefly assessed using in situ measurements from 620 stations
from 11 networks (in France, Spain, Italy, western Africa, China,
Australia, Denmark and the USA) for 2010. Its consistency is also inves-
tigated using years 2007, 2008, 2009 for networks that have data over
2007–2010 (in France, Spain, western Africa, Australia and the USA).
As Dorigo et al. (2013a) used these stations (amongst others) to evalu-
ate SM-MW, it was not repeated here. This study proposes to evaluate
the consistency of SM-MW variability over 1980–2010 using ERA-
Land as a reference. The different soil moisture products; ERA-Land
and SM-MW, are described in Section 2 along with the strategy used
for the evaluation. Results are described, discussed in Sections 3 and 4,
respectively. Section 5 provides a summary and conclusions.

2. Material and methods

2.1. Soil moisture products

Fig. 1 illustrates the mean soil moisture for ERA-Land (Fig. 1a, upper
layer; 0–7 cm) and SM-MW (Fig. 1b) over 1980–2010. Similar patterns
are observed for both products, but ERA-Land soil moisture range is
higher than that of SM-MW. Much lower mean values are found with
ERA-Land in arid areas (e.g. over the Sahara desert,Middle East, Australia
and the Tibetan plateau) and higher values are found in South Asia,
Northern Siberia and South-eastern of the USA.

2.1.1. In situ measurements
This studymakes use of in situ soilmoisturemeasurements obtained

through the International Soil Moisture Network (ISMN, http://www.
ipf.tuwien.ac.at/insitu/, Dorigo et al., 2011, 2013b), a data hosting centre
where globally-available ground-based soilmoisturemeasurements are
collected, harmonized and made available to users. Data from 11 net-
works are considered for 2010: NRCS-SCAN (Natural Resources Conser-
vation Service - Soil Climate Analysis Network) and SNOTEL (SNOwpack
TELemetry) over theUnited States (177 and 348 stations), SMOSMANIA
(Soil Moisture Observing System-Meteorological Automatic Network
Integrated Application) and SMOSMANIA-E in France (12 and 9 sta-
tions), REMEDHUS (REd de MEDición de la HUmedad del Suelo) and
VAS (Valencia Anchor Stations) in Spain (20 and 2 stations), MAQU in
China (20 stations), OZNET in Australia (38 stations), AMMA (African
Monsoon Multidisciplinary Analyses) in western Africa (3 stations),
UMBRIA in Italy (3 stations) and HOBE (Hydrological Observatory) in
Denmark. Data at 5 cm (10 cm for the MAQU network) are used and
the year 2010 is retained for the comparison. Table 1 gives a full list of
reference for each network. For the specific 2010 year, 620 stations
are available. ERA-Land ability to represent soilmoisture is also assessed
for 2007, 2008 and 2009 using networks that have data for those years
(numbers of stations might differ). All the considered networks used in
this study alsomeasure temperature, it permits to remove observations
potentially affected by frozen condition. Daily averaged observations of
surface soil moisture are used.

2.1.2. ERA-Land reanalysis
The recent improvements in the LSM scheme used in the operational

Integrated Forecast System (IFS) of ECMWF, in particularwith respect to
soil moisture (Albergel et al., 2012d; Balsamo et al., 2009), provided
the motivation for producing an updated land surface reanalysis of
ERA-Interim using offline (land-only) simulations; ERA-Land (Balsamo
et al., 2012). It has been generated at ECMWF and benefits from the
most recent land modelling improvements; the ERA-Interim near-
surface meteorology has been used to force the improved H-TESSEL
LSM (Balsamo et al., 2009).

Compared to the TESSEL LSM used in ERA-Interim (van den Hurk,
Viterbo, Beljaars, & Betts, 2000), the H-TESSEL LSM used in ERA-Land
has a better match to soil moisture observations (Albergel et al.,
2012d; Balsamo et al., 2009; de Rosnay et al., 2012a). It benefits from
an improved hydrology; the formulation of the soil hydrological con-
ductivity and diffusivity was revised to be spatially variable according

http://www.ipf.tuwien.ac.at/insitu/
http://www.ipf.tuwien.ac.at/insitu/
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Fig. 1. ERA-Land (a) and SM-MW (b) mean surface soil moisture over 1980–2010.
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to a global soil texturemap (FAO/UNESCODigital Soil Map of theWorld,
DSMW, FAO 2003). In addition, surface runoff is based on variable infil-
tration capacity. There is a new snow scheme (Dutra et al., 2010) and a
multi-year satellite based vegetation climatology (Boussetta, Balsamo,
Beljaars, & Jarlan, 2010). Also, the formulation of the bare soil evapora-
tion has been revisited to allow a smooth transition between vegetated
and non-vegetated areas and to realign the formulation of bare ground
evaporation with studies in the literature (Albergel et al., 2012c). All
these modifications were found to improve the representation of soil
moisture. ERA-Land was also evaluated for its atmospheric fluxes
(Balsamo et al., 2012; Boussetta et al., 2013) and provides initial
conditions to the monthly and seasonal forecasting systems (Molteni
et al., 2011) at ECMWF ensuring internal model consistency. Like ERA-
Interim, ERA-Land has a spatial resolution of about 80 km (T255) and
analyses are available for 00:00, 06:00, 12:00 and 18:00 UTC. It con-
siders four layers of soil (0–7, 7–28, 28–100 and 100–289 cm). In this
study, daily averaged surface soil moisture from ERA-Land first soil
layer (0–7 cm) is used.

2.1.3. Remotely-sensed data
Near surface soilmoisture can be estimated at a global scale based on

active and passive satellite microwave remote sensing with adequate
spatial-temporal resolution and accuracy: sensor using low frequency
microwave from 1 to 10 GHz are particularly sensitive to surface soil
moisture (Calvet et al., 2011; Schmugge, 1983). Over the past decades
remotely sensed surface soil moisture datasets were obtained from
scatterometer observations from the Active Microwave Instrument on
board the two European Remote Sensing satellites (ERS-AMI, active
microwave at 5.3 GHz) and the Advanced Scatterometer on MetOp
(ASCAT, active microwave at 5.255 GHz, e.g. Bartalis et al., 2007;
Scipal, Wagner, Trommler, & Naumann, 2002), or on observations
from various multi-frequency radiometers including the Advanced
Microwave Scanning Radiometer for the Earth Observing System
(AMSR-E, passive microwave at from 6.9 to 89.0 GHz, Njoku et al.,
2003; Owe, de Jeu, & Holmes, 2008), the Scanning Multichannel Micro-
wave Radiometer (SMMR, passive microwave at 6.6 GHz and above,
Owe, De Jeu, &Walker, 2001) and the Special SensorMicrowave Imager
(SSM/I, passive microwave at 19 GHz and above, Owe et al., 2008), the
TRMM Microwave Imager (TMI) on the Tropical Rainfall Measuring
Mission (TRMM), passive microwave at 10.7 GHz and above (Gao,
Wood, Jackson, Drusch, & Bindlish, 2006; Owe et al., 2008), andWindSat
(passive microwave from 6.8 to 37 GHz, Li et al., 2010; Parinussa,
Holmes, & De Jeu, 2012). More recently the Soil Moisture and Ocean
Salinity mission (SMOS), the first dedicated soil moisture mission, was
launched (passive microwave in L-band ~1.42 GHz, Kerr et al., 2010;
Mecklenburg et al., 2012) whilst within the next few years novel



Table 1
Comparison of surface soil moisture with in situ observations for ERA-Land in 2010. Mean correlations (R), root mean square differences (RMSD), bias (in situ measurements minus
products) are given for each network. Scores are given for significant correlations with p-values b 0.05. For each R estimate a 95% Confidence Interval (CI) was calculated using a Fisher
Z transform.

ERA-Land Vs. ground measurements N stations with significant R values Averaged R values (95%CI) Averaged RMSD (m3 m−3) Averaged bias (m3 m−3)

SMOSMANIA (France)
Albergel et al., 2008; Calvet et al., 2007

12 over 12 0.84(±0.03) 0.098 −0.066

SMOSMANIA-E (France)
Parrens et al., 2012

9 over 9 0.71(±0.05) 0.168 −0.076

VAS (Spain) http://nimbus.uv.es 2 over 2 0.78(±0.05) 0.136 −0.128
AMMA (western Africa)
Pellarin et al., 2009

2 over 3 0.64(±0.06) 0.053 −0.040

HOBE (Denmark)
Bircher, Skou, Jensen, Walker, & Rasmussen, 2012

29 over 30 0.68(±0.07) 0.074 −0.030

MAQU (China)
Su et al., 2011

17 over 20 0.57(±0.11) 0.093 −0.044

OZNET (Australia)
Smith et al., 2012

37 over 38 0.77(±0.05) 0.126 −0.105

REMEDHUS (Spain)
Ceballos, Scipal, Wagner, & Martinez-Fernandez, 2005

19 over 20 0.72(±0.05) 0.171 −0.147

SCAN (USA)
Schaefer & Paetzold, 2000

135 over 177 0.65(±0.08) 0.094 −0.014

SNOTEL (USA)
Schaefer & Paetzold, 2000

235 over 306 0.63(±0.09) 0.119 −0.054

UMBRIA (Italy)
Brocca, Melone, Moramarco, & Morbidelli, 2009

3 over 3 0.75(±0.09) 0.137 −0.131

All networks 500 over 620 0.66(±0.08) 0.118 −0.063
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dedicated soil moisture missions like SMAP (Entekhabi et al., 2010)
and SAOCOM (http://www.conae.gov.ar/eng/satelites/saocom.html) are
expected to complete the list of soil moisture datasets available
from space. Also, the continuity of existing products is guaranteed
by the recent launch of AMSR-2 (http://www.jaxa.jp/projects/sat/
gcom_w/index_e.html) in spring 2012 as follow-up mission of AMSR-E,
and by the ASCAT sensor on the operational MetOp-B platform launched
in September 2012. Many studies have highlighted the good agreement
between those data sets and ground-based observations over different
biomes and climate conditions (e.g. Albergel et al., 2009, 2010, 2012a;
Brocca et al., 2011; Draper, Mahfouf, Calvet, Martin, & Wagner, 2011;
Gruhier et al., 2010; Parrens et al., 2012).

Recently, the European Space Agency Water Cycle Multi-mission
Observation Strategy (ESA-WACMOS) project and Climate Change
Initiative (CCI, http://www.esa-soilmoisture-cci.org) have supported
the generation of a soil moisture product based on multiple microwave
sources from space. The first version of the combined product, SM-MW,
was released in June 2012 by the Vienna University of Technology and
the VU University of Amsterdam. SM-MW was generated using active
and passive soil moisture products, derived from SMMR, SSM/I, TMI
and ASMR-E (for the passive products), and the ERS AMI and ASCAT
scatterometers (for the active products as in Liu et al., 2011, 2012;
Wagner et al., 2012).
2.2. Evaluation strategy

The nearest neighbour approach was retained to match grid point
location of soil moisture from ERA-Landwith that of (i) groundmeasure-
ments from the eleven networks used in this study and (ii) SM-MW.
Datasets potentially affected by frozen condition were masked using a
soil temperature threshold of 4 °C. ERA-Land ability to reproduce soil
moisture variability is first assessed using ground measurement based
on the correlation coefficient (R), the root mean square differences
(RMSD) and the Bias (in situ minus ERA-Land).

The same metrics are also applied between SM-MW and ERA-Land.
Only cases where the p-value is below 0.05 (significant correlation),
are retained. Pixels with non-significant R values are excluded from
the computation of the average metric. As in Draper, Reichle, De
Lannoy, and Liu (2012) for each R estimate a 95% Confidence Interval
(CI) was calculated using a Fisher Z transform. Whereas p-value gives
an indication on the significance of the correlation, the 95% CI permits
to identify periods or areas that are significantly better than others.

The whole period 1980–2010 is first investigated, then correlations
are calculated for 3-yr periods from 1980–1982 to 2007–2009. R values
are given for each period considered individually (only pixels with sig-
nificant R), and also considering pixels with significant level of correla-
tions for each periods. The different products used to develop SM-MW
vary over space and time (Liu et al., 2012) and differences in themicro-
wave observation channels and sampling densities are expected to in-
fluence the quality of the different periods. To illustrate their potential
effects on SM-MW quality, the evaluation is repeated for the following
sub-periods, as in Dorigo et al. (2013a):

• 1 January 1980–31 August 1987: based SMMR observations only,
• 1 September 1987–30 June 1991: based on SSM/I only,
• 1 July 1991–31 December 1997: based on a combination of SSM/I and
ERS AMI,

• 1 January 1998–June 2002: based on a combination of TMI and AMI
between 40°N and 40°S, and a combination of SSM/I and ERS AMI
elsewhere,

• 1 July 2002–31 December 2006: based on a combination of AMSR-E
and ERS AMI,

• 1 January 2007–31December 2010: based on a combination of AMSR-E
and ASCAT.

For those six periods, and to avoid seasonal effects, time series of
anomalies from a moving monthly average were also calculated. The
difference from the mean is calculated using a sliding window of five
weeks all over the periods, and the difference is scaled to the standard
deviation. For each soil moisture estimate at day (i), a period F is
defined, with F = [i − 17, i + 17] (corresponding to a five-week
window). If at least five measurements are available in this period, the
average soil moisture value and the standard deviation over each time
window are calculated (Albergel et al., 2010).

3. Results

3.1. ERA-Land vs. in situ measurements

This section presents the results of the comparison between in situ
observations and ERA-Land. For all the stations used in this study, a
first visual quality check was performed. When suspicious data were

http://www.conae.gov.ar/eng/satelites/saocom.html
http://www.jaxa.jp/projects/sat/gcom_w/index_e.html
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observed (e.g. non-physical jumps in the time series), they were
discarded. Additional quality control was required for the stations
from the NRCS-SCAN & SNOTEL networks; as indicated in their website,
data are provisional and subject to revision, very little control is applied
tomeasurements. Dharssi et al. (2011) used a simple process to identify
stations where sensors might be dysfunctional. Stations are rejected
based on the scores obtained when compared to their experiments
(in term of correlations, RMSDs and biases). A similar process is applied
based only on the correlation level. Stations for which ERA-Land have a
correlation less than 0.3 are rejected (as in Dharssi et al., 2011). This
rather strict process has removed some good stations too (e.g. in
areas where the model might not realistically represent soil moisture,
Albergel et al., 2012b). Also, only stations with significant R values
were retained leading to a total of 500 stations (over 620) for 2010.
The results are presented in Table 1, on average R(95%CI), RMSD and
Bias are; 0.66(±0.08) [(ranging from 0.57(±0.11) for the MAQU net-
work in China to 0.84(±0.03) for the SMOSMANIA network in France],
0.118 m3 m−3 and −0.063 m3 m−3. About 65% of the stations (323
over 500) have R values greater than 0.6, the negatives biases shown
in Table 1 (in situ minus ERA-Land) indicate that ERA-Land tends to
overestimate soil moisture. Results are in line with previous study
evaluating ECMWF soil moisture; ERA-Land has good skills in capturing
surface soil moisture variability and tends however to overestimate
soil moisture. Table 2 presents the same scores for years 2007,
2008, 2009 (2010, also) for networks that have data over 2007–2010
(SMOSMANIA, AMMA, REMEDHUS, OZNET, SCAN and SNOTEL). From
Table 2 onemay appreciate the consistency of ERA-Land, e.g. for the sta-
tions of the REMEDHUS networks, averaged R values are; 0.74(±0.05),
0.75(±0.04), 0.78(±0.04) and 0.72(±0.05) for 2007, 2008, 2009 and
2010, respectively.

3.2. SM-MW vs. ERA-Land for 1980–2010 and 3-yr sub-periods

Fig. 2 presents; (a) the correlations values obtained from the compar-
ison between SM-MW and ERA-Land over 1980–2010, only pixels that
have significant correlations are considered (77% with p-value b 0.05),
(b) the size of the 95%CI and (c) the number of data used for the compar-
ison (sample size). On average the R (95%CI) value is 0.44(±0.07), they
Table 2
Same as Table 1 for networks that have data in 2007, 2008, 2009 and 2010.

N stations
with
significant
R values

R values
(95%CI)

RMSD
(m3 m−3)

Bias
(m3 m−3)

SMOSMANIA (France)
Albergel et al., 2008;
Calvet et al., 2007

2007 12 0.78(±0.04) 0.094 −0.065
2008 12 0.80(±0.04) 0.089 −0.056
2009 12 0.85(±0.03) 0.083 −0.048
2010 12 0.84(±0.03) 0.098 −0.066

AMMA (western Africa)
Pellarin et al., 2009

2007 7 0.78(±0.04) 0.160 −0.154
2008 5 0.74(±0.05) 0.087 −0.077
2009 4 0.70(±0.04) 0.100 −0.091
2010 2 0.64(±0.06) 0.053 −0.04

OZNET (Australia)
Smith et al., 2012

2007 33 0.76(±0.05) 0.118 −0.099
2008 36 0.69(±0.06) 0.124 −0.112
2009 31 0.66(±0.05) 0.131 −0.112
2010 37 0.77(±0.05) 0.126 −0.105

REMEDHUS (spain)
Ceballos et al., 2005

2007 18 0.74(±0.05) 0.157 −0.125
2008 17 0.75(±0.04) 0.163 −0.129
2009 19 0.78(±0.04) 0.148 −0.120
2010 19 0.72(±0.05) 0.171 −0.147

SCAN (USA) Schaefer
& Paetzold, 2000

2007 101 0.69(±0.07) 0.125 −0.056
2008 99 0.67(±0.06) 0.124 −0.054
2009 99 0.64(±0.08) 0.131 −0.051
2010 135 0.65(±0.08) 0.094 −0.014

SNOTEL (USA) Schaefer
& Paetzold, 2000

2007 197 0.63(±0.09) 0.112 −0.028
2008 185 0.60(±0.10) 0.114 −0.044
2009 225 0.63(±0.09) 0.119 −0.038
2010 235 0.63(±0.09) 0.119 −0.054
are however areaswithmuchbetter R values. As seen of Fig. 2a, relatively
low R values at higher latitudes (North hemisphere, 50°N and above)
clearly penalise the global average. Also it corresponds to areaswith larg-
er 95% CI (Fig. 2b) and less SM-MW data available for the comparison
(Fig. 2c). Poor scores are also obtained over desert areas (e.g. Sahara,
Kalahari in south east Africa) and in high elevation areas (e.g. European
Alps, Tibetan plateau). Best R values are obtained in the sub-Saharan
region, over the whole Australia, the southern part of Africa, western
South America (e.g. Brazil) andmore generally in areaswith a strong an-
nual cycle and higher density data (Fig. 2c). Table 3 presents scores per
latitudinal band (20° range). It clearly shows that best R values are
found in the tropics and around the equator; 0.52(±0.02) [0°–20°N]
and 0.60(±0.03) [20°S–0°] than at higher latitudes, for instance
0.37(±0.05) [40°N–60°N]. This is also visible on Fig. 3 (upper part)
that presents latitudinal plots of correlations values for 1980–2010 and
all 3 year sub periods. From Fig. 3a it is possible to appreciate where
there is a better agreement between SM-MW and ERA-Land; above
and below the equator whilst high latitudes present lower R values.
Figs. 2(a–c) and 3a are is in line with findings from Dorigo et al. (2010,
2013a) who stated that from a retrieval point of view, SM-MWproducts
are more likely to be best in semi-arid regions where (i) retrievals are
most accurate and (ii) observation density is highest.

Fig. 4 presents ten maps of R values corresponding to the ten 3-yr
sub period (from 1980–1982 to 2007–2009) and Fig. 5 (top in black)
illustrates the R values along with their 95% CI. A simple look to Figs. 4
and 5 permits to notice the quality over time of SM-MW variability
(with respect to ERA-Land). Also an improvement in R values is observed
from 2001–2003, particularly in the South Hemisphere (latitudinal plot
on Fig. 3a).

Averaged R values (95%CI) are 0.49(±0.12), 0.50(±012),
0.45(±0.12), 0.47(±0.12), 0.52(±0.11), 0.50(±0.10), 0.52(±0.09),
0.57(±0.09), 0.57(±0.09), and 0.52(±0.05) from 1980–1982 to
2007–2009 (Fig. 5 top in black). The small decrease in the R value in
the 2007–2009 period is due to the addition of high-latitude (50°N
and above) and high-elevation (e.g. European Alps) areas in SM-MW
(introduction of data from ASCAT). For these areas, where SM-MW
data were not available previously, low correlation between ERA-Land
and SM-MW is obtained and, hence, the average correlation decreases.
One may also note the decrease in the 95%CI that is related to the
increasing number of SM-MW data available for the comparison in
the most recent period.

For investigating SM-MW consistency over time, a more coherent
comparison is to consider the same pixels for all periods (i.e. pixels
with significant R values for all the periods) as illustrated on Fig. 2 (d–f)
for the R values, size of the 95% CI and sample size. It removed most of
the value above 60°N (see also Table 3), 29% of the pixels are left. Aver-
aged R values (95%CI) are then increasing steadily from 1986 to 2010
(from0.52 ± 0.10, to 0.66 ± 0.04), scores are reported in Table 3. An av-
erage correlation of 0.60(±0.02) is obtained for 1980–2010. Fig. 3b pre-
sents a latitudinal plot of R values under these conditions, for each sub-
period and for the whole 1980–2010, also. Best R values are obtained in
the latest periods (particularly true for the South Hemisphere), however
Fig. 5 (top in green) permits to appreciate the consistency over time of
SM-MW product; if R values are slightly lower in the very first periods
the difference is not significant (see 95%CI on Fig. 5 top in green). In
this configuration, biases and RMSD are of similar magnitude for the dif-
ferent periods (below ~0.010 and ~0.100 m3 m−3, respectively) for the
different period, scores are reported in Table 4. Also, the average number
of SM-MW data available per pixels increases over time, 144, 146, 210,
286, 322, 341, 469, 440, 534 and 899 for each sub-period.

Table 5 presents the percentage of R values ranked in 5bins of increas-
ing values [good (R N 0.7), fair (0.5 b R b 0.7), poor (0.3 b R b 0.5)
and inadequate (0 b R b 0.3 and R b 0)] for the comparison between
SM-MW and ERA-Land, for 1980–2010, 45.0% of the R values are above
0.5. Considering pixels that have significant R for each sub-period, it is
77.5%.



Fig. 2. a) Correlations value between SM-MWand ERA-Land over 1980–2010 (only significant correlations are considered, p-value b 0.05), b) size of the 95% Confidence Interval (CI) and
c) number of data used for the comparison (sample), d), e) and f) same as a), b) and c) when considering correlations that are consistently significant for every 3-yr sub-periods
(from 1980–1982 to 2007–2009).
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3.3. SM-MW vs. ERA-Land per blending periods

The analysis presented in Section 3.2 for the whole 1980–2010 and
3-yr sub-periods was repeated for the separate blended periods
specified in Section 2.2 (Evaluation strategy). Considering pixels with
significant level of R, individually for each period, averaged correlations
value are increasing steadily from 0.44(±0.03) to 0.52(±0.03) except
for the second period which has a value of 0.41(±0.03). Similar
pattern is obtained when considering pixels that have significant
R values for each blended periods with averaged correlations value
from 0.51(±0.02) to 0.61(±0.03), (0.45(±0.03) for the second peri-
od). They are illustrated on Fig. 5 (bottom).

As for the 3-yr sub-periods, biases and RMSD (not shown) are of
similar magnitude (below ~0.010 and ~0.100 m3 m−3, respectively).
The second period (1 September 1987–30 June 1991) is based on
SSM/I (19.3 GHz) inputs only. At Ku band, radiance emitted from the
soil surface is strongly attenuated by the vegetation canopy, leading to
an increased uncertainty of the retrievals over sparsely vegetated
areas and to a progressive masking over areas with moderate to dense
vegetation (such as tropical and boreal forests, as in Fig. 6b). R value
for this period is smaller than for the other periods, even than the first
one that uses inputs from SMMR (C band, 6.6 GHz), only (as in
Fig. 6a). In the subsequent third period (1 July 1991–31 December
1997) the additional introduction of the ERS-AMI C-band data
(5.3 GHz) tends to fill this gap (as in Fig. 6c). Dorigo et al. (2013a)
noticed that introduction of the circular non-polar orbiting TRMM
TMI (X band, 10.7 GHz) in 1998 leads to an increased observation den-
sity over the low and mid-latitudes whilst the observation density at



Table 3
Scores (N pixels with significant R values, averaged R values and averaged sample) for the comparison between SM-ME and ERA-Land over 1980–2010.

Latitudinal range Fraction (%) of pixels with significant R values
(p-values b 0.05)

Averaged R values (95%CI) Averaged sample per pixel (N pairs)

For 1980–2010 For each 3-yr sub-periods For 1980–2010 For each 3-yr sub-periods For 1980–2010 For each 3-yr sub-periods

60°N–80°N 57 1 0.09(±0.05) 0.30(±0.02) 1236 2258
40°N–60°N 85 24 0.37(±0.05) 0.56(±0.02) 1904 2828
20°N–40°N 88 37 0.47(±0.05) 0.57(±0.02) 2922 3829
0°–20°N 69 33 0.52(±0.02) 0.65(±0.02) 3130 3729
20°S–0° 61 20 0.60(±0.03) 0.70(±0.02) 2786 3782
40°S–20°S 92 57 0.54(±0.03) 0.58(±0.02) 3821 4664
60°S–40°S 68 34 0.49(±0.03) 0.61(±0.02) 3284 4899
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higher latitudes remains similar to that of the preceding period. Slightly
better correlations were found for this fourth period (1 January 1998–
June 2002, Fig. 6d) than for the previous periods. Finally the two last pe-
riods (1 July 2002–31 December 2006, based on a combination of
AMSR-E [6.9/10.7 GHz] and ERS-AMI; 1 January 2007–31 December
2010, based on a combination of AMSR-E and ASCAT [5.3 GHz]) present
similar R values (Fig. 6e and f). Latitudinal plots on Fig. 3c & d illustrate
the positive impact of the introduction of new sources of data over time
and space in SM-MW product (with respect to ERA-Land). It confirms
our knowledge that soil moisture retrievals are more robust at longer
wavelengths (Dorigo et al., 2010). In particular the use of ERS-AMI C-
band data from the third blended period, and then from AMSR-E and
ASCAT presents a clear improvement (more visible in the South
Hemisphere).

Correlations values on anomaly time series are presented on Fig. 7
using latitudinal plots, as for Fig. 7. Fig. 7 (left) illustrates correlations
Fig. 3. Latitudinal plot of correlations between SM-MW and ERA-Land for 1980–2010 an
(p-value b 0.05) for each sub-period considered individually, b) only pixels that have signific
period as defined in Section 2.2.; 1 January 1980–31 August 1987 (based SMMR observations
1997 (based on a combination of SSM/I and ERS-AMI), 1 January 1998–June 2002 (based on
and AMI elsewhere), 1 July 2002–31 December 2006 (based on a combination of AMSR-E and
ASCAT).
for the six blended periods considered individually (significant cases
only) and Fig. 7 (right) cases that have significant correlations for all
the periods. In this configuration, averaged values are; 0.34, 0.31, 0.34,
0.39, 0.49 and 0.45. If there is a clear added value from the satellites
used in the two latest periods, it is also possible to note that latitudes
presenting high values of correlations on volumetric time series due to
a strong seasonal cycle (e.g. 0°–25°N on Fig. 3d) have smaller values
when considering anomaly time series (i.e. ability to represent the soil
moisture short term variability).

4. Discussions

In this study ERA-Landwas used as a term of comparison to evaluate
trends' consistency in SM-MW obtained from multi-sensor remote
sensing. ERA-Land was shown to capture reasonably well surface soil
moisture annual variability although it tends to overestimate the in
d each 3-yr sub-period (from 1980–1982 to 2007–2009), a) significant correlations
ant correlation value (p-value b 0.05) for each sub period, c) and d) same as a) and b) for
only), 1 September 1987–30 June 1991 (based on SSM/I only), 1 July 1991–31 December
a combination of TMI and ERS-AMI between 40°N and 40°S, and a combination of SSM/I
ERS-AMI), 1 January 2007–31 December 2010 (based on a combination of AMSR-E and
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Fig. 5.Averaged correlation values, R, (95% Confidence Intervals) between SM-MWand ERA-Land for each 3-yr sub-periodswithin 1980–2010 (top) and for the 6 blended periods defined
in Section 2.2, Evaluation strategy. Black dots represent each period considered individually (only pixels with significant R values, p-values b 0.05), green dots represent for each periods
pixels which have significant R values for all periods.
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situ observations (negative biases and high RMSD). However one may
keep in mind that spatial variability of soil moisture is very high at
any spatial scale from local to regional. Precipitation, evapotranspira-
tion, soil texture, topography, vegetation and land use could either en-
hance or reduce the spatial variability of soil moisture depending on
how it is distributed and combined with other factors (Famiglietti,
Ryu, Berg, Rodell, & Jackson, 2008). Soil moisture represents the time-
integrated impacts of antecedent meteorological forcing on the hydro-
logical state of the soil system within the model. Differences in soil
properties could imply important variations in the mean and variance
on soil moisture, even over small distances. Saleem and Salvucci
(2002), Koster et al. (2009, 2011) suggested that the true information
content of modelled soil moisture (e.g. from ERA-Land) does not neces-
sarily rely on their absolute magnitudes but instead on their time varia-
tion (with this signal being less affected by soil texture uncertainties).
That is why whilst it is recognised that no single metric or statistic can
capture all the attributes of environmental variables, the correlation co-
efficient was found to be the most relevant to compare Earth Observa-
tions soil moisture data and model outputs. Bias and RMSD were also
computed in this study to identify possible drift between the two
datasets.

Good level of correlations were found between SM-MW and
ERA-Land over 1980–2010 and in each subsequent 3-yr sub-periods
when considering pixels that have significant level of correlations for
all periods; they are increasing steadily from 1986 to 2010 (from
0.52 ± 0.10, to 0.66 ± 0.04). An average correlation of 0.60(±0.02) is
obtained for 1980–2010. SM-MW variability is consistent over time; if
slightly better R values are obtained in the latest periods; the difference
is not significant. Considering pixels that have significant R values for
each period individually, slightly lower correlations are found for
2007–2009 (as in Dorigo et al., 2013a). This can be explained by the ad-
dition of data at high-latitude and high-elevation (e.g. European Alps)
areas in SM-MW where the quality of the retrieval is lower. As
highlighted by Dorigo et al. (2010, 2013a); from a retrieval point of
view, SM-MW products are more likely to be best in semi-arid regions
Fig. 4. Correlations value between SM-MW and ERA-Land (only significant level of correlation
1980–1982 to 2007–2009).
where (i) retrievals are most accurate and (ii) observation density is
highest. It is confirmed by Fig. 2 (a–c).

Similar analysis using the six blended periods as defined in
Section 2.2 was useful to identify the potential impact of the different
products used to develop SM-MW. It confirms our knowledge that soil
moisture retrievals are more robust at longer wavelengths (Dorigo
et al., 2010) and that the latest C-bands products AMSR-E and ASCAT
provide a better retrieval than the first SMMR dataset. The second peri-
od (1 September 1987–30 June 1991), based on SSM/I (passive micro-
wave product at Ku band 19.3 GHz) inputs only, presents the lowest
scores. At SSM/I wavelength, radiance emitted from the soil surface is
strongly attenuated by the vegetation canopy, leading to an increased
uncertainty of the retrievals over sparsely vegetated areas and resulting
to less data being available. That explains the better R values obtained
with SMMR for the previous period (1 January 1980–31 August 1987,
passivemicrowave at C band, 6.6 GHz), although the observation densi-
ty is smaller, it has a better coverage (Fig. 6a & b). There is a general
decrease in SM-MW coverage (and observations density) for the fifth
blended period (1 July 2002–31 December 2006, based on a combina-
tion of AMSR-E and ERS AMI) attributed to the substitution over many
areas of the passive observations with scatterometer products that
have a lower daily coverage (see Fig. 6e).

The use ofmodel data tomonitor soilmoisture retrieval from remote
sensing has however some limitations since the interpretation of the re-
sults is hampered by the accuracy of the reference data set (model itself
and its inputs such as the atmospheric forcing). Albergel et al. (2010,
2012d) have highlighted somenon-realistic representation of soil mois-
ture in ECMWF products that might be caused by shortcomings in the
soil characteristics and pedotransfer functions that are employed, as
well as by the difficulty of representing the spatial heterogeneity of
these properties. For instance, awrong representation of the soil texture
could lead to a poor representation of soil moisture when compared to
in situ data. Comparison in those areas (e.g. over the Tibetan plateau,
Albergel et al., 2012b) might lead to poor level of correlations. ECMWF
is currently using a soil texture map from the Food and Agricultural
s, p-value b 0.05) for the 10 3-yr sub periods considered individually in this study (from



Table 4
Scores for the comparison between SM-ME and ERA-Land, only pixels that have significant correlation value (p-value b 0.05) for each sub period are considered leading to 29% of the
pixels left.

1980–82 1983–85 1986–88 1989–91 1992–94 1995–97 1998–00 2001–03 2003–05 2006–09 1980–2010

R (95%CI) 0.59 (±0.11) 0.57 (±0.11) 0.52 (±0.10) 0.52 (±0.10) 0.57 (±0.08) 0.56 (±0.08) 0.61 (±0.06) 0.62 (±0.07) 0.66 (±0.05) 0.66 (±0.04) 0.60 (±0.02)
RMSDm3 m−3 0.100 0.101 0.104 0.105 0.103 0.104 0.098 0.096 0.095 0.094 0.099
Bias m3 m−3 0.005 0.008 0.004 0.005 0.002 0.008 0.006 0.008 0.007 0.003 0.005
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Organization (FAO) dataset (FAO 2003) and the implementation of a
newmap such as the new comprehensive HarmonizedWorld Soil Data-
base (HWSD) (FAO/IIASA/ISRIC/ISSCAS/JRC 2009) could lead to better
results. Albergel et al. (2012b) found very similar trend between ERA-
Land and SM-MWsoil moisture over 1988–2010, it gives more strength
to the comparison. However, whilst we assume ERA-Land quality to be
constant over time one may note that the atmospheric observing sys-
tem used in the atmospheric reanalyses has undergone changes over
time (e.g. Dee et al., 2011; Robertson, Bosilovich, Chen, & Miller,
2011). That impacts the long term consistency of the surface
meteorological forcing of ERA-Land.

Also, soil moisture time series show a strong seasonal pattern that
could artificially increase the agreement between satellite and model
output soil moisture in terms of R. To avoid seasonal effects, the analysis
of anomaly time-series was also carried out. Correlations on anomaly
time series (SM-MW and ERA-Land) were investigated in this study
for the six blended periods described in Section 2.2. Based on pixels
that have significant R values on anomaly time series for each blended
periods, averaged values are respectively 0.34, 0.31, 0.34, 0.39, 0.49
and 0.45. The good level of correlation of the volumetric time series
(0.51, 0.45, 0.51, 0.56, 0.61 and 0.61) is explained by seasonal variations,
which are suppressed in monthly anomalies. When a model output is
applied as a reference to monitor satellite derived soil moisture, this
score is particularly sensitive to the meteorological forcing (e.g. quality
of the precipitation) used in the model. Albergel et al. (2012a) found
that over areas such as western Africa correlations on volumetric time
series are mainly driven by the annual cycle and the representation of
the soil moisture short term variability by ECMWF's products is poor
when compared to ground measurements.
5. Conclusions

In this study, soilmoisture fromERA-Land revised version of the land
surface components of ERA-Interim re-analysis from ECMWF was used
to monitor SM-MW dataset from remote sensing. ERA-Land was found
Table 5
Percentage of correlations values ranked in 5 bins of increasing values [good (R N 0.7), fair
(0.5 b R b 0.7), poor (0.3 b R b 0.5) and inadequate (0 b R b 0.3 and R b 0)] for the com-
parison between SM-MWand ERA-Land for 3-yr sub period and for 1980–2010 **(in bold)
** also. Values in parenthesis are when pixels present significant correlations values for all
the 10 3-yr sub-period.

In % R b 0 0 b R b 0.3 0.3 b R b 0.5 0.5 b R b 0.7 0.7 b R

1980–1982 3.2(0.0) 13.6(4.5) 31.3(25.1) 33.4(41.3) 18.5(29)
1983–1985 2.0(0.0) 14.9(6.4) 31.3(25.9) 34.6(42.0) 17.2(25.6)
1986–1988 1.6(0.0) 18.2(7.5) 42.0(39.4) 29.8(39.5) 8.5(13.5)
1989–1991 1.5(0.1) 17.7(8.5) 38.4(39.3) 29.7(38.4) 12.6(13.7)
1992–1994 1.7(0.1) 11.0(5.6) 32.0(32.1) 35.2(38.1) 20.1(24.2)
1995–1997 1.8(0.0) 14.2(6.5) 33.7(33.4) 31.7(37.0) 18.7(23.1)
1998–2000 1.5(0.0) 12.5(3.0) 28.1(20.9) 36.5(46.8) 21.3(29.3)
2001–2003 0.8(0.0) 7.3(2.8) 21.7(15.7) 43.1(49.7) 27.0(31.9)
2004–2006 0.9(0.0) 8.2(1.0) 23.7(11.2) 39.5(46.5) 27.6(41.2)
2007–2009 5.0(0.0) 15.0(2.2) 19.0(11.0) 34.0(43.7) 27.0(43.1)
1980–2010 2.0(0.0) 25.0(0.6) 27.0(21.9) 32.0(53.4) 13.0(24.1)
to represent soil moisture variability well, when compared to in situ
measurements of soil moisture 620 stations from 11 networks across
the world for 2012, averaged correlation (95% Confidence Interval), root
mean square difference and bias values; 0.66(±0.08) [(ranging from
0.57(±0.11) for the MAQU network in China to 0.84(±0.03) for the
SMOSMANIA network in France], 0.118 m3 m−3 and −0.063 m3 m−3.
It confirms the finding of Albergel et al. (2012b) and gives more
strength to the present study. The good quality of ERA-Land soil mois-
ture, its global coverage, frozen configuration and large scale nature
make it suitable for the monitoring of satellite retrieved soil moisture.
The findings from Dorigo et al. (2013a) who used ground-based obser-
vations of 932 sites from 29 different historical and active monitoring
networks worldwide from the International Soil Moisture Network to
evaluate SM-MW were confirmed by this study. Whilst the number of
dense in situ networks was too limited in space and time for them to
provide a representative global picture of SM-MW datasets, the use of
ERA-Land makes it possible. This study provides several insights into
the use of Land Surface Model to evaluate satellite retrieved surface
soil moisture and also from SM-MW itself:

• LSM, which are forced with high quality atmospheric forcing data and
which were shown to adequately capture the soil moisture temporal
dynamic, can be used to complement the evaluation of satellite re-
trieved surface soil moisture and monitor their variability. The large
scale nature of LSM estimates is more representative of the scales of
remotely sensed products and their global scale availability permits
to extend the typical validation approach based on in situ measure-
ments in areas (periods) where no data are available.

• Even if different products varying over space and time, and with
differences in the microwave observation channels and sampling
densities, are used to develop SM-MW, its variability is relatively
stable over 1980–2010,

• SM-MW performs slightly better for period based on C band observa-
tions than X band and Ku band.

In particular a very good agreement is obtained in the tropics and
close to the Equator, all over Australia and south Russia whilst poor cor-
relations are obtained at high latitude (North hemisphere, 50°N and
above). Dorigo et al. (2013a) found SM-MW to be relatively stable
over 1980–2010 despite a decrease in scores for the most recent period
where better retrievals are expected. They partly attributed it to the use
of new ground measurements networks in areas where soil moisture
retrieval is difficult. In contrast using a global scale dataset such as
ERA-Land as a reference it was possible to carry out a more coherent
comparison and to consider locations that have significant correlations
values for each 3-yr sub periods within 1980–2010 only. Averaged R
(95%CI) values between SM-MW and ERA-Land are increasing steadily
from 1986 to 2010 (from 0.52 ± 0.10, to 0.66 ± 0.04). An average cor-
relation of 0.60(±0.02) is obtained for 1980–2010. Similar score to that
of the previous period is obtained for 2007–2009, with a smaller 95%CI
also. Considered individually however, a small decrease is indeed no-
ticed in the latest 2007–2009 period, however having a global scale
analysis permits to see that it corresponds to the addition of data in
high latitude and high elevation that were not present in the previous
period and that have poor R values (e.g. north Siberia and Alaska,
south-eastern part of south America, European Alps see Figs. 4 & 6).
These areas are characterised by a smaller density of SM-MW data



Fig. 6. Correlations value between SM-MW and ERA-Land (only significant level of correlations, p-value b 0.05) for the 6 blended period as defined in Section 2.2; a) 1 January 1980–31
August 1987 (based SMMR observations only), b) 1 September 1987–30 June 1991 (based on SSM/I only), c) 1 July 1991–31 December 1997 (based on a combination of SSM/I and ERS-
AMI), d) 1 January 1998–June 2002 (based on a combination of TMI and AMI between 40°N and 40°S, and a combination of SSM/I and ERS-AMI elsewhere), e) 1 July 2002–31 December
2006 (based on a combination of AMSR-E and ERS-AMI), f) 1 January 2007–31 December 2010 (based on a combination of AMSR-E and ASCAT).
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and a retrieval of smaller quality. It is of interest to better understand
models and satellite data behaviours at high latitude where poor corre-
lations values were obtained. The correlation was found to be more
relevant than other standard metrics (root mean square differences,
bias…) to evaluate the difference between SM-MW and ERA-Land.
However, the definition of a better suited measure of accuracy to
characterise the quality of soil moisture data is still a challenge
(e.g. in semi-arid areas were soil moisture has a very low variability).
Finally, additional work will focus on the use of ERA-Land as inputs of
methods such as error propagation that can provide a more global
view of the uncertainty of retrieved soil moisture. Techniques such as
the triple collocation method (Stoffelen, 1998) assess the uncertainty
of soil moisture estimates resulting from errors in the input variables.
Also, investigating specific areas of theWorld (e.g. agricultural/forested
areas) will permit to better understand the impact of the land cover on
the soil moisture retrieval from space.
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Fig. 7. Same as Fig. 3c and d for the anomaly time series from a moving monthly average.
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