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The existing remote sensing drought indices were mainly derived from optical and infrared bands, and have
been widely used in monitoring agricultural drought; however, their application in monitoring meteorolog-
ical drought was limited. This study proposes a new multi-sensor microwave remote sensing drought index,
the Microwave Integrated Drought Index (MIDI), for monitoring short-term drought, especially the meteoro-
logical drought over semi-arid regions, by integrating three variables: Tropical Rainfall Measuring Mission
(TRMM) derived precipitation, Advanced Microwave Scanning Radiometer for EOS (AMSR-E) derived soil
moisture, and AMSR-E derived land surface temperature. Each variable was linearly scaled from 0 to 1 for
each pixel based on absolute minimum and maximum values over time to relatively monitor drought.
Pearson correlation analyses were performed between remote sensing drought indices and scale-
dependent Standardized Precipitation Index (SPI) during the growing season (April to October) from 2003
to 2010 to assess the capability of remotely sensed drought indices over three bioclimate regions in northern
China. The results showed that MIDI with proper weights of three components outperformed individual re-
mote sensing drought indices and other combined microwave drought indices in monitoring drought. It
nearly possessed the best correlations with different time scale SPI; meanwhile it showed the highest corre-
lation with 1-month SPI, and then decreased as SPI time scale increased, suggesting that the MIDI was a very
reliable index in monitoring meteorological drought. Furthermore, similar spatial patterns and temporal
changes were found between MIDI and 1- or 3-month SPI in monitoring drought. Therefore, the MIDI was
recommended to be the optimum drought index, in monitoring short-term drought, especially for meteoro-
logical drought over cropland and grassland across northern China or similar regions globally with the ability
to work in all weather conditions.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Drought is themost costly natural disasters in China and all over the
world (Huang et al., 2006; Wilhite, 2000). As extreme climate events,
droughts are likely to become intensified and more frequent under
global warming (Trenberth et al., 2003, 2004), especially in semi-arid
regions of the northern hemisphere (Wetherald & Manabe, 1999,
2002). The precipitation of northern China is governed by the East
Asian summer monsoon (EASM), the EASM and related seasonal rain
belts assume significant variability at intra-seasonal, inter-annual and
inter-decadal time scales (Ding, 2007; Ding & Chan, 2005). Further-
more, the EASM has experienced significant weakening since 1970s,
thus resulting in increased droughts over northern China (Ding et al.,
2008; Wang, 2001), and have adversely affected water resources,
agricultural production, and welfare of people across northeastern
heric Physics, Chinese Academy
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China, where precipitation limitation is already at high risk (Piao et
al., 2010). Clearly, it is very important to monitor drought timely over
monsoon frontiers.

Droughts are often considered in four major types: meteorological,
agricultural, hydrological, and socioeconomic drought (American
Meteorological Society, 1997, 2004; Wilhite, 2005). Meteorological
drought results from reduction of precipitation, while agricultural
drought is related to shortage of availablewater for plant growth. Hydro-
logical drought refers to deficiency of surface and subsurface water sup-
ply. Finally, socioeconomic drought is associatedwith insufficient supply
to meet the demand of some economic good with the above three types
of drought. Meteorological drought occurs more frequently and com-
monly than other three kinds of droughts; meanwhile, it normally trig-
gers other types of drought, including agricultural, hydrological, and
socioeconomic drought (WMO, 2006). Hence, timely meteorological
drought monitoring is vitally important for early warning and risk man-
agement of water resources and agricultural production.

Drought can be effectively monitored by drought indices derived
from station-based meteorological data, such as the percent of
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normal precipitation, the Palmer Drought Severity Index (PDSI;
Palmer, 1965), Palmer Moisture Anomaly Index (z-index; Palmer,
1965), deciles (Gibbs &Maher, 1967), and the Standardized Precipita-
tion Index (SPI; McKee et al., 1993). Among them, the SPI provides a
simple and versatile way to monitor drought with drought categories
of near normal (−0.99 to 0.99), moderate drought (−1.49 to −1.0),
severe drought (−1.99 to −1.5) and extreme drought (b−2.0)
(McKee et al., 1993, 1995). As it is based on statistical probability
and is designed to be a spatially invariant indicator of drought, the
SPI has improved drought monitoring capabilities and has been ac-
cepted broadly by the scientific community (Guttman, 1998; Hayes
et al., 1999; Keyantash & Dracup, 2002). The main advantage of the
SPI is that it can be flexibly calculated at different temporal scales
(e.g., 1-, 3-, 6-, 9-, 12-, and 24-month intervals) according to user's in-
terest for monitoring meteorological, agricultural or hydrological
drought (Guttman, 1999).

Station-based drought indices can effectively estimate drought
conditions around meteorological station, but the lack of continuous
spatial coverage limits the ability of characterizing and monitoring
detailed spatial pattern of drought conditions at regional scale, espe-
cially in areas with sparse meteorological stations or high degree of
spatial variability. Satellite-based remote sensing can overcome the
limitations of ground observation; it can consistently and continuous-
ly monitor Earth environment processes and changes cross space and
time. The detailed space-based observations are natively suitable for
regionally oriented phenomena monitoring and detection. Drought
indices based on satellite remote sensing data are therefore capable
of capturing spatial details and have become the most promising
tools for drought monitoring at regional scale (Kogan, 1997).

In recent years, many indices based on remote sensing data have
been proposed to monitor drought, such as the Normalized Difference
Vegetation Index (NDVI; Rouse et al., 1973), the Vegetation Condition
Index (VCI), the Temperature Condition Index (TCI), the Vegetation
Heath Index (VHI; Kogan, 1995a,b), the Normalized Difference
Water Index (NDWI; Gao, 1996), the Standardized Vegetation Index
(SVI; Peters et al., 2002), the Normalized Difference Drought Index
(NDDI; Gu et al., 2007), and the Normalized Multiband Drought
Index (NMDI; Wang & Qu, 2007). More recently, an integrated re-
mote sensing drought index, the Scaled Drought Condition Index
(SDCI), was developed to monitor agricultural drought using multi-
sensor data (Rhee et al., 2010).

Most of the current remote sensing drought indices use optical
and infrared channels (Table 1) except for SDCI, which consider
microwave sensor data. Therefore, those indices are highly related
to vegetation condition. Additionally, there is a time lag between pre-
cipitation occurrence and vegetation response, and the lag time varies
according to several factors, such as the regional rainfall patterns
(e.g., Farrar et al., 1994), land cover and vegetation type (e.g., Wan
et al., 2004), and soil type (e.g., Ji & Peters, 2003). Therefore, the
vegetation related drought indices are more suitable for monitoring ag-
ricultural drought (e.g., Quiring & Ganesh, 2010); meanwhile, their
Table 1
Formulas for remote sensing drought indices. ρ represented the spectral reflectance,
and αwas the weight of single index while constituting the integrated drought indices.

Drought indices Formula

VCI (NDVIi − NDVImin) / (NDVImax − NDVImin)
TCI (Tmax − Ti) / (Tmax − Tmin)
VHI α ∗ VCI + (1 − α) ∗ TCI
NDWI (ρNIR − ρSWIR) / (ρNIR + ρSWIR)
NDDI (NDVI − NDWI) / (NDVI + NDWI)
NMDI (ρNIR − (ρ1640 nm − ρ2130 nm)) / (ρNIR + (ρ1640 nm − ρ2130 nm))
Scaled LST (LSTmax − LSTi) / (LSTmax − LSTmin)
Scaled TRMM (TRMMi − TRMMmin) / (TRMMmax − TRMMmin)
Scaled NDVI (NDVIi − NDVImin) / (NDVImax − NDVImin)
SDCI (1/4) ∗ scaled LST + (2/4) ∗ scaled TRMM + (1/4) ∗ scaled NDVI
applications are largely limited by the atmospheric conditions, espe-
cially the clouds. Furthermore, it was found that the assessment capa-
bility of drought indices differs greatly between each other in spatial
distribution (e.g., Bayarjargal et al., 2006) and varies over time within
the growing season (e.g., Karnieli et al., 2010; Vicente-Serrano, 2007)
according to their specific observation targets as well as the accuracy
and uncertainties from retrieval algorithms. Combination of several
drought indices, such as VHI and SDCI, may yield more reliable drought
monitoring at region scale. Nevertheless, timely monitoring of short
term drought at regional scale, especially meteorological drought, is
still a great challenge.

To date, the application of microwave remote sensing in drought
monitoring has not been thoroughly investigated. In addition to the
above remotely sensed drought indices, satellite microwave remote
sensing is an important approach for drought monitoring due to its
all weather working advantages. It provides abundant variables high-
ly related to various climate parameters, such as precipitation derived
from the Tropical Rainfall Measuring Mission (TRMM), land surface
temperature (LST) and soil moisture (SM) obtained from the Ad-
vanced Microwave Scanning Radiometer (AMSR-E) on-board Aqua
satellite. TRMM provides invaluable measurements for quasi-global
(50°S–50°N) coverage of rain estimates at 3 hourly or monthly of
0.25° × 0.25° resolution from 1998 (Huffman et al., 2007). The data
have been used to effectively monitor precipitation variation and
drought (e.g., Jiang & Zipser, 2010; Rhee et al., 2010). Soil moisture
is a simple and sensitive index of drought, and was widely used to
monitor water deficit (Andreadis et al., 2005; Cai et al., 2009). Ob-
served and simulated soil moisture data were demonstrated as rea-
sonable proxy of PDSI and SPI drought indices (Dai et al., 2004;
Sheffield & Wood, 2007). Currently, there are many global soil mois-
ture data sets derived from microwave remote sensing (e.g., De Jeu
et al., 2008; Njoku et al., 2003; Wagner et al., 1999), while daily soil
moisture derived from AMSR-E may contribute to monitor drought
in recent decade from 2002. Land surface temperature derived from
thermal infrared data was also widely used to monitor drought
(e.g., Karnieli et al., 2010; Rhee et al., 2010). However, LST can be rea-
sonably retrieved from passive microwave techniques independent of
clouds, in particular at the Ka band (37 GHz) from satellite sensors
(e.g., AMSR-E) (Holmes et al., 2009).

Drought has especially affected the agricultural areas over northern
China (Wang et al., 2011). Due to the importance of grassland/cropland
in China agricultural production and the practical purpose of meteoro-
logical drought monitoring, we especially focused on these two land
cover classes. This study aims to develop a multi-sensor microwave re-
mote sensing based drought index (the Microwave Integrated Drought
Index; MIDI) by integrating three variables: precipitation, soil mois-
ture, and land surface temperature derived from microwave sensors
such as TRMM and AMSR-E, in order to improve timely monitoring of
short-term drought especially meteorological drought over semi-arid
northern China. Thus, the main objectives of this study are: 1) to assess
the capability of microwave drought indices in monitoring drought
using SPI as in-situ drought index, by comparing the remote sensing
drought indices with different time scale SPI over space and time;
2) to develop microwave integrated multi-sensor drought index for
drought monitoring over semi-arid regions; and 3) to investigate the
characteristics of microwave multi-sensor remote sensing detected
drought maps. The results are expected to improve meteorological
drought monitoring approaches by using existing microwave remote
sensing data.

2. Study area

Northern China is right on or near the edge of the EASM (Wang &
Ho, 2002), and therefore, sensitive to monsoon variability and suffers
from frequent droughts. With likely weakening of the EASM, drought
in this region is expected to increase. The major land cover categories



Table 2
Main characteristics of subset regions over northern China. The Köppen–Geiger climate
classification of BSk, Cwa, Dwa, and Dwb refers to arid steppe with cold arid, warm
temperate and winter dry with hot summer, snow, winter dry with hot summer, and
snow, winter dry with warm summer respectively. The time duration of in-situ precip-
itation records was from 1960 to 2010.

Region MODIS IGBP LC Meteorological data Köppen–Geiger climate
classification

Grassland Cropland Station
number

Annual mean
precipitation
(mm)

A 84.2% 8.5% 25 295 BSk (54.7%) Dwb (27.6%)
B 11.3% 77.8% 24 488 Dwa (78.3%) Dwb (20.3%)
C 0.3% 78.2% 19 687 Cwa (76.7%) Dwa (11.6%)
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of the region were barren or sparely vegetated, grasslands, croplands,
mixed forest, and cropland/natural vegetation mosaic, and they
accounted for 33%, 27.9%, 18.5%, 6.1%, and 4% of regional land cover re-
spectively as estimated with land cover classifications derived from
2008 MODIS (the Moderate Resolution Imaging Spectroradiometer)
data (MCD12Q1).

In order to quantitatively investigate the capability of space-borne
microwave precipitation, soil moisture, and land surface temperature
in drought monitoring, we selected three subset regions over northern
China (Fig. 1): grassland dominated region (A), cropland dominated
regions (B) with 1 year 1 harvest, and cropland dominated regions
(C) with irrigated area of 1 year 2 harvest or 2 years 3 harvests. The
annual mean precipitation was 295, 488, and 687 mm for region A, B,
and C respectively. In addition, three subsets were identical in
Köppen–Geiger climate classification (Kottek et al., 2006), i.e., BSk
(arid steppe with cold arid) accounted for 54.7% of region A; however,
Dwa (snow, winter dry with hot summer) and Cwa (warm temperate,
winter dry with hot summer) occupied 78.3% and 76.7% of region B and
C respectively (Fig. 1 and Table 2).

3. Data and methodology

A wide range of meteorological and remote sensing datasets were
used to assess multi remote sensing drought indices in monitoring
drought over cropland and grassland in northern China for the time
period of 2003–2010. The analyses focused on the growing season
from April to October when the drought had major impacts.

3.1. In-situ precipitation data and drought indices

Monthly precipitation records of all available stations from 1960 to
2010 were obtained from China meteorological data service (http://
data.cma.gov.cn) over the study area. Firstly, the data were aggregated
to annual interval, and then interpolated spatially by using Kriging to
Fig. 1. Study area and climate characteristics. (a) Locations of three subset regions (red polygon
Program (IGBP) land cover classification map of 2008 MCDQ1, some land cover classes were a
weather station observations; and (c) Köppen–Geiger climate classification map. Region A w
different crop rotations: the former was cultivated for 1 year 1 harvest, and cultivation of the
get average annual precipitation map at 0.5° grid (Fig. 1b). Secondly,
the ground precipitation data were used to calculate the in-situ
drought indices. Only weather stations located on grassland and crop-
lands within the subset regions with long term data available from
1960 to 2010 were included, thus 25, 24, and 19 weather stations
were selected for regions A, B, and C respectively. In this study, the
precipitation was assumed to be homogeneous over the corresponding
remote sensing pixel (0.25° × 0.25°).

3.1.1. Percent of normal
The percent of normal precipitation (PN) is a simple and effective

method tomeasure precipitation variation for a location. It is calculated
as observed precipitation divided by long-termmean precipitation, and
multiplied by 100%; while mean precipitation (average of precipitation
from 1960 to 2010) is considered to be 100% for a weather station.
Percent of normal can be obtained at various time scales from daily
to annual. In this study we calculated percent of normal using monthly
precipitation data forweather stations over subset regions. Themonthly
PN for weather stations within each region were averaged to estimate
the regional precipitation deficit or meteorological drought condition.
s) and weather stations (black dots) based onMODIS International Geosphere–Biosphere
ggregated into one category; (b) annual mean precipitation from 1960 to 2010 of in-situ
as grassland dominated area; while region B and C were cropland dominated area with
latter was 1 year 2 harvest or 2 years 3 harvests.

http://data.cma.gov.cn
http://data.cma.gov.cn


Table 3
Descriptions of remote sensing drought indices.α and β represented the weight of single
index while constituting the integrated drought indices. The full names and abbreviations
of drought indices were as follows: TRMM Precipitation Condition Index (PCI); Soil
Moisture Condition Index (SMCI); Temperature (Land Surface Temperature) Condition
Index (TCI); Vegetation Condition Index (VCI); TRMM Precipitation and Soil Moisture
Condition Index (PSMCI); TRMM Precipitation and Temperature Condition Index
(PTCI); Soil Moisture and Temperature Condition Index (SMTCI); and Microwave Inte-
grated Drought Index (MIDI).

Drought Indices Formula

PCI (TRMMi − TRMMmin) / (TRMMmax − TRMMmin)
SMCI (SMi − SMmin) / (SMmax − SMmin)
TCI (LSTmax − LSTi) / (LSTmax − LSTmin)
VCI (NDVIi − NDVImin) / (NDVImax − NDVImin)
PSMCI α ∗ PCI + (1 − α) ∗ SMCI
PTCI α ∗ PCI + (1 − α) ∗ TCI
SMTCI α ∗ SMCI + (1 − α) ∗ TCI
MIDI α ∗ PCI + β ∗ SMCI + (1 − α − β)TCI
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3.1.2. Standardized Precipitation Index (SPI)
The SPI, developed byMckee et al. (1993), was designed to quantify

precipitation deficit at multiple time scales. The index requires a
long-term precipitation record, which was recommended at least
50 years for drought monitor periods of 1 year or less (Guttman,
1999). Thus the long-term monthly precipitation data from 1960 to
2010 were used to construct SPI series at 1-, 3-, 6-, 9-, and 12-month
time scales for each weather station. The 1-month SPI was applied to
analyze the meteorological drought (Caccamo et al., 2011), while the
seasonal scales of 3-month or 6-month SPI were considered to be
more appropriate for measuring agricultural drought condition
(Rouault & Richard, 2003). Meteorological drought and agricultural
drought were typically recognized as short-term drought (Heim,
2002). The 1-month and 3-month SPI for weather stations within
each region were averaged to estimate the regional drought condition.
Only the data within the growing season were used in the analysis.

3.2. Remote sensing data and drought indices

3.2.1. MODIS data and VCI
Land cover classifications derived from 2008 MODIS data

(MCD12Q1, collection v005) were used to locate the grassland and
cropland over the region. The land cover scheme identifies 17 land
cover classes defined by the International Geosphere-Biosphere
Programme (IGBP) at a spatial resolution of 500 m. In addition,
monthly cloud-free NDVI time series from 2003 to 2010 with 0.05°
resolution (MOD13C2, collection v005) were also obtained from the
Land Processes Distributed Active Archive Center (LP DAAC; https://
lpdaac.usgs.gov/). The data were resampled to be spatially consistent
with the microwave drought variables of 0.25° resolution using pixel
aggregate method. Finally, the data were used to calculate VCI with
the formula developed by Kogan (Table 1).

3.2.2. TRMM precipitation
TRMM satellite was launched in November 1997, and since

then, several algorithms have been developed to estimate rainfall
(e.g., Iguchi et al., 2000). In this study, the TRMM Multi-satellite Pre-
cipitation Analysis (TMPA) monthly gridded precipitation product
was used to monitor precipitation variation and drought (Huffman
et al., 2007). The 3B43 dataset was estimated from multiple satellites,
as well as gage analyses wherever feasible. It covers the latitude band
extends from 50° south to 50° north with 0.25° × 0.25° spatial resolu-
tion from 1998 to present, and is given as monthly precipitation rate
(mm/h). The dataset from 2003 to 2010 were obtained from the
National Aeronautics and Space Administration (NASA) Data and In-
formation Services Center (DISC) (http://mirador.gsfc.nasa.gov/).

3.2.3. AMSR-E soil moisture and land surface temperature
The soil moisture and land surface temperature datasets used in the

study were derived with the Land Parameter Retrieval Model (LPRM)
jointly developed by the Vrije Universiteit Amsterdam and NASA God-
dard Space Flight Center (VUA-NASA) from the descending mode of
AMSR-E on board of the AQUA satellite (Holmes et al., 2009; Owe et
al., 2008), which was launched in May 2002. The AMSR-E instrument
measures radiation at six frequencies in the range of 6.9–89 GHz, all
dual polarized, providing near-global coverage every two days or less.
The Aqua orbit is sun-synchronous with equator crossings at 1:30
P.M. and 1:30 A.M. local solar time (Njoku et al., 2003). The soil mois-
ture product was L3A in terms of the Atmospheric Data Access for the
Geospatial User Community (ADAGUC) standards, which retrieval
from 6.9 GHz and 10.7 GHz combined according to the radio frequency
interference (RFI) map, applied basic masking and 0.25° grid (Owe et
al., 2008). The land surface temperature was obtained from the
37 GHz vertical polarized brightness temperature at 0.25° resolution
(Holmes et al., 2009). Intensified validation activities of the VUA-
NASA SM/LST datasets were carried out over several regions (e.g., De
Jeu et al., 2008; Draper et al., 2009; Parinussa et al., 2008), including
northern China (Zhang et al., 2011a,b). These studies found that the
VUA-NASA products agreed well with in-situ SM/LST measurements
and had a strong correspondence to precipitation in time and space.
Therefore, the datasets were aggregated to monthly interval and used
here for development of drought indices.

3.3. Microwave remote sensing drought indices

In order to detect andmonitor drought timely at regional scale, we
propose the TRMM Precipitation Condition Index (PCI), the Soil Mois-
ture Condition Index (SMCI) and the Temperature Condition Index
(TCI) based on microwave remote sensed TRMM precipitation,
AMSR-E soil moisture and land surface temperature retrievals from
2003 to 2010 (Table 3). The remotely sensed variables were linearly
scaled from 0 to 1 for each pixel based on absolute minimum and
maximum values for each variable over time, in order to discriminate
the weather-related component from the ecosystem component as
done for VCI using NDVI (Kogan, 1995a,b). After normalization, the
scaled value changed from 0 to 1, corresponding to the precipitation
changes from extremely low to optimal.

The microwave remotely sensed variables are derived from low
frequency microwave remote sensing, therefore, can work in all
weather condition with high temporal resolution (daily product for
VUA-NASA AMSR-E SM/LST and 3-hour precipitation product of
TRMM 3B42). Consequently, the drought indices can be calculated
for multiple time scales (e.g. day, week, half-month, month, season,
and year). In this study, the monthly drought indices were calculated
for drought monitoring and assessment.

Combinations of the above three microwave remotely sensed
drought indices were also tested. The Microwave Integrated Drought
Index (MIDI) was an integration of all three components with flexible
weights. Additionally, the TRMM Precipitation and Soil Moisture
Condition Index (PSMCI), the TRMM Precipitation and Temperature
Condition Index (PTCI), and the Soil Moisture and Temperature Con-
dition Index (SMTCI) were integrated by each two components of PCI,
SMCI, and TCI with changeable weights respectively (Table 3). All the
indices were further assessed with different time scales in-situ SPI for
each region.

3.4. Remote sensing drought indices and SPI data analyses

3.4.1. Correlation analyses
Pearson correlation analyses were performed between the remotely

sensed drought index values and 1-, 3-, 6-, 9-, and 12-month SPI (SPIs)

https://lpdaac.usgs.gov/
https://lpdaac.usgs.gov/
http://mirador.gsfc.nasa.gov/


Table 4
Correlations between remote sensing drought indices and in-situ different time scales
SPI among three subset regions. The highest r values for each row/column in three re-
gions were shown in italics/bold. p-value b 0.01 except for data with asterisk (*). De-
scriptions of drought indices were provided in Table 2. SPI-1 = 1-month SPI;
SPI-3 = 3-month SPI; SPI-6 = 6-month SPI; SPI-9 = 9-month SPI; and SPI-12 =
12-month SPI.

Remote sensing index SPI-1 SPI-3 SPI-6 SPI-9 SPI-12

r

a) Region A
PCI (n = 1400) 0.71 0.50 0.49 0.41 0.33
SMCI (n = 1397) 0.60 0.55 0.55 0.47 0.37
TCI (n = 1400) 0.29 0.25 0.24 0.23 0.18
VCI (n = 1400) 0.31 0.49 0.48 0.52 0.50

b) Region B
PCI (n = 1344) 0.67 0.46 0.43 0.37 0.25
SMCI (n = 1326) 0.46 0.50 0.54 0.48 0.37
TCI (n = 1344) 0.41 0.37 0.32 0.32 0.31
VCI (n = 1344) 0.10 0.23 0.25 0.26 0.18

c) Region C
PCI (n = 1050) 0.70 0.40 0.35 0.29 0.20
SMCI (n = 990) 0.25 0.23 0.19 0.11 *0.06
TCI (n = 1050) 0.29 0.33 0.33 0.29 0.24
VCI (n = 1050) *0.07 0.12 0.12 0.12 *0.08
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values over each region over growing season from 2003 to 2010 to as-
sess the capability of remotely sensed drought indices in monitoring
drought over time and space. Since the relationship between remotely
sensed drought indices and SPI varies over time (e.g., Ji & Peters, 2003),
we analyzed the correlations for the 7-month growing season from
April to October and each month separately. The correlation coefficient
and their p-value were obtained for each analysis. The remotely sensed
index values were extracted according to the in-situ meteorological
station location. In order to have the same number of samples for com-
parison between the remotely sensed drought indices and the in-situ
drought index, data were excluded if any index values were
unavailable for weather stations during the chosen time period.

3.4.2. Spatial comparisons between the remotely sensed drought maps
A series of maps were created to compare spatial patterns of

drought over the region. Maps of multi-year mean precipitation,
NDVI, SM, and LST from 2003 to 2010 were created to characterize
spatial distribution of remotely sensed variables for July, when yearly
peak precipitation occurred over the study region. Meanwhile,
drought maps derived from PCI, SMCI, TCI, and VCI in 2010 were
spatially analyzed to test their spatial consistency.

3.4.3. MIDI drought maps and comparison with the in-situ drought
indices

MIDI drought maps together with 1-month SPI from April to
October of 2010 and individual month of July from 2003 to 2010
were developed to depict the seasonal changes and inter-annual
variations. Additionally, the drought area derived by the selected
MIDI from April to October in 2010 was extracted and compared
with that detected by in-situ 1-month SPI (station number under
drought divided weather number of each region) for each region sep-
arately. The regional averaged and station located pixel averaged
MIDI values for July were calculated to investigate the differences
within each region. Furthermore, in order to assess the discrepancy
of drought indices in monitoring drought for each region, the station
located pixels averaged values of another two combined microwave
drought indices as well as the above two calculated MIDI values
were compared to averaged in-situ percent of normal, 1-month, and
3-month SPI.

4. Results and discussion

4.1. Correlations between remote sensing drought indices and SPI

The correlation coefficients were calculated between remote
sensing drought indices and SPIs over three subset regions for the
growing season (Table 4). Overall, the correlations varied among re-
gions and different time scales, and were statistically significant at
the 0.01 level of significance except for SMCI vs. 12-month SPI as well
as VCI vs. 1- and 12-month SPI in cropland dominated region C.

PCI showed the highest correlation with 1-month SPI (r around
0.70) when compared to remote sensing drought indices or different
time scale SPI; meanwhile, the correlation coefficient decreased as
the SPI time scale increased in all three regions (Table 4). This index
PCI was most sensitive in monitoring short-term drought especially
for meteorological drought. Additionally, the PCI presented the highest
correlation with 1-, 3-, 6-, and 9-month SPI compared to remote sens-
ing drought indices in region C (Table 4c), suggesting that the PCI pro-
vided more reliable information than other remote sensing drought
indices in monitoring drought over this region.

Correlations between SMCI and SPI exhibited different trends in
three regions, the r values decreased from 0.60 to 0.37 as SPI time
scale increased in region A (Table 4a), meanwhile it showed similar
trend in region C (Table 4c); in contrast, the 6-month SPI had the
highest correlation coefficient with SMCI in region B (Table 4b);
suggesting that the SMCI provided valuable information in monitoring
meteorological and agricultural droughts for all three regions. Further-
more, SMCI performed the highest correlation with 3- and 6-month SPI
in region A and with 3-, 6-, 9-, and 12-month SPI in region B among all
available remote sensing drought indices (Table 4a and b).

TCI had the highest correlation coefficient with 1-month SPI, and
then the values decreased as time scale increased in regions A and
B; moreover, the values were lower than that of PCI and SMCI with
SPI (Table 4a and b). However, TCI exhibited stronger correlations
with 3- and 6-month SPI than other time scale SPI in region C, and
had the highest correlation with 9- and 12-month SPI comparing
within remote sensing drought indices (Table 4c).

VCI showed the highest correlation with 9-month SPI in regions A
and B (Table 4a and b), as well as 3-, 6-, and 9-month SPI in region C
(Table 4c), and the r values tended to decrease toward the longer and
shorter time scales; hence, the VCI appeared to be less sensitive to
short-term precipitation deficiencies, and previous studies showed
similar results (e.g., Ji & Peters, 2003). Moreover, the correlations
between VCI and 9- and 12-month SPI were the highest compared
to microwave drought indices in region A (Table 4a), but it did not
perform well in regions B and C (Table 4b and c).

The PCI, SMCI, and VCI generally showed a similar trend in correla-
tion with SPI among precipitation gradient, they had the highest corre-
lations in dry areas (region A with annual precipitation of 295 mm;
Table 4a), and the correlations declined in moderate precipitation
area (region B with annual precipitation of 488 mm; Table 4b), with
the lowest correlation in wetter area (region C with precipitation of
687 mm/year; Table 4c). Generally, TCI presented stronger correlation
with SPI in region B over regions A and C. The trend between VCI and
SPI in northern China agreed with previous studies carried out in
other regions, i.e., the correlations between VCI and SPI were generally
higher (lower) in drier (wetter) locations (e.g., Quiring & Ganesh,
2010; Vicente-Serrano, 2007). Here we demonstrated that the micro-
wave remote sensing drought indices may be used to better monitor
drought than VCI especially for short-term drought in the study region.

4.2. Temporal correlation between remote sensing drought indices and SPI

Correlation coefficients between remote sensing drought indices
and in-situ SPIs for each month during the growing season were sum-
marized (Fig. 2). It could be noted that the r values varied greatly by



Fig. 2. Correlations between remote sensing drought indices and in-situ different time scales SPI among three subset regions from April to October. p-value b 0.01 except for columns with
asterisk (*). Descriptions of drought indiceswereprovided inTable 2. SPI-1 = 1-month SPI; SPI-3 = 3-month SPI; SPI-6 = 6-month SPI; SPI-9 = 9-month SPI; andSPI-12 = 12-month SPI.
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month and SPI time scale among regions, indicating that the capabil-
ity of indices in monitoring drought differed greatly along seasonal
time.
In the grassland dominated region, remote sensing drought indi-
ces were statistically significant at 0.01 level with some exceptions,
e.g., TCI vs. all time scale SPI in April, May, and October (left panel

image of Fig.�2


18 A. Zhang, G. Jia / Remote Sensing of Environment 134 (2013) 12–23
in Fig. 2). In general, PCI was favorable in monitoring 1-month
drought, while SMCI and VCI had higher correlations with 3-, 6-, 9-,
and 12-month SPI compared to PCI, providing possibilities of integrat-
ing different indices for monitoring drought at different time scales.
PCI presented the highest positive correlation with 1-month SPI
when compared against SMCI, TCI, VCI, or different time scale SPI,
and then the r values decreased as the time scale increased; such pat-
terns were also found in regions B and C. SMCI had higher r values
with 1-month SPI at the beginning (April, May, and June) and the
end of growing season (September and October) than other time
scale SPI, when 3-month SPI were better correlated with SMCI in
July and August. It was indicated that PCI and SMCI were suitable
for monitoring short-term drought in such area, while VCI was always
correlated to longer time scale SPI. The 3-month SPI showed the
highest correlation in summer time, whereas longer time scale SPI
were largely correlated with VCI during spring and autumn, these
may indicate that vegetation in this area was more sensitive to pre-
cipitation during summer time, consequently vegetation was suscep-
tible to precipitation deficiency during the high biomass period.
Although the correlations between TCI and SPI were weaker than
Fig. 3. Drought detected by remote sensing indices for July of 2010 over northern China. For
ture, VUA-NASA land surface temperature, and MODIS NDVI for July; while (b), (d), (f), and
moisture and SMCI of forest were masked out in (c) and (d), while areas of SMCI/TCI in (d)
masked out too. Descriptions of drought indices were provided in Table 2.
PCI, SMCI, and VCI compared against SPI, it could also provide valu-
able information especially in monitoring drought occurring from
June to September.

Correlations between SMCI and SPI showed higher values with
longer time scale SPI, e.g. with 6-month SPI in May, and 9-month
SPI from July to October in region B; meanwhile, the correlations
with 3-, 6-, 9-, and 12-month SPI were nearly the highest compared
to PCI, VCI, and TCI, suggesting that it was more appropriate for
monitoring agricultural or hydrological drought (Fig. 2). TCI was not
significantly correlated to 1-month SPI in April and May as well as 3-,
6-, and 9-month SPI in April (p > 0.01); however, it had greater corre-
lations with 1-month SPI during 57% of the growing season, likely indi-
cating that TCI was sensitive to short-term precipitation variation. VCI
had lower correlations with SPI in region B than region A, in addition,
the low correlations in April, June, July, and October demonstrated
that less information was provided by SPI in detecting vegetation
water stress.

In general, PCI, SMCI, and VCI showed the lowest correlation with
SPI in region C compared to that in regions A and B. Two aspects may
explain the reason why the lowest correlation of SMCI occurred in
(a), (c), (e), and (g) were 2003–2010 mean TRMM precipitation, VUA-NASA soil mois-
(h) were drought detected by PCI, SMCI, TCI, and VCI for July of 2010 respectively. Soil
/(f) corresponding to zero soil moisture/land surface temperature in July of 2010 were

image of Fig.�3
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region C. Firstly, the VUA-NASA passive microwave derived soil mois-
ture showed good agreement with in-situ observations over areas of
low vegetation to moderate density, but performance declined with
vegetation density increased (e.g., Liu et al., 2012; Owe et al., 2008).
In July, NDVI increased from regions A to B and C, therefore resulting
in decreased agreement with ground measurements, that were con-
sistent with correlations declining trend from regions A to B and C
(Fig. 3g). Secondly, soil moisture variations were not only influenced
by precipitation, but also regulated by other factors such as irrigation,
thus the accordance between variation of precipitation and soil mois-
ture was reduced in region C, inducing lower correlation between
SMCI and SPI while the latter only accounted for precipitation variation
(McKee et al., 1993, 1995). In comparison, TCI presented better corre-
lation with SPI than SMCI and VCI in region C. VCI was not significantly
correlated to SPI nearly during the whole growing season; this may be
partly due to intensive humanmanagement in cropland, e.g., irrigation,
fertilization, crop rotations, resulted in human-induced variations
from year to year, and reduced correlation between vegetation growth
and precipitation (SPI only consider precipitation). These results are
supported by previous findings, i.e., wetter climate, irrigation, and
crop rotations would reduce the strength of correlation between VCI
and in-situ drought index (e.g., Piao et al., 2003; Vicente-Serrano,
2007).

4.3. Spatial comparisons of remote sensing drought maps

A series of maps were created to compare spatial patterns of re-
motely sensed drought (Fig. 3). Satellite derived variables of multi-
year mean precipitation (Fig. 3a), soil moisture (Fig. 3c), and NDVI
(Fig. 3g) for July provided strong spatial correspondences with annual
mean precipitation (Fig. 1b), they all gradually declined from southeast
to northwest, which was especially obvious in region A; indicating that
remotely sensed variables were largely associated with precipitation,
and could be used to detect precipitation variation and drought in-
duced by precipitation declining.

The spatial patterns detected by drought indices differed greatly
from each other; and areas with spatial coincidence between them
were relatively small. Drought detected by TCI was the largest and
Table 5
Correlation coefficient r values between integrated remote sensing drought indices and in-s
of each integrated drought index for each row/column in three regions were shown in italic
SPI-3 = 3-month SPI; SPI-6 = 6-month SPI; SPI-9 = 9-month SPI; and SPI-12 = 12-mont

r

Indices Weight a) Region A (n = 1397) b) Reg

PCI SMCI TCI SPI-1 SPI-3 SPI-6 SPI-9 SPI-12 SPI-1

PSMCI 0.3 0.7 0.69 0.58 0.58 0.50 0.39 0.60
0.4 0.6 0.71 0.58 0.58 0.50 0.39 0.64
0.5 0.5 0.72 0.58 0.58 0.49 0.39 0.67
0.6 0.4 0.73 0.57 0.57 0.48 0.38 0.69
0.7 0.3 0.74 0.56 0.55 0.47 0.37 0.70

PTCI 0.3 0.7 0.51 0.40 0.38 0.35 0.27 0.57
0.4 0.6 0.58 0.44 0.43 0.39 0.30 0.62
0.5 0.5 0.64 0.48 0.46 0.41 0.33 0.65
0.6 0.4 0.68 0.50 0.49 0.43 0.34 0.68
0.7 0.3 0.71 0.51 0.50 0.44 0.35 0.69

SMTCI 0.3 0.7 0.45 0.40 0.39 0.36 0.28 0.51
0.4 0.6 0.50 0.45 0.44 0.40 0.31 0.53
0.5 0.5 0.54 0.49 0.48 0.43 0.34 0.55
0.6 0.4 0.57 0.52 0.52 0.45 0.36 0.54
0.7 0.3 0.59 0.54 0.54 0.47 0.37 0.53

MIDI 0.3 0.4 0.3 0.69 0.57 0.56 0.49 0.38 0.67
0.3 0.5 0.2 0.70 0.58 0.58 0.50 0.39 0.66
0.4 0.3 0.3 0.70 0.56 0.56 0.48 0.38 0.70
0.4 0.4 0.2 0.72 0.58 0.57 0.50 0.39 0.69
0.4 0.5 0.1 0.72 0.59 0.58 0.50 0.40 0.67
0.5 0.3 0.2 0.73 0.57 0.57 0.49 0.39 0.71
0.5 0.4 0.1 0.73 0.58 0.58 0.49 0.39 0.70
severest, followed by PCI and SMCI, while VCI possessed the smallest
drought affected area according to the same thresholds for drought
severity classification (Fig. 3b,d,f, and h). Disagreements of spatial ex-
tent between several remotely sensed drought indices were also
found by using change vector analyses (CVA) conducted in adjacent
Mongolia (Bayarjargal et al., 2006). The disagreement may be due to
the remote sensing variable's specific observation targets as well as
the accuracy and uncertainties from retrieval algorithms; taken PCI
and VCI for instance, the former only indicates current precipitation,
while the latter is not only affected by precipitation, but also
influenced by land use factors, such as pest, disease, nutrient input,
and grazing (Ji & Peters, 2003). In addition the strength of correla-
tions with in-situ drought indices SPI may also have induced the
disagreement of drought detected by remote sensing variables. The
disagreement revealed the uncertainty and reliability of remotely
sensed indices in assessing droughts, and suggested that the applica-
tions of individual indices in drought monitoring should be treated
with caution. Combination of different remotely sensed indices may
be a reasonable approach for better monitoring regional drought
events.

4.4. Optimal microwave integrated drought indices

The microwave drought indices basically performed better than
VCI in correlation with in-situ drought index for each month and
entire growing season especially in cropland dominated regions
(Table 4 and Fig. 2); therefore integrated microwave drought indices
with different weights were proposed in development of satellite
based drought monitoring platform. Meanwhile, in order to be com-
parable in time during the growing season and maintain the continu-
ity in space over different regions, the assessments were conducted
for the entire growing season across the regions (Table 5). All the cor-
relations were statistically significant (p b 0.01). The integrated
drought indices showed the highest correlation with 1-month SPI in
all subset regions, while the correlation coefficient values declined
as the SPI time scale increased (Table 5). This suggests that those
drought indices were especially suitable for monitoring meteorologi-
cal drought. This was an important complementarity to the existing
itu different time scales SPI among three subset regions (p b 0.01). The highest r values
s/bold. Descriptions of drought indices were provided in Table 2. SPI-1 = 1-month SPI;
h SPI.

ion B (n = 1326) c) Region C (n = 990)

SPI-3 SPI-6 SPI-9 SPI-12 SPI-1 SPI-3 SPI-6 SPI-9 SPI-12

0.56 0.59 0.52 0.39 0.47 0.34 0.29 0.20 0.12
0.57 0.59 0.52 0.38 0.55 0.38 0.32 0.23 0.14
0.57 0.58 0.51 0.37 0.61 0.41 0.35 0.25 0.16
0.56 0.56 0.49 0.35 0.66 0.42 0.36 0.27 0.18
0.55 0.54 0.47 0.33 0.70 0.43 0.37 0.28 0.19
0.47 0.42 0.39 0.34 0.51 0.44 0.41 0.36 0.29
0.49 0.45 0.41 0.34 0.57 0.46 0.42 0.37 0.29
0.51 0.46 0.42 0.34 0.63 0.47 0.43 0.37 0.28
0.51 0.47 0.42 0.33 0.67 0.47 0.42 0.36 0.27
0.51 0.47 0.42 0.31 0.70 0.46 0.41 0.35 0.26
0.49 0.47 0.44 0.40 0.37 0.40 0.38 0.32 0.25
0.52 0.51 0.48 0.42 0.38 0.40 0.38 0.31 0.24
0.54 0.55 0.50 0.43 0.38 0.39 0.36 0.28 0.21
0.55 0.57 0.52 0.43 0.36 0.36 0.34 0.25 0.18
0.55 0.57 0.52 0.43 0.34 0.33 0.30 0.21 0.15
0.60 0.59 0.53 0.42 0.59 0.46 0.42 0.32 0.23
0.59 0.60 0.54 0.42 0.56 0.43 0.38 0.28 0.20
0.59 0.57 0.51 0.40 0.65 0.48 0.43 0.35 0.25
0.59 0.59 0.53 0.40 0.63 0.46 0.41 0.31 0.22
0.59 0.60 0.53 0.39 0.60 0.42 0.37 0.27 0.18
0.58 0.57 0.50 0.38 0.68 0.47 0.42 0.33 0.23
0.58 0.58 0.51 0.38 0.66 0.45 0.39 0.29 0.20



Fig. 4. Seasonal changes of drought detected by MIDI and 1-month SPI from April to October in 2010. Areas with land cover types of forest and barren or sparely vegetated were
masked out.
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remote sensing drought indices, while they were more related to
agricultural or hydrological drought (e.g., Caccamo et al., 2011).

Among integrated drought indices, the PSMCI performed better in
regions A and B than PTCI and SMTCI. However, the PTCI showed
higher correlations with SPI in region C than other two integrated in-
dices. The r values between PSMCI and 1-month SPI increased as the
weight of PCI increased in all subset regions. While the correlations
between PSMCI and SPIs improved as the weight of PCI increased in
region C (Table 5c); in contrast, correlations with longer time scales
showed opposite trend in regions A and B (Table 5a and b). The
PTCI with larger weight of PCI yielded higher correlations with SPIs
Fig. 5. Year-to-year maps of MIDI and 1-month SPI for July from 2003 to 2010. Areas w
in regions A and B except for 12-month SPI in region B (Table 5a
and b). However, the r-value was the highest between PTCI and 3-,
6-, and 9-month SPI when PCI and TCI had an equal weight of 0.5;
meanwhile, the correlations showed opposite trend with 1-month
and 12-month SPI as the weights changed (Table 5c). It demonstrated
that users could flexibly select the weights for drought monitoring
according to their own purpose.

Additionally, PSMCI and PTCI with proper weights performed bet-
ter correlation than the best individual microwave drought indices
with SPIs in the study area; e. g., PSMCI with PCI weight of 0.5 in re-
gions A and B, so as PTCI with PCI weight of 0.7 in region C. These
ith land cover types of forest and barren or sparely vegetated were masked out.
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Fig. 6. The drought area identified by MIDI and 1-month SPI for (a) region A, (b) region
B, and (c) region C from April to October for 2010.
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results implied that combined unitization of the individual micro-
wave remotely sensed drought indices enhanced the relationships
with in-situ drought indices, while similar results have been found
in other studies (e.g., Rhee et al., 2010).

Several sets of weights were tested for Microwave Integrated
Drought Index (MIDI) against various time scales of SPI over subset
regions (Table 5). The MIDI showed the highest correlations with
1-month SPI in all cases; additionally, the correlations generally de-
creased as SPI time scale increased, meanwhile the r values were sim-
ilar or better than that of PSMCI with proper weights in regions A and
B, as well as PTCI in region C. Therefore, MIDI was proposed as an op-
timum microwave remote sensing drought index that outperformed
PSMCI and PTCI in monitoring drought over the region. Among the
various sets of weights, according to the relatively higher correlations
with different time scale SPI over all three regions, the MIDI with
weights of 0.5, 0.3, and 0.2 for PCI, SMCI, and TCI respectively were
recommended as reliable microwave remote sensing drought index
in monitoring short-term drought, especially for meteorological
drought, over northern China (Table 5). Ideally, the precipitation,
soil moisture and land surface temperature datasets used in the
MIDI are supposed to be totally independent. In this study, the LST
and SM are not entirely independent according to LPRM algorithm
(Liu et al., 2010; Owe et al., 2008); further studies using independent
datasets of MIDI components derived from different algorithms or
sensors are needed and will be included in subsequent studies.

4.5. MIDI drought maps and comparisons with the SPI

Since themain purpose of this studywas to find an optimummicro-
wave remote sensing based drought index that could be used especially
for meteorological drought monitoring, spatial dataset of MIDI from
April to September in 2010 (Fig. 4) and for July 2003–2010 (Fig. 5)
were illustrated and compared to 1-month SPI over subset regions.
Drought severity of MIDI was arbitrarily classified to four levels for pur-
pose of visually comparing with SPI, which was similar to a combined
remote sensing drought index of SDCI (Rhee et al., 2010).

There were some discrepancies between MIDI and 1-month SPI
derived drought patterns. For example, in September of 2010, mild
to severe drought was detected by SPI in northeastern part of region
A, but drought captured by MIDI was less severe (Fig. 4f). In addition
the MIDI data showed severe to extreme drought in July of 2003 over
southern part of region B, but no drought was detected by 1-month
SPI (Fig. 5a). In most cases the two indices basically provided similar
spatial pattern and consistent seasonal and inter-annual changes. Se-
vere to extreme drought in region A was revealed by MIDI in July of
2010, with SPI values near −1, indicating moderate to extreme
drought in the area (Fig. 4d). In July of 2004, MIDI and SPI provided
similar spatial pattern in region B with increased drought severity
from east to west (Fig. 5b). The spatial patterns of MIDI in July of
2010 demonstrated its stronger spatial consistent with 1-month SPI
as compared to that of PCI, TCI, and SMCI (Figs. 3 and 5h). The strong
spatial agreement between MIDI and SPI indicated the potential
usage of this microwave drought index for timely drought monitoring
over northern China and similar regions globally.

Changes of seasonal drought area were analyzed and compared
with MIDI (values below 0.4 were assigned as drought) and 1-month
SPI datasets (Fig. 6). Although MIDI presented larger drought area
than SPI, they basically followed similar patterns over subset regions.
There was an exception in region C, while drought area of MIDI
increased from June to July, but the change of SPI was opposite
(Fig. 6c), this was possibly due to exceptional TRMM precipitation de-
ficiency and high temperature occurred in region C (Fig. 3b and f).

Temporal variations of space-borne microwave indices were com-
pared against percent of normal, 1-month, and 3-month SPI for July
over subset regions (Fig. 7). Value of station and region averaged
MIDI was close to each other, and possessed similar temporal
variations over subset regions, indicating that the station averaged re-
mote sensing drought indices were able to represent the conditions of
entire region; therefore reasonable comparability existed between
averaged remote sensing and in-situ drought indices. Furthermore,
PSMCI (0.6PCI + 0.4SMCI) showed similar temporal variations with
MIDI in regions A and B (Fig. 7a and b), so did PTCI (0.6PCI + 0.4TCI)
in region C (Fig. 7c), together with results of correlation analyses
(Table 5), suggesting that PSMCI and PTCI were comparable with
MIDI in monitoring drought over regions A, B, or C respectively.

The percent of normal and 1-month SPI exhibited the similar varia-
tions over three regions. The in-situ drought indices basically presented
similar changes with microwave remote sensing drought indices. All
drought indices showed consistent temporal variation in region B
(Fig. 7b), while remote sensing drought indices exhibited different
changes compared to 1-month SPI (percent of normal) in 2007 and
3-month SPI in 2010 over region A (Fig. 7a). Meanwhile, 1-month SPI
(percent of normal) had better covariation with MIDI, and 3-month
SPI agreed better with PTCI in region C (Fig. 7c). Since some discrepan-
cies existed between remote sensing drought indices and in-situ
drought indices in term of inter-annual changes, the overall agreement
of temporal changes had proven that the MIDI is a reliable integrated
index in monitoring meteorological drought (1-month SPI) as well as
agricultural drought (3-month SPI) over northern China.

In this study, weights of MIDI in detecting drought were assigned
to be the same over northern China. The performances of MIDI might
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Fig. 7. Year-to-year changes of MIDI, PSMCI, PTCI, percent of normal (PN), and SPI for
(a) region A, (b) region B, and (c) region C for July from 2003 to 2010. SPI-1 = 1-month
SPI; and SPI-3 = 3-month SPI.
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be improved if the weights of three individual microwave indices
were adjusted to the optimum according to their performances in
each subset region. Furthermore, more meaningful thresholds for
MIDI drought severity classification needed to be further studied as
more data available with time in further works. The most important
finding of this research was a valuable approach to apply microwave
satellite remote sensing in short-term drought, especially for
meteorological drought monitoring, by using multi-sensor micro-
wave data with the ability to work in all weather conditions.

5. Conclusion

This study assessed the spatial and temporal performances of mi-
crowave remote sensing drought indices by comparing them against
different time scale SPI over cropland and grassland in northern
China during growing season (April to October). Here we demon-
strated that the remote sensing drought indices were significantly
correlated with field based SPIs in terms of intensity, frequency, and
over various land surfaces. We conclude that the microwave remote
sensing drought indices performed better for monitoring short-term
drought in the study region, while PCI was suitable for monitoring
meteorological drought as an individual microwave drought index.

MIDI with proper weights of PCI, SMCI, and TCI was found to be
the most reliable microwave index for monitoring droughts over
northern China. Meanwhile, it outperformed individual microwave
drought indices as well as PSMCI, PTCI, and SMTCI for monitoring
drought, as demonstrated by testing several combination weights
over study area. Furthermore, similar spatial patterns and temporal
changes were found between MIDI and 1- or 3-month SPI over subset
regions. In conclusion, MIDI was recommended as an optimum mi-
crowave remote sensing index in monitoring short-term drought, es-
pecially meteorological drought, for grassland and cropland across
northern China or similar regions globally at regional scale with the
ability to work in all weather conditions.
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