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Understanding the multi-scale patterns and uncertainties of inland river runoff is important for runoff
management and rational utilization of water resources in arid regions. This study investigates the
chaotic behaviors of the runoff processes at four different time scalesd daily, 2-day, 7-day and 10-day, in
an inland river (Manas River) of the Central Asia dryland. The observed data period is from February 14,
1981 to October 31, 2000. Phase space reconstruction technology and chaos theory are applied to study
the chaotic characteristics of runoff at different time scales. According to our analysis, the phase space
diagram exhibited strange attractors in a well-defined region at all time scales, suggesting that the runoff
processes in Manas River Basin was simple and can possibly be explained by deterministic chaos. All of
the maximum Lyapunov exponents were positive, showing the chaotic characteristics in the runoff
processes. Further, the finer resolution time series exhibits stronger chaotic characteristics than the
coarser resolution time series, corresponding to the normal runoff processes. By quantifying the chaotic
characteristics of the runoff time series of a typical inland river in Central Asia, this study helps water
resource managers evaluate uncertainty of runoff in the arid regions, and make decisions according to
the predicted runoff pattern at different time scales. The findings from this study also provide the
theoretical basis and scientific foundation for cross-scale hydrologic climate model simulations and data
downscaling in the arid region of Central Asia.

� 2013 Elsevier Ltd and INQUA. All rights reserved.
1. Introduction

A chaotic motion refers to an irregular behavior that resembles
randommotion in a nonlinear deterministic system that is sensitive
to initial conditions, a pattern called determined randomness.
There are important differences, however, between the chaotic
motion and the random motion. The main characteristics of the
chaotic motion are non-periodicity, unrepeatability, and high
sensitivity to initial conditions. The seemingly irregular-looking
behavior of the deterministic chaos could be caused by a few
nonlinear interdependent variables in a simple deterministic sys-
tem. Therefore, the methods and models used in analyzing and
constructing time series for chaos systems are different from that
for random systems. Chaos theory has been used in solving many
scientific problems in various fields, such as meteorology, hydrol-
ogy, engineering, medicine, psychology and economics.
l.com (C. Zhang).

nd INQUA. All rights reserved.
The hydrological cycle is influenced by various environmental
factors, such as precipitation, temperature, topographic conditions
and the types of land utilization. It is an open and nonlinear dy-
namic composite system with huge space and time variability and
complex evolution law (Sivakumar, 2000). Despite the complexity
and random-looking behavior of the hydrological cycle system,
hydrological processesmay be governed only by a few factors called
low-dimensional chaos in the hydrologic time series (e.g., Ghilardi
and Rosso, 1990; Pasternack, 1990; Koutsoyiannis and Pachakis,
1996; Schertzer et al., 2002).

There have been many studies focusing on the chaotic behavior
and the underlying mechanism of hydrological process, including
rainfall, runoff, floods, and lake reservoir and ground water dy-
namics in recent decades (e.g. Hense, 1987; Rodriguez-Iturbe et al.,
1989; Wilcox et al., 1991; Jayawardena and Lai, 1994; Sangoyomi
et al., 1996; Stehlik, 1999; Elshorbagy et al., 2002a,b). In his pio-
neering work, Hense (1987) introduced the chaos theory to hy-
drological study. Using the correlation dimension method, he
analyzed 1008 monthly rainfall records and found the correlation
dimension ranged from 2.5 to 4.5. In addition, his study revealed
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Fig. 1. Study area.
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low dimension chaos in themonthly rainfall time series. Rodriguez-
Iturbe et al. (1989) analyzed the rainstorm dynamics of a 148-year
rainfall time series in 15s and weekly temporal resolutions. Ac-
cording to their study, the system exhibits chaotic characteristic
under the finer resolution, and stochastic process under the coarser
resolution. Sangoyomi et al. (1996) analyzed the chaotic charac-
teristics of water dynamics in the Great Salt Lake, United States, and
found the water yield can be described with a 4 dimensions phase-
space. Zhou et al. (2002) found the attractor dimension of the flood
series in Huaihe River Basin for the last 500-year period to be 4.66,
with a power spectrum structure similar to that of typical chaotic
series. They further reconstructed the chaotic dynamics of the flood
series in the Huaihe River Basin according to chaos theory and
inverted theorem of differential equations. The chaotic character-
istic of the runoff and rainfall-runoff time series have also been
studied (Sivakumar et al., 2000, 2003). The simulation and pre-
diction of the hydrological time series using chaos theory were
discussed by Jayawardena and Lai (1994).

The above studies highlight the chaotic/nonlinear characteris-
tics of hydrological process. Most of them focused on the chaotic
characteristics at single scale. Only a few studies addressed cross-
scale chaotic behaviors of hydrological process (Sivakumar, 2001;
Wang et al., 2006), and their conclusions were contradictory.
Sivakumar (2001) analyzed the patterns of rainfall time series at
multiple scales and found weak chaos at finer resolution, and
strong chaos at coarser resolution. In contrast, Wang et al. (2006)
found that as the times cale increase from a day to a year, the
nonlinearity weakens. Many factors can influence the analysis re-
sults. For example, the weak chaos at the finer (daily) scale in
Sivakumar (2001) could be caused by the large number of zero
rainfall in the dry season, while a possible presence of a higher level
of noise in the coarse (yearly) resolution rainfall time series might
have caused strong chaos. Therefore, Sivakumar (2001) cautioned
that the results must be verified using other methods to detect
chaos and additional evidence must be provided to prove the ex-
istence of chaos in hydrological process.

The ecosystems of arid and semiarid regions in Central Asia are
sensitive and vulnerable to the change of evapotranspiration, pre-
cipitation, snowmelt and others hydrological process. Therefore,
investigating the nonlinearity of the hydrological process in this
arid and semiarid region can help identify the major controlling
factors and mechanisms that govern the nonlinear dynamics of
dryland ecosystems. Such a study can also provide valuable infor-
mation for constructing nonlinear models to simulate and predict
hydrological time series that are required as inputs to drive
ecological models (Li et al., 2013).

This study attempts to detect the dynamical behaviors of the
runoff processes at four different temporal scales, i.e. daily, 2-day,
7-day and 10-day runoff time series using a phase diagram, phase
space reconstruction theory and the maximum Lyapunov exponent
theory; and to simulate runoff time series based on chaos theory.
The data is from an inland river of Central Asia, the Manas River,
spanning from February 14, 1981 to October 31, 2000. The Manas
River is the largest river in the north Tianshan Mountains with
significant inter-annual runoff fluctuation and uneven spatial and
temporal distribution. As one of the major water sources to the
north Tianshan oases in the Central Asia desert, its runoff dynamics
have important impacts on the sustainability of natural ecosystems
and socioeconomics in this region (Hu, 2004; Chen, 2010). How-
ever, review has indicated that few studies have addressed the
nonlinear characteristic of runoff of major rivers in this arid and
semiarid region, not to mention cross-scale chaotic analysis. The
study can reveal the cross-scale pattern of hydrological processes in
a typical inland river in Central Asia and improve understanding of
the underlying mechanisms. Finally, the chaotic analysis provided
valuable information for adaptive modeling to simulating and
predicting runoff time series for inland rivers in arid and semiarid
region of Central Asia.

2. Study area and data

The Manas River Basin (Fig. 1) is located in the north slope of
Tianshan Mountains of Xinjiang. The river length is 524 km with a
drainage area of 1.04✕104 km2. Water supply of the Manas River
comes from meltwater of ice and snow as well as rainfall (Chen,
2010).

With the help of the local management office of the Manas
River, we collected the daily runoff observations of the river from
February 14, 1981 to October 31, 2000. The 2-day, 7-day and 10-day
runoff time series are obtained from daily data by taking the sums
of daily runoff time series. According to Sivakumar (2000), chaotic
analysis requires large data/sample size. Nerenberg and Essex
(1990) pointed out that the minimum number of points required
for dimension estimate is 630e1000 if the dimension size is in the
range of 2e3. A higher dimension size will require larger data sets
(e.g., a dimension size of 4 will require 3981 data). There are 720
data in the 10-day runoff time series from February 14, 1981 to
October 31, 2000. Any further data aggregation (e.g., to monthly or
annual scales) will disqualify the dataset as being too small for
chaotic analysis. Therefore, the coarsest temporal resolution in this
study was set to 10-day. Fig. 2 shows the variation of the daily
runoff time series of the Manas River during 1981e2000. The daily
runoff time series showed a periodic pattern. However, it is difficult



Fig. 2. Daily runoff time series of Manas River Basin during 1981e2000.
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to investigate the complex dynamical behaviors of runoff processes
from Fig. 2. In addition, the statistical characteristics of the runoff
series at different temporal scales are summarized in Table 1. The
coefficient of variation for a hydrology time series can indicates the
complexity and variability of the time series (Sivakumar, 2001). The
coefficient of variations for the daily, 2-day, 7-day and 10-day
runoff time series is 1.37, 1.36, 1.33 and 1.32, respectively. This
result shows the variation in runoff decrease with temporal scales,
and the lowest variability and the weakest complexity are found at
the coarsest resolution (10-day) (Table 1).
Table 1
Statistics of Manas River runoff data (m3/s).

Parameter Daily 2-day 7-day 10-day

Number 7200 3600 1028 720
Mean 40.76 81.51 285.38 407.57
Minimum value 3.43 6.87 24.67 36.35
Maximum value 788.97 1205.94 3058.77 4291.66
Standard deviation 56.07 111.17 378.60 537.58
Variance 3143.50 12358.26 143336.59 288992.29
Coefficient of variation 1.38 1.36 1.33 1.32
3. Method and technology

3.1. Reconstruction of phase space

The method first reconstructs the single-dimensional (or vari-
able) runoff series in a multi-dimensional phase space to represent
its dynamics, then detects chaos characteristics in the runoff, and
finally uses the Volterra adaptive model to make chaos simulation
(Sivakumar et al., 2001). For a scalar time series xð1Þ; xð2Þ;/; xðnÞ, n
is the length of time series. When the delay time s is known, the
correlation dimension d is calculated for the time series
xð1Þ; xð2Þ;/; xðnÞwith the GeP (GrassbergereProcaccia) algorithm
(Grassberger and Procaccia, 1983). Then, the optimal embedding
dimension m with m � 2dþ 1 is selected according to the Takens
theory (Takens, 1981). The phase space is

YðiÞ ¼ ðxðiÞ; xðiþ sÞ;/; xðiþ ðm� 1ÞsÞÞ i ¼ 1;2;/;M; (1)

where M ¼ N�(m�1)s.
Hence, the single dimensional time series is reconstructed in a
multi-dimension phase space. The determinations of delay time s
and embedding dimension m are important for the phase space
reconstruction. In this paper, the delay time parameter s is deter-
mined by the mutual information method, and the embedding
dimension m is obtained by the Cao method.

3.1.1. The delay time s
For the delay time s, if s is too small, then there is little new

information contained in each subsequent datum and this will lead
to the underestimate of the correlation dimension (Havstad and
Ehlers, 1989; Sivakumar, 2000; Dhanya and Kumar, 2011). On the
contrary, if s is too large, and the system is chaotic, all relevant
information for phase-space reconstruction is lost since neigh-
boring trajectories diverge, and averaging in time and/or space is no
longer useful (Sangoyomi et al., 1996; Sivakumar, 2000; Dhanya
and Kumar, 2011). This may result in an overestimation of the
correlation dimension (Havstad and Ehlers, 1989; Sivakumar, 2000;
Dhanya and Kumar, 2011). There are several approaches for
computing s, such as the autocorrelation function method, average
displacement method, complex correlation method and mutual
information method. Frazer and Swinney (1986) pointed out that
the autocorrelation function method only indicates the linear
relationship of the time series, but it is not useful when analyzing
nonlinear systems. However, the mutual informationmethod is not
only useful to the linear system but also to the nonlinear system.
Then, the delay time s is determined by the mutual information
method. The mutual information method is based on the Shannon
comentropy theory; that is used to compute the correlation of two
variables and measure the whole dependence of two variables at
the same time. When the mutual information reaches the local
minimum value firstly, the value of delay time is the delay time of
the phase-space reconstruction. The recursive algorithm of the
mutual information is calculated following Frazer and Swinney
(1986). Considering the following variables

x ¼ ðx1; x2;/; xnÞ; y ¼ ðy1; y2;/; ymÞ;

the mutual information is

Iðx; yÞ ¼ HðxÞ þ HðyÞ � Hðx; yÞ
¼ � Pn

i¼1
PðxiÞlnPðxiÞ �

Pm

j¼1
P
�
yj
�
lnP

�
yj
�

þ
Xn

i¼1

Xm

j¼1

P
�
xi; yj

�
lnP

�
xi; yj

�
(2)

where P(xi), P(yj) are appear probabilities of the two variables xi, yj
and P(xi, yj) is the joint probability distribution of xi, yj. Then, for any
time series x ¼ ðx1; x2;/; xNÞadding delay time we obtain
xs ¼ ðx1þs; x2þs;/; xðN�sÞþsÞ. From equation (2), the mutual infor-
mation I(x,xs) of x and xs is obtained. I(x,xs) is the function of s. Then,
I(x,xs) is noted as I(s). When I(s) reaches the local minimum value
for the first time, the corresponding delay time is the delay time
(smin). If I(s0-1)> I(s 0) and I(s 0)< I(s 0 þ 1), then I(s 0) is the local
minimum value and the first s0 is smin.

3.1.2. Determination of m
The optimal embedding dimension (m) can be determined with

several different methods, such as the GeP (GrassbergerePro-
caccia) algorithm (Grassberger and Procaccia, 1983), the FNN (False
Nearest Neighbors) method (Kennel et al., 1992) and the Cao
method (Cao, 1997). Compared with other methods, the Cao (1997)
method has the following advantages: (1) not containing any
subjective parameters except for the time-delay for the
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embedding; (2) not strongly depending on how many data points
are available; (3) clearly distinguishing deterministic signals from
stochastic signals; (4) working well for time series from high-
dimensional attractors; (5) having high computational efficiency.
Therefore, in this study the Cao method is used to determine the
optimal embedding dimension m.

The Cao method is based on the FNN. Let Yn be one point of the
reconstruction phase space and YhðnÞ be the nearest neighbor point
of Yn. We define

a
�
i;m

� ¼

���YhðnÞ � Yn
���
ðmþ1Þ
N���YhðnÞ � Yn
���
m

N

; (3)

where kkN is LN norm. The average value of a(i,m) with i is noted as

E
�
m
� ¼ 1

N �ms

XN�ms

i¼1

aði;mÞ: (4)

E(m) is a function of the embedding dimension m and delay time s.
To analyze the change in the phase space with the embedding
dimension from m to mþ1, the following equations are defined

E1
�
m
� ¼ EðmÞ

Eðmþ 1Þ (5)

and

E2
�
m
� ¼ E*

�
m
�

E*
�
mþ 1

� ; (6)

where

E*
�
m
� ¼ 1

N �ms

XN�ms

i¼1

���YhðiÞþms � Yiþms

���: (7)

If E1(m) stops changing when m is greater than a threshold m0,
m0þ1 is the optimal embedding dimension we look for.

In general, for random time series, E1(m) in principle will never
attain a saturation value as m increases. However, in practical
computations, it is difficult to distinguish whether E1(m) is slowly
increasing or has stopped changing if m is sufficiently large.
Because the available observed data samples are limited, it may
happen that E1(m) stop changing at some m although the time
series is random. To solve this problem, E2(m) is needed. For
random time series, since the future values are independent of the
past values, then E2ðmÞh1 for any m in this case. However, for
deterministic data, E2(m) is related to m. As a result, it cannot be a
constant for all m, that is, there must exist some m values such
that E2ðmÞs1. Therefore, we calculated both E1(m) and E2(m) to
determine the minimum embedding dimension of a scalar time
series.
3.2. The chaos discriminant

There are many methods to distinguish the chaotic time series,
including phase space diagram, power spectrum method, Poincare
section method, correlation dimension method, K entropy
method, and Lyapunov exponent. The phase space diagram, power
spectrum method, and the Poincare section method analyze the
chaotic time series from the qualitative point, while the correla-
tion dimension method, K entropy method, and Lyapunov expo-
nent method analyze the chaotic time series from the quantitative
point.
In this study, the phase space diagrammethod is used to analyze
the chaotic time series from the qualitative point and the Lyapunov
exponent method is used to analyze the chaotic time series from
the quantitative point. Finally, the simulation of the daily time se-
ries in Manas River Basin will be given by the Volterra adaptive
model theory.

3.2.1. Lyapunov exponent l
The Lyapunov exponent l indicates the average speed of the

track separation in the phase space, and it can reflect the changing
of variables with time and the sensitivity of the initial conditions in
the chaos dynamical system effectively. If the track is shrinking in
the direction l < 0 and the movement is stable, the system is not
sensitivity to the initial conditions. If the track is separating rapidly
in the direction l > 0, the system is sensitive to the initial condi-
tions. For the discrete system or the nonlinear time series, we only
calculate the maximum Lyapunov exponent lmax, which is an
important indicator of the existence of chaos and the chaotic
characteristic in dynamical systems. If lmax > 0, there exists chaos
in the system. A big lmax indicates strong chaotic characteristic of
the system.

There are many approaches to computing the l, such as, p-norm
method (Barana and Tsuda, 1993), Wolf method (Wolf et al., 1985),
Jacobian method (Sano and Sawada, 1985), and small data sets
method (Rosenstein et al., 1993). Because the small data sets
method has relatively high computational efficiency and accuracy,
it is used to compute the maximum Lyapunov exponent in this
study.

3.3. Volterra adaptive model

The adaptive model is a recently developed chaotic-time-series
simulation method (Zhang and Xiao, 2000). It uses the immediate
preceding observed data and the immediate preceding simulation
error to adjust the model parameters error to continuously adjust
the model. This simulation model is suitable for incomplete data
and physical systemwith time varying characteristic. Furthermore,
this model can track the chaotic trajectory and obtain high simu-
lation accuracy. As the output of the Volterra filter is the nuclear
linear combination and the filter function can be easily analyzed,
the Volterra filter has been widely used as one of the nonlinear
adaptive simulation model. This study used the Volterra adaptive
model to simulate the runoff time series. Following Jiang (2011), the
simulation results are evaluated by CC (correlation coefficient),
AMAE (absolute value of mean relative error) and RMSE (root mean
square error).

4. Results and discussion

4.1. Phase space reconstruction

Fig. 3A shows that when delay time s ¼ 54, the mutual infor-
mation I(s) reach the local minimum value for the first time.
Therefore, the delay time s is 54 for the daily time scale of Manas
River. Similarly, the delay time s for the 2-day, 7-day and 10-day
time scales is 25, 9 and 6, respectively. Based on s values, the
optimal embedding dimension of phase space reconstruction for
daily, 2-day, 7-day and 10-day runoff time series are 22, 17, 13 and
13, respectively (Fig. 4). Following Sivakumar et al. (2001), Islam
and Sivakumar (2002), and Jiang (2011), we used a two-
dimensional figure (Fig. 5) to show the reconstructed phase space
where s ¼ 54, 25, 9 and 6. The phase space diagram exhibited
strange attractors in well-defined region which suggested that the
runoff properties in Manas River Basin were simple and can
possibly be explained by deterministic chaos.



Fig. 3. The mutual information of runoff time series, where (A), (B), (C) and (D) are daily, 2-day, 7-day and 10-day runoff time series, respectively.

Fig. 4. The relation between E1(m),E2(m)wm, where (A), (B), (C) and (D) are daily, 2-day, 7-day and 10-day runoff time series, respectively.



Fig. 5. Phase diagrams of four different temporal scales, where (A), (B), (C) and (D) are daily, 2-day, 7-day and 10-day runoff time series, respectively.

Fig. 6. The simulation results by Volterra adaptive model for the four time scales, where (A), (B), (C) and (D) are daily, 2-day, 7-day and 10-day runoff time series, respectively.



Table 3
Statistical measures of the simulation result at four different time scales.

Time scale CC AMAE RMSE

Daily 0.97 0.27 15.21
2-day 0.92 0.33 72.51
7-day 0.75 0.53 375.01
10-day 0.81 0.59 589.87
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4.2. The maximum Lyapunov exponent lmax

For further investigating the chaos characteristic of the runoff
processes of Manas River, themaximum Lyapunov exponents of the
four different time scales, i.e. daily, 2-day, 7-day and 10-day are
calculated using the small data sets method. The maximum Lya-
punov exponent is lmax ¼ 0:1062;0:05371;0:0332;0:0067 > 0 for
daily, 2-day, 7-day and 10-day runoff time series, respectively. The
result indicated the existence of chaotic characteristic at all of the
four temporal scales inManas River runoff processes. Moreover, our
analysis found weaker chaos characteristics at coarser resolution
and stronger chaos characteristics at finer resolution, being
consistent with the findings byWang et al. (2006). The values of the
coefficient variation (Table 1) which can explain the complexity
also lend support to these findings.

In this study, the maximum Lyapunov exponent of daily runoff
time series is 0.1062, showing a more complex and uncertain low-
dimensional behavior than other reports (Islam and Sivakumar,
2002; Ghorbani et al., 2010). This may be caused by the complex
climate change (temperature, precipitation, evaporation and wind
velocity) and the catchment characteristics (basin area, multiple
water supplies, land use and irrigation) in the arid region of Central
Asia (Chamizo, 2012).

Cross-scale chaotic analysis, as recommended by Sivakumar
(2009), is a useful nonlinear downscaling approach in hydrologic
and climate modeling (besides the statistical and dynamic down-
scaling techniques). The results can provide theoretical basis and
scientific foundation for hydrologic and climate downscaling in the
arid region of Central Asia. The hydrological phase space recon-
structed in this study also provides valuable information that can
help understand the characteristics of and the mechanisms un-
derlying the hydrological dynamics of a typical river basin (the
Manas river basin) in Central Asia. Chaos analysis in combination
with modeling approaches (e.g., Volterra adaptive model, support
vector machine SVM, artificial neural network ANN et al.) has the
ability to make prediction and construct stream flow time series.

4.3. Simulation

Based on the chaotic characteristic of the stream flow as
revealed by the above analysis, we used the Volterra adaptive
model to simulate the runoff time series of the Manas River. For
each time scale, the previous parameters delay times s and optimal
embedding dimensions m were used to reconstruct the phase
spaces, and the suitable numbers of training samples and testing
samples were chosen for the simulation (Table 2). Fig. 6 shows that
the simulation results match the trend and variation of the
measured runoff, except for a few peak points (see Fig. 6AeD).
Statistical analysis shows that the AMAE values of daily, 2-day, 7-
day and 10-day are 0.27, 0.33, 0.53 and 0.59, respectively, sug-
gesting that the Volterra adaptive model can accurately simulate
the runoff pattern (Table 3). Furthermore, the model simulation
performs better for the daily and 2-day time scales than the 7-day
and 10-day time scales (Fig. 6).
Table 2
Parameters in phase space reconstruction and Volterra adaptive model for daily, 2-
day, 7-day and 10-day runoff time series, respectively.

Time scale s m Training samples Testing samples

Daily 54 22 5000 2000
2-day 25 17 2800 1000
7-day 9 13 750 300
10-day 6 13 600 150
5. Concluding remarks

The chaotic characteristic of the Manas River runoff processes at
four different time scales (daily, 2-day, 7-day and 10-day) is
investigated by the phase space reconstruction technology and
chaos theory in this study. Based on the chaotic analysis, the Vol-
terra adaptive model was used to simulate runoff time series at four
different time scales. The results from these methods provide
convincing cross-verification and confirmation of the existence of a
chaos characteristic at the four time scales in the Manas River
runoff processes. Clear and well-defined attractors in the phase
diagram are observed and the largest Lyapunov exponents are all
positive. Our Volterra adaptive model simulation well reflected the
variation and trend of the Manas River runoff processes at multiple
scales. Our analysis reveals more complex chaotic characteristics in
river flow at finer scales than at coarser scales, being consistent
with the findings by Sivakumar and Chen (2007). The presence of
chaotic characteristic could provide helpful insight for a better
understanding of the nonlinear runoff behavior and the underlying
mechanisms that control the hydrological process of the rivers in
the Central Asia dryland. In addition, this study provides valuable
information for constructing the nonlinear model to simulate and
predict the hydrological time series for rivers in Central Asia and
helping water resources management in this arid and semiarid
region.

Finally, we want to caution that the measured time series usu-
ally contain some noise due to random influence and inaccuracies,
which can never be completely eliminated (Schouten et al., 1994).
Some studies tried to suppress the noises using statistical tech-
niques (Kostelich and Schreiber, 1993; Davies, 1994). However,
Elshorbagy et al. (2002a, b) suggested that smoothing the original
data by noise reduction for further analysis is a questionable
approach and therefore should be discouraged. There are two types
of noise, measurement noise and dynamical noise in chaotic hy-
drologic time series. The noise reduction-removed component
might contain the noise, but noise reduction in hydrologic data
might also remove a significant part of the original signal and
introduce an artificial chaoticity to the data. Admittedly, there is no
effective way to separate “useful” noise from real noise. For this
reason, we did not try noise reduction in this study and future in-
vestigations into this issue are needed.
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