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Abstract

Global climate change is apparent within the Arctic and the south-western deserts of

North America, with record drought in the latter reflected within 640 000 km2 of the

Colorado River Basin. To discern the manner by which natural and anthropogenic

drivers have compressed Basin-wide fish biodiversity, and to establish a baseline for

future climate effects, the Stream Hierarchy Model (SHM) was employed to juxtapose

fluvial topography against molecular diversities of 1092 Bluehead Sucker (Catostomus
discobolus). MtDNA revealed three geomorphically defined evolutionarily significant

units (ESUs): Bonneville Basin, upper Little Colorado River and the remaining Colora-

do River Basin. Microsatellite analyses (16 loci) reinforced distinctiveness of the

Bonneville Basin and upper Little Colorado River, but subdivided the Colorado River

Basin into seven management units (MUs). One represents a cline of three admixed

gene pools comprising the mainstem and its lower-gradient tributaries. Six others are

not only distinct genetically but also demographically (i.e. migrants/generation <9.7%).

Two of these (i.e. Grand Canyon and Canyon de Chelly) are defined by geomorphol-

ogy, two others (i.e. Fremont-Muddy and San Raphael rivers) are isolated by sharp

declivities as they drop precipitously from the west slope into the mainstem Colorado/

Green rivers, another represents an isolated impoundment (i.e. Ringdahl Reservoir),

while the last corresponds to a recognized subspecies (i.e. Zuni River, NM). Historical

legacies of endemic fishes (ESUs) and their evolutionary potential (MUs) are clearly

represented in our data, yet their arbiter will be the unrelenting natural and anthropo-

genic water depletions that will precipitate yet another conservation conflict within

this unique but arid region.
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Introduction

Climate change is apparent [Intergovernmental Panel on

Climate Change (IPCC) 2007], and nowhere are its effects

more visible than in two of earth’s unique regions: the

Arctic (White et al. 2010) and the south-western

deserts of North America (Holycross & Douglas 2007).

The sensitivities of these regions to greenhouse gas emis-

sions cast them as potential bellwethers for future

impacts (Warning Signs: Dow & Downing 2007). For

example, climate change has altered Arctic topography

by first reducing [National Snow & Ice Data Center

(NSIDC) 2012] and then mobilizing perennial sea ice,

and with multiple effects. It has forged new navigational

routes and promoted resource extraction (Nghiem et al.

2007), enhanced oceanic productivity (Tremblay et al.

2011), unlocked the North-west Passage (Heide-Jørgen-
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sen et al. 2011) and politicized wildlife management

(Reich 2011).

In south-western North America, unprecedented

drought has been equally multifaceted, with vegetation

decimated (van Mantgem et al. 2009), wildfires pro-

voked (Westerling et al. 2006), snow pack diminished

(Pederson et al. 2011) and run-off curtailed (Barnett

et al. 2008). Much as in the Arctic, repercussions are

severe yet causation is more ambiguous, due largely to

a homogenization of greenhouse gas effects on a regio-

nal scale (Cayan et al. 2010; Seager & Vecchi 2010). In

addition, anthropogenic perturbations unrelated to cli-

mate (i.e. stream fragmentation, point-source pollution,

impoundments and non-native introductions; Sabo et al.

2010b) are strongly manifested as well, and they either

mask or exacerbate the regional effects of drought. Yet

expectations for climate change (Jones 2011) and their

impacts on regional biodiversity (Kerr 2011a) are read-

ily proffered and easily accepted, despite the obvious

presence of confounding effects (Kerr 2011b). Herein,

we posit the necessary proof-of-concept to gauge the

magnitude and direction of predicted climate change in

the southwest must involve the calibration of standard-

ized, well-defined biodiversity benchmarks against their

habitats. This correction will permit managers to define

and prioritize biodiversity as a preliminary to the con-

servation conflicts that will emanate from an increas-

ingly anthropogenic future (Tickell 2011).

In addition, a testable framework will be quite use-

ful in juxtaposing desert stream fragmentation against

genetic diversities of native fishes (as a surrogate for

biodiversity health). It will also provide the metrics

with which to gauge potential future impacts of dewa-

tering (MacDonald 2010) and to evaluate correspond-

ing deterioration of riverine food webs (Sabo et al.

2010a). A predictive model would be especially apropos

for large-scale, basin-level conservation efforts (Abell

et al. 2008), particularly given the time dependence

these often demonstrate. More importantly, a basin-

wide benchmark would allow future impacts of cli-

mate change to be compared and contrasted against

those already recognized in time and space. This in

turn would promote human livelihoods and biodiver-

sity conservation at the watershed level (Sabo et al.

2010b) and foster its sustainability over a longer tem-

poral scale (Dudgeon et al. 2005). Herein we provide

this impetus using a previously described conservation

model and relevant algorithms to assess natural and

anthropogenic impacts on the historical legacy and

evolutionary potential of a widespread endemic big

river fish in the upper Colorado River Basin of western

North America.

Meffe & Vrijenhoek (1988) were prescient in their

recognition that fishes are largely constrained to

unidirectional (downstream) dispersal with population

structure dictated by riverine distances, particularly in

streams with few historical barriers. They developed

the Stream Hierarchy Model (SHM) to represent these

relatively continuous hydrological connections within a

dendritic watershed and to effectively gauge population

divergences and degree of isolation as a response to this

hierarchy. The SHM is particularly applicable to man-

aged rivers in that impoundments constrain life histo-

ries and block historical migration routes for many big

river fishes (Waples et al. 2008; Osmundson 2011).

Dams also fragment suitable habitat (Sabo et al. 2010a)

and produce smaller, homogeneous patches incompati-

ble for endemics (Poff et al. 2007) yet optimal for non-

native apex predators (Minckley & Marsh 2009). These

anthropogenic stream alterations often generate bottle-

necks and promote genetic drift, with genetic diver-

gences inversely related to hydrological distances,

particularly when compared to unaltered systems

(Douglas & Douglas 2010).

Meffe & Vrijenhoek (1988) tested the SHM using a

small native fish (Sonoran Topminnow, Poeciliopsis

occidentalis) whose gene flow in the Gila River (AZ) con-

formed to model expectations, prompting their asser-

tion that SHM probably represents fishes in many lotic

systems in the southwest. However, native south-

western fishes vary from smaller, sedentary and higher

elevation (i.e. Sculpin, Cottus spp.) to larger, mobile and

mainstem species (i.e. Colorado Pikeminnow, Ptychoc-

heilus lucius) (Minckley 1991). The generality of SHM

can thus be questioned, not only given broad life his-

tory diversities of south-western endemics (Minckley &

Marsh 2009), but the equally diverse riverine ecosys-

tems within which they reside (Minckley et al. 1986).

We evaluated the generality of the SHM using as our

focal species a wide-ranging native fish, the Bluehead

Sucker, Catostomus discobolus (BHS), which is more vag-

ile than the Sonoran Topminnow but less so than other

larger-bodied Colorado River fishes. BHS has consider-

able longevity (Minckley 1991; Douglas & Marsh 1998),

allowing the extrapolation of gene flow in this species

to other basin-wide endemics more rare in their distri-

butions (Caro 2010). We generated three hypotheses to

test whether predictions of the SHM are consistent

within the Colorado River (as opposed to the Gila

River, a smaller tributary in the Lower Colorado River

basin; Douglas et al. 1999). These are (i) BHS population

structure and gene flow are due to riverine isolation by

distance (IBD); (ii) their genetic divergences are signifi-

cantly greater in mainstem as opposed to tributaries

and (iii) populations in anthropogenically altered

streams have significantly reduced genetic diversities

and increased divergences when compared to those in

unaltered reaches.
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We applied coalescent and Bayesian analyses of

mitochondrial and microsatellite DNAs to infer contem-

porary vs. historical gene flow and demographic parame-

ters in BHS and to test for the presence of evolutionarily

significant units (ESUs) and management units [MUs;

where ESUs are recognized as populations with long his-

tories of genetic separation, while MUs currently

exchange so few individuals they are demographically

independent regardless of past connectivity (Avise

2000)]. These data, and those derived from other imper-

iled and/or wide-ranging species (Oakey et al. 2004;

Mock et al. 2006, 2010; Douglas & Douglas 2010), provide

a contemporary baseline from which to evaluate future

climate change in the basin and to weigh historical vs.

anthropogenic impacts within a ‘… resource-depleted

landscape compounded by terrifying distances, cata-

strophic cloudbursts, withering heat and a bizarre beauty

allied with death’ (Stegner 1981).

Methods and materials

Sampling, DNA extraction and mitochondrial DNA
sequence evolution

Catostomidae, subgenus Pantosteus (BHS) is character-

ized by cartilaginous oral scraping ridges encapsulated

within broad, disc-shaped lips (Minckley 1991) and is

represented by two subspecies: Catostomus discobolus

discobolus and Catostomus discobolus yarrowi. The former

is widespread in the Upper Colorado River basin

(C1–C24; Fig. 1, Table 1), plus Grand Canyon (C25–C29)

and Little Colorado River (LCR) headwaters (C30–C34)

of the Lower Colorado River basin. Disjunct popula-

tions are found in Bear and Weber rivers of the endor-

heic Bonneville basin (B1–B3), plus remnants in the

Upper Snake River (S1); for simplicity, we refer to these

four locations as Bonneville basin. The C. d. yarrowi

subspecies (C35; Fig. 1, Table 1) is restricted to the Zuni

River headwaters (NM), a tributary of the LCR. Anthro-

pogenic impacts have reduced BHS to 45% of its histori-

cal range (Bezzerides & Bestgen 2002), such that it is

now endangered in New Mexico (Propst et al. 2001)

and ‘of special concern’ in Arizona, Colorado, Idaho,

Utah and Wyoming.

Fin clips or juveniles were sampled from 1092 speci-

mens across 39 locations (‘populations’, Fig. 1, Table 1),

averaging 28/location (range 10–62, mode = 28). Geno-

mic DNA was extracted with Puregene DNA Purifica-

tion or Qiagen DNeasy kits. Mitochondrial (mt) DNA

ATP8 and ATP6 genes were amplified (Douglas et al.

2006), sequenced using BIGDYE [ver.3.1; Applied Biosys-

tems Inc. (ABI), Forest City, CA, USA] and analysed on

an ABI Prism 3100 Genetic Analyser. Sequences were

aligned manually using SEQUENCHER (Gene Codes, Ann

Arbor, MI, USA) and tested for combination with the

partition homogeneity test (Farris et al. 1994; Swofford

2001). Sequence evolution was quantified in MODELTEST

(Posada & Crandall 1997), and neutrality evaluated in

DNASP (Rozas et al. 2003) with HKA and MK tests (Hud-

son et al. 1987; McDonald & Kreitman 1991) that con-

trasted BHS vs. Longnose Sucker (C. catostomus, its

closest outgroup; Doosey et al. 2010). To ascertain clock-

like behaviour, we compared BHS vs. outgroup by

applying Tajima’s (1993) test with five random evalua-

tions per clade (three comparisons each).

Mitochondrial DNA diversity, drainage-level
demography and phylogeny

To examine broad-scale regional biodiversity, samples

were pooled within drainages and mtDNA sequence

divergences (p) calculated among haplotypes, based on

Fig. 1 Sampling locations in three drainage basins of western

North America (Colorado River Basin, Snake River Basin and

Bonneville Basin) from which Bluehead Sucker (Catostomus dis-

cobolus) was sampled. Geographic extent of basins is depicted

as dark area within the map of the United States (insert, upper

left). Sample acronyms are defined in Table 1. Black diamonds

represent dams: upper represents Flaming Gorge Dam (UT) on

the Green River, while lower represents Glen Canyon Dam

(AZ) on the Colorado River.
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1000 bootstrapped replications (MEGA5; Tamura et al.

2011). We used 12 outgroups for phylogenetic analyses:

(i) Cyprinidae (Cyprinius carpio, Carp); (ii) Cobitidae

(Cobitis striata, Loach, Asia; Sabanejewia montana, Central

Europe; S. baltica, Central Europe); (iii) Catostomidae

[Razorback Sucker, Xyrauchen texanus; Longnose Sucker,

C. catostomus; Flannelmouth Sucker, C. latipinnis; White

Sucker C. commersonii; Sonoran Sucker, C. insignis; Rio

Grande Sucker, C. plebeius; Desert Sucker, C. clarkii;

Mountain Sucker, C. platyrhynchus (from this point,

common names will be used in text to designate

species)].

Data were input to MRBAYES 3.1.2 (BA, Ronquist &

Huelsenbeck 2003), with GTR + I + G as the appropri-

ate model (based on MODELTEST). BA involved two runs

(five chains each) sampled every 1000 generations and

terminated when average standard deviation among

split frequencies were <0.001. Parameters and trees

were estimated from 20 million generations (less 30%

burn-in) and visualized as a majority-rule consensus

tree in FIGTREE (ver.1.3.1; http://tree.bio.ed.ac.uk/soft-

ware/figtree/).

Following neutrality tests (above), we computed Taj-

ima’s D (Tajima 1989) and Fu’s FS (Fu 1997) to infer

Table 1 Sampling locations and genetic diversity of 1092 Catostomus discobolus. Listed are Site = location acronym; letter indicates

basin, with S = Snake River, B = Bonneville, C = Colorado River; Location = sampling site; River = major drainage; n = sample size;

AR = allelic richness; HE = mean expected heterozygosity; SD = standard deviation. Evolutionarily significant unit (ESU) and man-

agement unit (MU) are defined in Figs 2 to 4.

Site Location River ESU MU n AR SD HE SD

S1 Snake River, WY, USA Snake 1 1 30 5.5 3.0 0.67 0.32

B1 Bear River, WY, USA Bear 1 1 21 5.1 2.7 0.64 0.30

B2 Weber River (S7), UT, USA Weber 1 1 34 4.3 2.2 0.59 0.31

B3 Weber River, UT, USA Weber 1 1 21 5.1 2.2 0.64 0.26

C1 Big Sandy River, WY, USA Big Sandy 2 3 28 6.4 1.9 0.80 0.12

C2 Little Sandy River, WY, USA Big Sandy 2 3 17 6.3 1.7 0.80 0.10

C3 Muddy Creek, WY, USA Little Snake 2 3 23 5.9 2.0 0.74 0.19

C4 Ringdahl Res., WY, USA Henry’s Fork 2 2 33 4.6 1.2 0.72 0.12

C5 Yampa River, CO, USA Yampa 2 3 28 7.0 1.9 0.82 0.12

C6 Little Yampa Cn., CO, USA Yampa 2 3 37 7.1 2.0 0.83 0.12

C7 Split Mountain, UT, USA Upper Green 2 3 16 6.8 2.1 0.79 0.15

C8 Strawberry Res., UT, USA Duchesne 2 3 28 6.7 2.1 0.82 0.12

C9 White River, UT, USA White 2 3 10 6.9 2.2 0.83 0.17

C10 Desolation Canyon, UT, USA Middle Green 2 3 46 6.9 1.9 0.84 0.10

C11 Range Creek, UT, USA Middle Green 2 3 24 6.1 2.0 0.77 0.15

C12 Price River, UT, USA Price 2 3 28 7.2 1.7 0.85 0.09

C13 San Rafael River, UT, USA San Rafael 2 4 30 5.9 1.9 0.76 0.16

C14 Joe’s Valley Res., UT, USA San Rafael 2 4 25 5.7 2.1 0.76 0.15

C15 Millsite Reservoir, UT, USA San Rafael 2 4 28 5.6 1.9 0.75 0.16

C16 Dolores River, UT, USA Dolores 2 3 30 6.9 2.1 0.81 0.14

C17 Black Rocks, CO, USA Upper Colorado 2 3 18 6.7 2.1 0.80 0.13

C18 15-mile reach, CO, USA Upper Colorado 2 3 26 7.2 2.1 0.83 0.13

C19 West Water Cn, UT, USA Upper Colorado 2 3 22 7.1 2.0 0.83 0.12

C20 Fremont River, UT, USA Dirty Devil 2 5 40 6.3 2.1 0.78 0.16

C21 Dirty Devil, UT, USA Dirty Devil 2 5 46 6.0 2.2 0.76 0.17

C22 Muddy River, UT, USA Dirty Devil 2 5 25 6.1 2.1 0.77 0.14

C23 San Juan River, UT, USA San Juan 2 3 30 6.6 2.2 0.81 0.13

C24 Canyon de Chelly, AZ, USA San Juan 2 6 56 4.2 1.4 0.66 0.15

C25 Little Colorado River, AZ, USA Lower Colorado 2 7 38 5.4 1.9 0.75 0.15

C26 Shinumo Creek, AZ, USA Lower Colorado 2 7 62 4.9 1.5 0.73 0.14

C27 Kanab Creek, AZ, USA Lower Colorado 2 7 21 5.4 1.8 0.74 0.16

C28 Matkatamiba Canyon, AZ, USA Lower Colorado 2 7 18 5.1 1.8 0.72 0.14

C29 Havasu Creek, AZ, USA Lower Colorado 2 7 52 4.8 1.4 0.67 0.17

C30 Willow Creek, AZ, USA Little Colorado 3 8 16 4.7 2.0 0.68 0.18

C31 Silver Creek, AZ, USA Little Colorado 3 8 19 4.4 1.4 0.68 0.18

C32 Wenima, AZ, USA Little Colorado 3 8 18 5.7 1.9 0.74 0.16

C33 Nutrioso Creek, AZ, USA Little Colorado 3 8 10 5.0 1.8 0.68 0.20

C34 East Fork LCR, AZ, USA Little Colorado 3 8 17 4.8 1.7 0.66 0.21

C35 Agua Remora, NM, USA Zuni 2 9 21 2.3 1.0 0.36 0.26
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demographic histories. The latter is particularly efficient

at detecting population expansion, especially when con-

trasted against Fu and Li’s F* and D* (Fu & Li 1993).

Additionally, we conducted regional mismatch distribu-

tion analyses (MDA; Rogers & Harpending 1992),

defined as the number of nucleotide differences

between all pairs of individuals and employed the R2

statistic (Ramos-Onsins & Rozas 2002) to assess statisti-

cal significance. We derived Tajima’s D, Fu’s Fs, Fu and

Li’s F* and D*, MDA and R2 in DNASP using the coales-

cent with 1000 replications.

Microsatellite DNA diversity and population structure

To quantify contemporary genetic structure and habitat

effects, BHS was assessed across 16 fast-evolving micro-

satellite (msat) DNA loci developed for catostomids

(Tranah et al. 2001) and cross-amplified in C. discobolus

(Appendix I). Forward primers were dye-labelled (ABI

dye set DS-33). Polymerase chain reactions (PCRs) were

run in 10–12 lL volumes containing Go-taq 19 flexi buf-

fer (PROMEGA), 2.0 mM MgCl2, 4.2 lM dNTPs, 4.8 lg
BSA, 0.5 units Go-taq DNA polymerase (PROMEGA)

and 20 ng DNA. Cycling conditions were as follows:

initial denaturation at 95 °C/3 m, 15 cycles for 45 s at

95 °C, 45 s at 52 °C, 1 m at 72 °C, 25 cycles for 30 s at

95 °C, 30 s at 52 °C and 45 s at 72 °C. Fragments were

analysed on an ABI (Applied Biosystems, Inc.) Prism

3100 Genetic Analyser along with an internal size stan-

dard (Liz500). Alleles were sized with GENESCAN v3.7,

scored with GENOTYPER v3.7 (ABI) and evaluated for null

alleles/scoring errors using MICROCHECKER v2.2.3 (van

Oosterhout et al. 2004).

Deviations from Hardy–Weinberg (HW) and linkage

equilibria (LD) were computed using exact tests in GENE-

POP ‘007 (Rousset 2008), with P-values estimated via

Markov Chain with 10 000 dememorizations, 200

batches, 5000 iterations and Bonferroni-adjusted

a = 0.0031. Expected (HE) and observed (HO) heterozyg-

osities, number of alleles and private alleles/population

and/locus were calculated in GENALEX v6.1 (Peakall &

Smouse 2006). Allelic richness was estimated using rar-

efaction based on the smallest diploid sample (n = 20;

HP-RARE, Kalinowski 2005).

Assignment tests were conducted in STRUCTURE

(Pritchard et al. 2000, 2009) to determine the number of

distinct gene pools. Simulation parameters were ‘admix-

ture’ and ‘allele frequencies correlated among popula-

tions’. Exploratory analyses had burn-in = 100 000,

chain length = 200 000, with highest posterior probabili-

ties for clusters at k = 9–12. Subsequent runs focused on

these values, with each k replicated 109 with burn-in/

chain lengths extended to 200 000 and 500 000, respec-

tively. Redundant runs were conducted in that large

and complicated data sets (as herein) can collapse onto

multiple values, particularly when ‘admixture’ is

applied (Waples & Gaggiotti 2006). To determine diver-

gences among locations and STRUCTURE-defined clusters,

we calculated pairwise FST estimates (Goudet 1995) and

95% bootstrap confidence intervals. The G-based Fish-

er’s exact test was applied in GENEPOP, with parameters

previously mentioned and with Bonferroni-adjusted

significance.

Stream hierarchy, population dynamics and MUs

To estimate hierarchical structure in drainages and

basins and, thus, to test the SHM, we assessed spatial

variance in allele frequencies with a locus-by-locus anal-

ysis of molecular variance (AMOVA; Excoffier et al. 1992;

Michalakis & Excoffier 1996), as implemented in ARLE-

QUIN v3.1 (Excoffier et al. 2005) and with variance parti-

tioned across basins. We applied a Mantel test and 1000

permutations (IBD V1.52; Bohonak 2002) to examine IBD

by comparing genetic distance (i.e. FST/1 � FST; Rousset

1997) vs. river distance (in km) as geo-referenced in

ARCGIS 99 (ESRI) among our 35 Colorado River loca-

tions (excluding Bonneville Basin; S1, B1–B3).

The SHM stresses stream networking as important

in shaping patterns of genetic diversity. We inferred

relative genetic distances for each stream section based

on pairwise (among-site) chord distances (Cavalli-Sfor-

za & Edwards 1967) mapped onto stream sections

identified following the methods implemented in

STREAMTREE (Kalinowski et al. 2008). The latter differs

from IBD in that it allows shorter sections of streams

to be assigned larger genetic distances and does not

involve geographic distance but rather stream network

topology. This approach can also isolate particular sec-

tions of a network that can disrupt IBD (such as

barriers or corridors). STREAMTREE compared the mid-

point-rooted neighbour-joining (NJ) tree against the

actual stream network via the coefficient of determina-

tion (R2) from linear regression. Bonneville basin (S1,

B1–B3) was excluded from the analysis, given its long

isolation from the Colorado River basin (Minckley

et al. 1986).

The SHM predicts that populations within smaller,

headwater streams will bottleneck and diverge signifi-

cantly when connectivity is disrupted by impound-

ments, particularly when compared to populations

in unobstructed streams. To detect recent bottlenecks

[i.e. within 4Ne generations], we contrasted excess vs.

expected heterozygosity at equilibrium using the Wilco-

xon signed rank test in BOTTLENECK (Piry et al. 1999). Infi-

nite allele (IAM) and two-phase (TPM) models were

run for 1000 iterations, with the latter more appropriate

as it permits multirepeat mutations in allele size. TPM
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parameters were 90% of loci conforming to SMM and

default variance = 30. Significance for two-tailed tests

(heterozygote excess/deficiency) were assessed at Bon-

ferroni-adjusted a = 0.0031. Only significant deviations

under both models were considered as a true signal.

The SHM predicts stream fragmentation will reduce

population sizes and elevate genetic divergences above

impoundments, especially when compared to unim-

peded streams. To test for potential divergences among

smaller, more peripheral populations above barriers, we

estimated effective population sizes (Ne) of STRUCTURE-

defined clusters using a one-sample LD estimator (LDNe;

Waples & Do 2008). LDNe produces largely unbiased

estimates of Ne under a wide range of sample sizes and

true Ne values, and after excluding alleles with frequen-

cies less than a range of critical values (i.e. Pcrit = 0.05,

0.02 and 0.01).

Previously, MUs have been characterized by signifi-

cant differences in allele frequencies, as gauged by a

comparison of pairwise FST values. This approach has

recently been amended to include contemporary

dispersal rates, such that MUs are now defined by

demographic independence (i.e. genetic divergence

approximating a dispersal rate <10%, Palsbøll et al.

2006). We employed BAYESASS 3 (Wilson & Rannala 2003)

to estimate migration rates for our STRUCTURE-derived

groupings, using 10 million iterations (1 million dis-

carded as burn-in) and 1000 iterations between MCMC

sampling. Mixing parameter for allele frequencies,

inbreeding coefficients and migration rates were itera-

tively adjusted so as to accrue acceptance rates of 25%,

28% and 30%, respectively (where values between 20%

and 40% are deemed optimal).

Results

Mitochondrial DNA divergence, demography and
phylogeny

Sequence analysis was performed on the combined ATP8

and ATP6 genes across a subset of 495 samples

(averaging 13/location, range 4–33, mode = 8) and

resulted in 836 bp coalesced into 65 haplotypes (43

ingroup + 20 outgroup). Combining mtDNA sequences

was supported by a nonsignificant partition homogeneity

test (Paup*: P > 0.25). All sequences were evolving

neutrally [HKA: (0.85 < P < 0.98), MK: (0.82 < P < 0.96)]

and in a rate-uniform manner (Tajima’s test, P > 0.53).

Our BA tree (Fig. 2), rooted at Carp, depicts Cobiti-

dae as basal to Catostomidae, with Longnose Sucker

placed as sister to its congeners. Next is a clade consist-

ing of White and Utah suckers and a cluster composed

of Razorback, Sonoran and Flannelmouth. Within Pan-

tosteus, BHS is split into three clades (ESUs): ESU-1

comprising Bonneville Basin/Snake River, ESU-2 repre-

senting Colorado River Basin, except Upper LCR, which

forms ESU-3 (Table 1). The Zuni Sucker subspecies

(C. d. yarrowi) was not distinct, but shared a common

haplotype with ESU-2. Interestingly, ESU-1 is basal to

all other Pantosteus, followed by Rio Grande Sucker,

Desert Sucker and ESU-3 as sister to a clade containing

Mountain Sucker and ESU-1.

Sequence divergence (Table 2) ranged from 0.1%

(�0.1) between BHS-subspecies to 1.7% (�0.4) between

BHS-ESUs. Within the subgenus Pantosteus, two species

scarcely diverged from BHS, with Desert Sucker at 1.0

–1.6% (�0.4) and Mountain Sucker at 0.0–1.1% (�0.0–

0.3); only Rio Grande Sucker was clearly distinct at 4.4

–5.9% (�0.7). In comparison, divergence between sub-

genera Pantosteus and Catostomus was on average 4.4%

and 6.7% within Catostomus.

Bluehead Sucker
        ESU-2

Mountain Sucker

Bluehead Sucker
        ESU-3

  Desert Sucker

Rio Grande Sucker

Bluehead Sucker
        ESU-1

Flannelmouth Sucker

Sonoran Sucker
Razorback Sucker

Utah Sucker
White Sucker

Longnose Sucker

Cobitidae

Carp

P
a
n
t
o
s
t
e
u
s

Fig. 2 Majority-rule (MR) consensus tree (3050 trees) derived

from a Bayesian analysis of haplotypes spanning 836 bp of

ATPase 8 and ATPase 6 mitochondrial DNA across 43 Blue-

head Sucker (BHS) (Catostomus discobolus) and 20 outgroups

{Carp (Cyprinus carpio); Family Cobitidae; Longnose Sucker

(Catostomus catostomus); White Sucker (Catostomus commersonii);

Utah Sucker (Catostomus ardens); Razorback Sucker (Xyrauchen

texanus); Sonoran Sucker (Catostomus insignis); Flannelmouth

Sucker (Catostomus latipinnis); Rio Grande Sucker [Catostomus

(Pantosteus) plebeius]; Desert Sucker [Catostomus (Pantosteus)

clarkii]; Mountain Sucker [Catostomus (Pantosteus) platyrhyn-

chus]}. All nodes are at 100%. Three evolutionarily significant

units (ESUs) are indicated.
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Strong population expansion was recorded only for

ESU-2, as indicated by significant negative statistics

(Tajima’s D = �2.015, P < 0.006; Fu’s FS = �43.938,

P < 0.0000; Fu and Li’s F* = �2.872, P < 0.012; Fu and

Li’s D* = �2.64, P < 0.018). MDA, another approach to

assess historical changes in population size, reaffirmed

the rapid demographic expansion of ESU-2 with

observed values in a unimodal plot significantly dis-

placed from expected (R2 = 0.043; P < 0.0000). The

remaining two ESUs also had negative (but nonsignifi-

cant) values for the above statistics, while the multi-

modal MDA plot for ESU-1 suggested a population at

constant size.

Microsatellite diversities, divergences and population
structure

All 16 loci were polymorphic, averaging 32.6 alleles

(range 10–57; Appendix I). Significant deviations from

HWE occurred in only 2.85% tests (i.e. 12 of 420). Sig-

nificant LD occurred in 11.66% of comparisons (49 of

420), with 33 attributable to Havasu Creek (C29). Once

this population was removed from analyses, the 16

remaining significant tests were less than the 21

expected by chance alone (a = 0.05), indicating HWE

and LD would not impact further analyses. Addition-

ally, MICROCHECKER revealed potential null alleles in nine

populations (of 39; 23%). However, three (9%) were at

one locus (Dlu233), two (6%) at another (Dlu4153), with

one population (C12) showing evidence for null alleles

at both loci, accounting for seven of nine occurrences

(78%). No locus-specific patterns were detected in the

remaining four tests.

Genetic diversity within BHS populations (Table 1)

was moderate to high, with allelic richness (adjusted for

sample size) ranging from 2.3 (SD = 1.0) to 7.2

(SD = 1.7) and HE varying from 0.36 (SD = 0.26) to 0.85

(SD = 0.09, Table 1). Among ESUs, populations in ESU-2

showed higher mean allelic richness (AR = 6.0,

SD = 0.0) and heterozygosity (HE = 0.76, SD = 0.09)

than those in ESU-1 (AR = 5.0, SD = 0.5; HE = 0.64,

SD = 0.03) and ESU-3 (AR = 4.9, SD = 0.5; HE = 0.69,

SD = 0.03). The population representing C. d. yarrowi

was characterized by very low genetic diversity

(AR = 2.3, HE = 0.36). Genetic divergence was variable

among populations with FST at 0.0–0.45 (0.1–0.17 CI)

and greatest for C. d. yarrowi (C35) vs. any other popu-

lation (FST = 0.32–0.45). As expected, pairwise FST val-

ues were elevated between populations from different

ESUs, but surprisingly low among populations in ESU-1

(FST = 0.07–0.08). AMOVA identified 14.3% of genetic

variation among basins, 9.0% among populations within

basins and 76.7% within populations.

STRUCTURE runs using all locations plateaued at k = 9,

remained stable through k = 11, then decreased through

k = 14. At k = 11, three clusters within mainstem popu-

lations in the Green and Upper Colorado rivers

reflected high levels of admixture and ill-defined sepa-

ration. Relationships among genetic vs. geographic dis-

tances were nonsignificant (Z = 2.54 9 1013; r = 0.03;

P = 0.28). Based on these results, we grouped popula-

tions into nine clusters, considered MUs (Fig. 3), with

Table 2 Sequence divergence (%) across 836 bp of mtDNA ATP-6 and ATP-8 genes within and among Bluehead Sucker

(BHS = Catostomus discobolus) and other catostomid species. Lower triangle represents pairwise sequence divergence, and upper tri-

angle shows standard errors. Bayesian Analysis identified three ESUs in BHS (Fig. 2) with ESU-1 = Bonneville Basin/Snake River;

ESU-2 = Colorado River Basin and ESU-3 = Little Colorado River; ZUN = Catostomus discobolus yarrowi subspecies in Zuni River

(NM). Other species in the subgenus Pantosteus are MTS = Mountain Sucker (C. platyrhynchus); DES = Desert Sucker (C. clarkii) and

RGS = Rio Grande Sucker (C. plebeius). Outgroups are FMS = Flannelmouth Sucker (C. latipinnis); SOS = Sonoran Sucker (C. insignis);

WHS = White Sucker (C. commersonii); UTS = Utah Sucker (C. ardens) and LNS = Longnose Sucker (C. catostomus)

Pantosteus

ESU-1 ESU-2 ESU-3 ZUN MTS DES RGS FMS SOS WHS UTS LNS

ESU-1 0.003 0.004 0.004 0.003 0.004 0.007 0.010 0.010 0.009 0.010 0.010

ESU-2 1.1 0.004 0.001 0.000 0.004 0.007 0.010 0.010 0.009 0.010 0.010

ESU-3 1.7 1.2 0.004 0.003 0.004 0.007 0.010 0.011 0.009 0.011 0.010

ZUN 1.3 0.1 1.3 0.001 0.004 0.007 0.010 0.010 0.009 0.010 0.010

MTS 1.1 0.0 1.1 0.2 0.003 0.007 0.010 0.010 0.009 0.010 0.010

DES 1.2 1.0 1.6 1.2 0.9 0.007 0.010 0.010 0.009 0.010 0.010

RGS 4.9 4.4 5.0 4.6 4.4 4.8 0.011 0.011 0.010 0.011 0.010

FMS 8.7 9.0 9.8 9.2 9.0 8.9 11.0 0.006 0.007 0.005 0.010

SOS 9.2 9.3 10.0 9.4 9.3 9.3 10.6 3.2 0.008 0.007 0.010

WHS 8.1 8.0 8.7 8.1 8.0 8.1 10.4 5.6 5.8 0.007 0.009

UTS 9.0 9.2 10.0 9.4 9.3 8.7 12.0 2.7 4.1 4.8 0.010

LNS 10.0 10.0 10.5 10.1 10.0 9.7 11.7 10.1 10.9 8.9 10.4
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Green/Upper Colorado rivers combined to reflect their

admixture (Fig. 4). Structure-defined clusters were

further supported by pairwise FST values, with the low-

est (0.02) between Green/Yampa rivers vs. Upper

Colorado River mainstem, again suggesting a single

cluster.

Stream networks, effective population sizes and
migration rates among MUs

Genetic distances among sample locations (populations)

were significantly related to the stream segments sepa-

rating them, with results depicted in a plot of expected

vs. observed distances fitted to the river network for

each stream section between sampling locations (STREAM-

TREE, Fig. 5; R2 = 0.987). Average mainstem dis-

tance = 0.006, with an 8.59-differential for each section

entering the tributaries (d = 0.051). Interestingly, genetic

distances for eight (of 20) mainstem sections (i.e. 40%)

approximated zero, as predicted by the SHM. Eleven

(of 18) streams entering tributaries (i.e. 61%) averaged

>0.01 (range 0.0–0.29), further demonstrating that topol-

ogy significantly influences population structure of Col-

orado River Basin BHS. Seven populations [i.e. C04

Fig. 3 Management units (MUs) identi-

fied via assignment test of 1092 Bluehead

Sucker [Catostomus (Pantosteus) discobolus]

genotypes derived from 16 microsatellite

DNA loci. Bar plot depicts assignment of

individuals to gene pools (colours)

derived from STRUCTURE. Map shows geo-

graphic distribution of 9 MUs, with sam-

pling site reflecting gene pool colour. MU-

1 (green) = Bonneville Basin/Snake River;

MU-2 (light brown) = Ringdahl Reservoir;

MU-3 (yellow-to-blue = Green/Colorado

River; MU-4 (grey) = San Rafael River;

MU-5 (dark brown) = Dirty Devil River;

MU-6 (orange) = Canyon de Chelly; MU-

7 (light blue) = Grand Canyon; MU-9

(bright green) = Zuni River; MU-8 (pur-

ple) = Little Colorado River. Evolution-

arily significant units (ESUs) that contain

the MUs are also designated. See Table 1

for detailed information on sampling

sites.

Fig. 4 Geographic distributions of three

evolutionarily significant units (ESUs)

and nine management units (MUs) in

Bluehead Sucker (Catostomus discobolus).

ESUs (left) were derived from 836 bp of

ATP-8 and ATP-6 mitochondrial DNA

genes. ESU-1 (green) = Bonneville Basin/

Snake River; ESU-2 (blue) = Colorado

River; ESU-3 (purple) = Upper Little Col-

orado River. Two MUs (right) corre-

spond to ESUs (ESU-1 = MU-1, ESU-

3 = MU-8), whereas ESU-2 subdivides

into seven MUs (MU-2 through MU-7,

and MU-9). See Table 1 for detailed

information on ESUs and Figure 3 for

MUs.
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(Ringdahl Res., WY), C30, C31 (Willow and Silver cks.

AZ), C11, C12 (Range Ck. and Price River, UT, USA),

C24 (Canyon de Chelly, AZ, USA) and C35 (Agua Rem-

ora, NM, USA)] were highly differentiated when com-

pared with those in close geographic proximity or

within the same catchment, a result counter to the

assumptions of IBD (Kalinowski et al. 2008). In fact, the

IBD plot (Fig. 5) demonstrates a compendium of smal-

ler stream distances associating with larger genetic

distances, and vice-versa, contributing to the nonsignifi-

cant relationship. STREAMTREE results also supported

those from STRUCTURE, with upper Colorado/Green

rivers being admixed, whereas tributaries reflect distinct

gene pools. These data reject our second hypothesis

(i.e. genetic diversity is significantly greater in main-

stem vs. tributary populations). Additionally, there is

no evidence that dams altered historical population

structure in this region of the basin, other than that for

Ringdahl Reservoir.

Across all 39 populations, seven showed significant

genetic bottlenecks (within 4Ne generations) under

either the infinite alleles (IAM) or two-phase model

(TPM). However, only one (C35) was significant for

both (IAM, P = 0.00002; TPM, P = 0.00168). Genetic bot-

tlenecks were also evaluated for each of the nine MUs

(Table 3), and Ne ranged from 9.7 in MU-9 to 742 in

MU-3. All 95% confidence intervals had discrete upper/

lower bounds, except for MU-5 and MU-2, which had

upper intervals of infinity, a known weakness of Ne LD

estimators (Beebee 2009). All MUs displayed migration

rates <9.7%, as calculated in BAYESASS 3. Inbreeding

(FIS = 0.55) was also evident in MU-9, representing the

C. d. yarrowi subspecies.

Thus, we cannot reject the hypothesis that popula-

tions in anthropogenically altered streams have signifi-

cantly reduced genetic diversities and increased

divergences when compared to those in unaltered

reaches. Most dams in western North America were

built in the early to mid-20th century, and Ringdahl

Reservoir (C04, Table 1; MU-2, Table 3) represents one

of the few known BHS populations existing within such

an impoundment. It displays reasonable values for Ne

(120) and FIS (0.11), yet lacks any capacity for natural

immigration. These factors increase its value from a

management standpoint in that existing barriers prevent

the invasion of introduced non-native suckers, whereas

resident BHS may serve as a source for translocation,

supplementation or broodstock establishment.

Discussion

Range shifts are a by-product of climate change (Mair

et al. 2012; Meril€a 2012), and while their effects can be

mitigated through conservation planning, the latter has

been primarily terrestrial in its focus (Thomas 2010),

possibly due to the limited surface area displayed by

global freshwater systems (i.e. 0.8%; Dudgeon et al.

Isolation-by-distance

StreamTree

0
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Stream distance (km)

Observed distance

0.2
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Fitted
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Zuni River NM

Fig. 5 Plots depicting results produced by analyses of isola-

tion-by-distance (IBD: top) and STREAMTREE (bottom). The IBD

plot contrasts genetic distances (x-axis) against pairwise stream

distances in km (r = 0.03). The STREAMTREE plot depicts expected

genetic distances (x-axis) vs. observed distances, fitted to the

river network for each stream section between sampling loca-

tions (R2 = 0.987). Bracketed data in the STREAMTREE plot are

pairwise comparisons among Catostomus discobolus yarrowi

(Zuni River, NM; Table 1) and all other locations.

Table 3 Estimates of gene flow calculated for nine manage-

ment units (MUs) in Bluehead Sucker (Catostomus discobolus).

Parameters are Migration = migration rate (standard error);

Ne = LNDE effective population size with 95% confidence inter-

vals (CI) and inbreeding coefficient FIS (with standard error).

For details on MUs, see Table 1 and Fig. 3

MU Migration Ne 95% CI FIS

MU-1 0.95 (0.01) 76 58.1–102.3 0.07 (0.013)

MU-2 0.93 (0.02) 120 37.3–∞ 0.11 (0.022)

MU-3 0.96 (0.01) 742 562.1–1056.8 0.05 (0.005)

MU-4 0.96 (0.01) 351 192.4–1403.6 0.03 (0.011)

MU-5 0.97 (0.01) 710 310–∞ 0.02 (0.008)

MU-6 0.96 (0.01) 39 27.4–57.8 0.16 (0.021)

MU-7 0.95 (0.01) 90 76.7–107.7 0.05 (0.009)

MU-8 0.94 (0.02) 20 17–23.3 0.17 (0.015)

MU-9 0.91 (0.03) 10 2.9–35.6 0.55 (0.031)
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2005). Despite this, freshwaters encompass c. 6% of all

described biodiversity (Dudgeon et al. 2005), support

riparian zones, adjacent terrestrial reaches, upstream

dendritic networks, larger, more expansive downstream

reaches (i.e. an extensive ‘riverscape’; Fausch et al. 2002)

and also represent a contemporary focus for global sus-

tainability (i.e. UN ‘Water for Life’ Decade, 2005–2015;

http://www.un.org/waterforlifedecade/background.

shtml). Similarly, a second focus for global sustainabil-

ity are the global deserts and their accompanying

drought (i.e. UN ‘Decade for Deserts and Desertifica-

tion’, 2010–2020; http://unddd.unccd.int/). Both are

uniquely juxtaposed within south-western North Amer-

ica (deBuys 2011), a region with relentlessly persistent

drought (Ross 2011) and unprecedented anthropogenic

water use (Romm 2011). Yet the cumulative impacts of

these drivers on native fish biodiversity remain surpris-

ingly obscure, a possible result of traditional assay

methods coupled with limited baseline data. Here, we

tested the predictive power of a conservation tool

(SHM) to manage endemic fish biodiversity within a

large freshwater desert system by juxtaposing stream

hierarchy against historical and contemporary genetic

diversities in a surrogate endemic (the BHS).

Mitochondrial DNA diversity within and among
basins and the delineation of ESUs

Our first step in prioritizing basin-level conservation

efforts was to establish historical relationships and con-

nectivities among drainages. First, we evaluated

mtDNA sequence divergences within and among spe-

cies of catostomids (Table 2). Our analyses revealed

clear distinction between Catostomus (sensu stricto) and

the subgenus Pantosteus, but relationships within the

latter were surprising. Within-species divergences were

often larger than those among-species, suggesting the

potential for unrecognized biodiversity. While BHS

was clearly distinct from Rio Grande Sucker, it was

quite similar to both Desert and Mountain suckers.

The latter is difficult to distinguish phenotypically

from BHS, particularly as juveniles, and the two spe-

cies readily hybridize (Smith 1966). Low divergence

could reflect misidentification, hybridization or incom-

plete mtDNA lineage sorting. Additionally, Desert

Sucker and BHS are ecological equivalent sister species

in the lower and upper Colorado River basins, respec-

tively.

Intraspecific lineages with separate evolutionary tra-

jectories are often designated as ESUs, a distinction

particularly important for declining species or those

shrinking in distribution. ESUs were originally defined

as being reciprocally monophyletic with regard to

mtDNA and with significant divergence at nuclear loci

(Moritz 1994). This definition (as followed herein) is

objective and unambiguous, whereas others that

invoke the necessity of ‘adaptive variation’ are deemed

less so (Holycross & Douglas 2007). We identified

three ESUs within BHS (Fig. 4), based on mtDNA

clades (Fig. 2), microsatellite analysis (Fig. 3) and the

SHM. Our take-home message (also amplified with

MUs below) is that molecular divergences among

endemic fish populations often juxtapose quite well

with drainage histories and with their concomitant

stream hierarchies.

In this sense, it was reassuring to identify two basins

(Colorado River and Bonneville/Snake River) as ESUs,

particularly given the availability of ample hydrological

evidence (Minckley et al. 1986). On the other hand, rec-

ognition of the upper LCR as a distinct ESU seemed

curious in a contemporary sense as this drainage is a

free-flowing tributary of the mainstem Colorado River.

However, it was completely blocked by volcanism at

various times in the past, with the most recent (at

20 kya) forming a spectacular 56-m cataract termed

‘Grand Falls’. Other blockages occurred earlier (2.4 and

0.5 mya) and farther downriver (30 and 80 km) but

have subsequently eroded (Duffield et al. 2006).

Population structure within and among basins and the
delineation of recent diversity

Movement patterns and gene flow are largely unknown

for south-western native fishes, and BHS is no excep-

tion, with ecological studies focusing instead on com-

munity responses to anthropogenic disturbance (Propst

& Gido 2004). However, estimates of gene flow and

population connectivity, as derived from neutral molec-

ular markers, provide excellent data on movement pat-

terns (Douglas & Douglas 2010) and were used herein

to delineate 9 MUs. Two of these corresponded to

ESUs: the Bonneville Basin ESU-1 (MU-1) and upper

LCR ESU-3 (MU-8), respectively. The seven remaining

MUs represent distinct gene pools within the Colorado

River basin. The presence of low (<9.7%) migration

rates (Palsbøll et al. 2006) supports the validity of these

MU designations and provides an hierarchical popula-

tion structure from which to develop a basin-wide

adaptive management programme.

The processes that shaped biodiversity must be

understood before long-term conservation goals can be

implemented and managed. While direct causation can-

not be determined for evolutionary events, correlation

can be informative. For example, two MUs within the

Colorado River basin associate well with geomorphol-

ogy. One, the Grand Canyon (MU-7), is a World Heri-

tage Area and one of the largest geomorphic features of

the globe. Its evolution is controversial, particularly
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with regard to the Colorado River, which only became

a unified (subcontinental) drainage system c. 5 mya

(Wernicke 2011). It was subsequently dammed above

Grand Canyon in 1962 (Douglas & Marsh 1996, 1998;

Fig. 1). Canyon de Chelly (MU-6) represents a second

canyon-defined MU, but within a National Monument

entirely on Navajo Nation Tribal Trust Land. Its waters

run west through steep-walled canyons from the

Chuska Mountains (Arizona–New Mexico) to the San

Juan River, then west to the Colorado River (Fig. 1).

Both Grand Canyon and Canyon de Chelly are topo-

graphically distinct, and their resident BHS reflect low

gene flow and concomitant genetic divergences.

Two additional MUs were defined as tributary popu-

lations of the Colorado River (Fig. 4), with hydrological

processes again offering a plausible explanation for

their distinctiveness. Headwaters of the Dirty Devil

(MU-5) and San Rafael rivers (MU-4) are west of the

Colorado River upstream of Grand Canyon (Fig. 3),

with their isolation a result of steepening gradients as

their confluences retained a connection to a rapidly

incising mainstem (Cook et al. 2009). The hydrog-

raphical isolation of these tributaries is reaffirmed by

extensive morphological variation in resident BHS

(Smith 1966) and, when coupled with their tolerance for

lower temperatures and higher gradients compared to

other Colorado River fishes, allows for persistence in

higher-elevation streams.

Population bottlenecks, clines of admixture and
dispersal from refugia

Our primary focus was to quantify intraspecific genetic

variation as a means of describing BHS population

structure and identifying hierarchical regions in the

Colorado River and adjacent basins based on molecular

divergence. However, (as before) historical population

demography should be considered before MUs can be

correctly adjudicated.

Intraspecific diversity has been recognized in BHS,

with Catostomus discobolus yarrowi identified as a sub-

species in the Zuni River (C35). Smith (1966) originally

suggested C. d. yarrowi was a hybrid between Catosto-

mus discobolus discobolus and Rio Grande Sucker

whereas Crabtree & Buth (1987) argued for nonhybrid

distinctiveness. With regard to mtDNA, C. d. yarrowi is

indistinguishable from ESU-2 and does not share haplo-

types with Rio Grande Sucker. In fact, it is as divergent

from the latter as are other BHS (Table 2). Microsatellite

analysis identified this population as a distinct gene

pool (MU-9), but our results are based on a single pop-

ulation, and we thus consider them tentative. Further-

more, low genetic diversity (Table 1), a small Ne, an

elevated FIS (Table 3) and a likely bottleneck within the

last 0.5 � 4Ne generations suggest a founder event with

subsequent genetic drift. Subspecific designations, par-

ticularly when used as biodiversity surrogates, can

often dilute management efforts (Holycross & Douglas

2007), and C. d. yarrowi may fall within this category.

Our results also indicate considerable admixture

within the Green and upper Colorado rivers. The north-

ernmost Colorado River Basin population (C1, Fig. 1)

still reflects connectivity with downstream populations

despite a truncation of gene flow resulting from the

1964 construction of Flaming Gorge Dam (Fig. 1). Indi-

vidual BHS can live 20+ years, yielding generations that

overlap and thus potentially sustaining a semblance of

genetic continuity. Lipp�e et al. (2006) found similar

results when investigating a highly endangered eastern

North American catostomid (i.e. Moxostoma hubbsi). In

this sense, long generation time might be a life history

strategy in endemic western North American fishes that

promotes environmental resilience while minimizing

genetic divergences.

The Colorado River Basin ESU also displayed a signa-

ture of historical population expansion, a pattern

similarly reported in Flannelmouth Sucker (a big river

endemic broadly sympatric with C. discobolus). These

results were attributed to a massive early Holocene

drought that forced upper basin mainstem fishes into

lower-basin refugia (Douglas et al. 2003). When the

climate stabilized and the upper basin again became

fluvial, Flannelmouth Sucker recolonized upriver but

with a genetic signature reflecting founder events and

an expansion from Grand Canyon. Given their procliv-

ity for colder water and faster current, upper Colorado

River Basin BHS may have been one of few endemics

to survive such an event within multiple, high-elevation

refugia. Identification of distinct BHS gene pools (MUs)

within the Colorado River ESU is congruent with this

hypothesis.

Stream hierarchy, biodiversity conservation and
implications for management

The management of large watersheds is difficult in that

physical size often overwhelms realistic goals, particu-

larly so with the Colorado River Basin, the core

watershed and most heavily managed river in south-

western North America (i.e. 640 000 km2, seven US and

two M�exican states; Kammerer 2005). It drains an arid

and resource-poor region (Sabo et al. 2010b) yet sup-

ports urban centres with the greatest per capita water

consumption (McCabe et al. 2010) and most rapid popu-

lation growth in North America (Ross 2011; Wu et al.

2011), hence its recognition as an exceptional but criti-

cally endangered large river (Beaumont et al. 2011).

Numerous state/federal management agencies monitor
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its biodiversity to determine whether legal, regulatory

and policy objectives have been achieved and, to do so,

rely upon distributional and spatial data from catch/

release efforts. However, the fine-grained watershed-

scale perspective needed for adaptive management

should instead employ as a monitoring emphasis the

application of molecular genetic data (Douglas &

Douglas 2010).

In this study, the SHM was used to predict popula-

tion structure of endemic fishes in the Colorado River

Basin, with visualization supplied by STREAMTREE (Fig. 5)

under the supposition that BHS is an adequate surro-

gate species for the Colorado River ecosystem. Numer-

ous opinions have emerged regarding surrogacy

(Rodrigues & Brooks 2007; Caro 2010), yet questions

remain. For example, surrogacy has a broad interpreta-

tion, to include ‘environmental’ (i.e. use of contextual

data such as species assemblages or abiotic information

to represent a subset of target species) vs. ‘species’ [i.e.

extent to which a surrogate (or a set) represents a

target]. We support our position by noting BHS is a

conservation target in its own right, with a tacit

assumption that efforts to conserve it will also effec-

tively protect other endemics. In addition, practical

conservation planning based on the population struc-

ture of well-known taxonomic groups is valid under

the assumption that the evolutionary histories of less

well-known taxa are captured as well. The most effec-

tive (i.e. least expensive) way to do so is by maintaining

native species in habitats with the greatest probability

of success. This juxtaposes with more controversial

opinions regarding conservation triage (i.e. retention of

pattern or process, as balanced by need vs. cost effec-

tiveness; Arponen 2012).

The necessity of quantifying anthropogenic impacts

(e.g. fragmentation, dewatering, impoundment and pol-

lution) as a baseline for contemporary climate change in

south-western North America is indeed imperative.

Climate-mediated and region-specific projections are

controversial (Jones 2011), ranging from dire (Balling &

Goodrich 2010) to benign (Gao et al. 2011). Given this, a

testable model to juxtapose genetic diversity of native

fishes against stream fragmentation will provide the

quantitative baseline against which potential climate-

mediated impacts of dewatering can be gauged (Mac-

Donald 2010). This relationship can be broadened,

extended and translated to regions less well monitored,

with the caveat that precipitation projections will

remain uncertain and that regions and models are key

factors (Kerr 2011b). Our results also argue for the pro-

tection of specific drainages or basins, particularly those

that contain ESUs and MUs for one or more key spe-

cies. In our study, three ESUs and nine MUs within

BHS provide a formidable blueprint for biodiversity

conservation in the Colorado River and Bonneville

basins.

Our results also support an argument that rapid habi-

tat depletion (Holycross & Douglas 2007), reduced gene

flow (Douglas et al. 2003) and presence of MUs (herein)

retard the capacity of endemic biotas to withstand glo-

bal change, particularly under the assumption that

rapid change will overwhelm the capacity of most pop-

ulations and species to adapt (Schloss et al. 2012). Given

this, how should biodiversity be managed in the Colo-

rado River ecosystem? Clearly, we must retain both pat-

tern (significant divergences among/within basins) and

process (MUs within basins), particularly because the

species within which these are found represent the

most endemic of North American freshwater fishes

(Fig. 2c in Abell et al. 2008). These aspects can only be

achieved through close collaboration with federal, regio-

nal and state water administrations and by applying a

quantifiable molecular yardstick against which native

fishes and their ecologies can be gauged. An inability to

apply these metrics will diminish historical legacy

(i.e. species and ESUs) as well as contemporary adaptation

(i.e. MUs). Conflicts will emerge as basin-level biodiver-

sity is prioritized against an anthropogenic future in

which climate-induced dewatering juxtaposes with non-

sustainable water use in a Cadillac Desert (Sabo et al.

2010b).
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Appendix I

Summary of 16 microsatellite DNA loci used to geno-

type 1092 Bluehead Sucker (Catostomus discobolus).

Listed are Locus = name; Motif = Di (two nucleotides),

Tetra (four nucleotides); A = number of alleles;

Range = allele size in base pairs (bp); HE = expected

heterozygosity across all populations. Loci are described

in Tranah et al. (2001).

Locus Motif A Range (bp) HE

Dlu27 Di 25 187–261 0.66

Dlu209 Di 41 132–248 0.67

Dlu229 Di 26 120–180 0.56

Dlu230 Di 28 100–176 0.60

Appendix 1 Continued

Locus Motif A Range (bp) HE

Dlu233 Di 17 117–191 0.69

Dlu245 Di 10 185–229 0.51

Dlu257 Di 57 147–515 0.81

Dlu276 Di 27 109–175 0.68

Dlu409 Tetra 30 144–258 0.89

Dlu434 Tetra 28 178–310 0.73

Dlu456 Tetra 40 142–310 0.87

Dlu482 Tetra 28 140–280 0.83

Dlu4153 Tetra 42 167–335 0.90

Dlu4184 Tetra 31 154–282 0.86

Dlu4235 Tetra 53 171–463 0.88

Dlu4300 Tetra 39 186–338 0.91
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