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Abstract
The representation of the diurnal 2-m temperature cycle is challenging because of the many processes
involved, particularly land-atmosphere interactions. This study examines the ability of the regional climate
model COSMO-CLM (version 4.8) to capture the statistics of daily maximum and minimum 2-m
temperatures (Tmin/Tmax) over Africa. The simulations are carried out at two different horizontal grid-
spacings (0.22� and 0.44�), and are driven by ECMWF ERA-Interim reanalyses as near-perfect lateral
boundary conditions. As evaluation reference, a high-resolution gridded dataset of daily maximum and
minimum temperatures (Tmin/Tmax) for Africa (covering the period 2008–2010) is created using the
regression-kriging-regression-kriging (RKRK) algorithm. RKRK applies, among other predictors, the
remotely sensed predictors land surface temperature and cloud cover to compensate for the missing
information about the temperature pattern due to the low station density over Africa. This dataset allows the
evaluation of temperature characteristics like the frequencies of Tmin/Tmax, the diurnal temperature range,
and the 90th percentile of Tmax.

Although the large-scale patterns of temperature are reproduced well, COSMO-CLM shows significant
under- and overestimation of temperature at regional scales. The hemispheric summers are generally too
warm and the day-to-day temperature variability is overestimated over northern and southern extra-tropical
Africa. The average diurnal temperature range is underestimated by about 2�C across arid areas, yet
overestimated by around 2�C over the African tropics. An evaluation based on frequency distributions shows
good model performance for simulated Tmin (the simulated frequency distributions capture more than 80%
of the observed ones), but less well performance for Tmax (capture below 70%). Further, over wide parts of
Africa a too large fraction of daily Tmax values exceeds the observed 90th percentile of Tmax, particularly
across the African tropics. Thus, the representation of processes controlling Tmax including cloud-solar
interaction, radiation processes, and ground heat fluxes should be improved by further model developments.
The higher-resolution simulation (0.22�) is on average about 0.5�C warmer with a more pronounced over-
estimation of the higher percentiles of Tmax, and yields no clear benefit over the lower-resolution simulation.

Keywords: Maximum temperature, minimum temperature, daily variability, Regional Climate Model,
African climate, frequency disribution.

1 Introduction

There are numerous RCM evaluation studies that have
focused on mid-latitudes, but only a few studies have
investigated the entire African continent (e.g. ANYAH

and SEMAZZI, 2007; DRUYAN et al., 2008; SYLLA
et al., 2010; NIKULIN et al., 2012). NIKULIN et al.
(2012) evaluated ten European Centre for Medium-
Range Weather Forecasts (ECMWF) (ERA-Interim; SIM-

MONS et al., 2006; UPPALA et al., 2008; BERRISFORD

et al., 2009) driven RCMs and their ensemble average
for simulating precipitation over Africa at a spatial reso-
lution of 0.44�. They concluded that the multi-model

average outperformed individual models, and should
therefore be preferred. Several studies have investigated
African climate on a regional basis, focusing on the wes-
tern African monsoon flow (e.g. ABIODUN et al., 2008;
AFIESIMAMA et al., 2006; KOTHE et al., 2013;
STEINER et al., 2009), on the variability of eastern Afri-
can rainfall (e.g. ANYAH and SEMAZZI, 2007; DAVIS

et al., 2009; SEGELE et al., 2009), and on the climate var-
iability over South Africa (e.g. KGATUKE et al., 2008).
SYLLA et al. (2010) showed that RegCM3 is able to real-
istically simulate the seasonal mean of zonal wind profile,
temperature, precipitation, and associated low-level circu-
lations. However, they found an underestimation of tem-
perature over complex terrain of Guinea and an
overestimation over the African tropics, which was
responsible for a too strong West African monsoon flow
and an increased intensity of the African Jet core
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intensity. Nevertheless, they concluded that the model
performance over the entire continent was of sufficient
quality to be applied for climate change studies.

KOTHE et al. (2013) suggested that the RCM
COSMO-CLM (CCLM; http://www.clm-community.eu,
e.g. ROCKEL et al., 2008) struggles to correctly simulate
the location and the inter-annual variability of the West
African monsoon (WAM). They found a strong warm
bias over the whole Sahara region of up to 6�C in com-
parison with Climate Research Unit (CRU) data (MITCH-

ELL and JONES, 2005). They conclude that the shift of the
WAM is mainly driven by the warm bias in the Sahara,
which triggers an intensification of the Sahara heat low
and an increased temperature gradient between the ocean
and land surface. The absence of realistically simulated
variability of rainfall and the strong warm bias over the
Sahel introduce doubt on the reliability of climate predic-
tions for that region.

In this study we analysed simulations by the newer
CCLM version 4.8 for the entire African continent, car-
ried out as part of the Coordinated Regional climate
Downscaling Experiment-CORDEX (GIORGI et al.,
2009; JONES et al., 2011). The simulations were per-
formed at two different horizontal resolutions (0.22�:
CLM-0.22 and 0.44�: CLM-0.44), and cover the time
period 1989–2010. The simulations were driven at the
lateral boundaries and at sea-surface with ERA-Interim
reanalyses data following the so-called ‘‘perfect-bound-
ary’’ approach. This approach allows isolating deficien-
cies in the RCM without the complexity of biases
inherited from a forcing global climate model.

Primarily, the ability of the model to reproduce annual
means and annual cycles of Tmin and Tmax as well as
the diurnal temperature range were evaluated to detect
major model biases. The diurnal temperature range is
of particular interest since it is a useful measure of the
counteracting effects of longwave and shortwave forcings
in a climate model (MAKOWSKI et al., 2008) that are
mainly controlled by water vapour, soil moisture and
cloudiness (STECHIKOV and ROBOCK, 1995; DAI et al.,
1999; STONE and WEAVER 2003). However, since aver-
aging can hide model deficiencies or systematic errors
inherent in daily data (e.g. KHARIN and ZWIERS, 2000),
the mean diurnal temperature range (as provided in the
CRU dataset) alone is insufficient for an evaluation of
the entire data distribution. Even if a climate model
reproduces well the observed mean it may not capture
well other attributes (e.g. SCHAEFFER et al., 2005). Yet
changes in the tails of the distributions are more likely
to affect humans and agriculture than changes in the
mean. There are indications that extremes became more
frequent and intensified their amplitudes (e.g. increasing
number of days exceeding the 90th percentile threshold)
in recent years (BÖHM et al., 2001; KUNKEL et al.,
2008). That is why extremes are more important in cli-
mate impact research. There are critical temperature val-
ues above or below which human life and agriculture
may suffer damages. Very low temperatures affect several

aspects of agriculture, such as survival, photosynthesis,
growth and yield of crops. Very high temperatures may
severely hinder plant growth through dehydration, dis-
ruption of photosynthesis and respiration, and also may
kill seedlings. Therefore, the question arises: what is
CCLM’s performance simulating the distributions of
daily Tmin and Tmax.

High-quality observational data at a suitable spatio-
temporal resolution are required for the model evalua-
tions. To the authors knowledge no such datasets are
available for the entire African continent. Therefore, an
observational reference (hereafter referred to as RKRK
dataset) was generated using the regression-kriging-
regression-kriging (RKRK) gridding algorithm, described
in KRAEHENMANN and AHRENS (2013). The method
applies the remotely sensed predictors land surface tem-
perature and cloud cover and has been shown to perform
strongly in data-sparse regions. The gridding algorithm
involves a two-step interpolation process involving both
regression and kriging. Due to limitations in satellite data
availability the evaluations were restricted to the time
period of 2008–2010.

A description of the CCLM model is given in section
2. The study area, the observational reference datasets,
the ERA-Interim reanalysis and the statistical analysis
methods used for the evaluation process are described
in section 3. Section 4 presents the evaluation of the
RKRK dataset and the analysis of the model performance
for Africa, section 5 provides a discussion of the results
and section 6 presents the main conclusions of this study.

2 Model and observational data

2.1 COSMO-CLM model description
and setup

The three-dimensional non-hydrostatic regional climate
model COSMO-CLM (CCLM) is the climate version
of the operational weather forecast model COSMO (Con-
sortium for Small-scale Modelling; http://cosmo-mode-
l.org; STEPPELER et al., 2003; BALDAUF et al., 2011)
of the German and other Meteorological Services. It
prognostically solves the compressible equations for
wind, temperature, pressure, specific humidity, cloud
water, and cloud ice content as well as rain, snow, and
optionally graupel. The CCLM was first described by
BÖHM et al. (2006). A variety of CCLM applications
are gathered in a special issue of Meteorologische Zeit-
schrift (ROCKEL et al., 2008). Earlier versions of CCLM
have been successfully applied to Africa (e.g. KOTHE

and AHRENS, 2010; PAETH et al., 2011, KOTHE et al.
(2013).

The equations are solved on an Arakawa-C grid
(ARAKAWA and LAMB, 1977) defined on a rotated geo-
graphical coordinate system. In the vertical a hybrid coor-
dinate is used. Close to the surface the numerical layers
follow the terrain, and near the top of the model domain
they are flat. The model physics contains a cloud scheme
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(DOMS et al., 2011) with prognostic precipitation and
four hydrometeor species (cloud droplets, raindrops,
cloud ice, and snowflakes), a mass flux scheme for con-
vection (TIEDTKE, 1989), and a delta-two-stream radia-
tion scheme as described by RITTER and GELEYN

(1992) that is invoked every hour. In the standard CCLM
version, land surface processes are parameterized through
the soil-surface module TERRA_ML (GRASSELT et al.,
2008), constituting the lower boundary conditions to
the atmospheric model by the provision of energy and
water fluxes at the surface. Detailed descriptions of the
dynamics, numerical methods and physical parameteriza-
tions in the model can be found in the documentations of
the model (e.g. DOMS, 2011; DOMS et al, 2011 http://
www.clm-community.eu).

The here evaluated Coordinated Regional climate
Downscaling Experiment (CORDEX; GIORGI et al.,
2009) Africa simulations were performed using CCLM
version 4.8, which was recently evaluated for Europe
(KEULER et al., 2012). The model configuration has been
chosen based on a series of sensitivity studies, described
briefly, along with the physical packages used, in PANITZ
et al. (2012, in preparation). The model domain is iden-
tical to that demanded by CORDEX with an additional
sponge zone of 10 grid points at each side, in which
boundary data are impressed on the model. For the first
phase of CORDEX a horizontal grid resolution of
0.44� is demanded. The horizontal model domain has a
size of 214 grid-points from West to East and 221 grid-
points from South to North, including the sponge zone.
Additional simulations done with higher grid resolution
of 0.22� use the same domain, so the number of grid
points increases to 427 x 441. The vertical coordinate
with 35 levels is identical for both cases, with the upper
most level at 30 km above Sea Level. The settings of all
model parameters are identical for both simulations, with
the exception of the number of grid points and the numer-
ical time step. A Runge-Kutta integration scheme has
been used with time steps of 240 s for the low-resolution
simulation and 120 s for the high-resolution simulation.
Both simulations were driven by the European Centre
for Medium-Range Weather Forecasts (ECMWF) ERA-
Interim reanalysis (SIMMONS et al., 2006; UPPALA

et al., 2008; DEE et al., 2011). Transient simulations were
carried out for the period 1989–2010.

2.2 ERA-Interim

ERA-Interim is the latest European Centre for Medium-
Range Weather Forecasts (ECMWF) reanalysis product.
It improves previous reanalysis data such as ERA-40
(UPPALA et al., 2005) in horizontal resolution and in
using an updated atmospheric model and updated assim-
ilation system. The reanalysis is carried out using a 4D-
variational analysis on a spectral grid with triangular trun-
cation of 22 waves (T255, approximately 80 km), a
hybrid vertical coordinate system consisting of 60
vertical layers, and a 3 hourly temporal resolution.

The assimilated observational data originate from diverse
sources, including weather stations, radio soundings, ship
measurements, and satellite observations. ERA-Interim
spans the time period from January 1979 onwards, and
continues to be extended forward in near-real time.

Reanalysis products such as ERA-Interim are known
to exhibit biases over the African continent (TRENBERTH
and CARON, 2001; DIONGUE et al., 2002; TADROSS et al.,
2006), which are transmitted to the RCMs (WANG et al.,
2004; SYLLA et al., 2010). Therefore, in this study the
ERA-Interim reanalysis (UPPALA et al., 2008; SIMMONS

et al., 2006; BERRISFORD et al., 2009; DEE et al., 2011)
was not only used as the lateral boundary driving fields
of the CCLM simulation, but was also included in the
evaluation. For evaluation purposes the ERA-Interim
reanalysis was interpolated to the grids of CLM-0.22
and CLM-0.44 using inverse distance weighting and a
height correction with a constant lapse rate of 0.65�C/
100m.

2.3 RKRK dataset

2.3.1 Daily gridded Tmin/Tmax

The only available set of global gridded daily tempera-
ture observations is the Hadley Global Historical Climate
Network Dataset (HadGHCND; available via http://
www.metoffice.gov.uk/hadobs), which spans from 1950
to the present, but has very poor spatial coverage (only
partial coverage of Africa) and poor spatial resolution
(2.5� latitude x 3.75� longitude). To provide a compre-
hensive observational reference of daily Tmin and Tmax
for the evaluation of the CCLM simulated temperature
fields, we created a gridded observational dataset (hereaf-
ter referred to as RKRK dataset) covering the period
2008–2010 for two spatial resolutions to match the grids
used in CLM-0.22 and CLM-0.44. We therefore
adopted the RKRK gridding method described by
KRAEHENMANN and AHRENS (2013). They compared a
number of gridding methods for daily Tmin and Tmax,
and concluded that RKRK, which makes use of satel-
lite-derived predictors, performed best in data sparse
areas (here, RKRK was applied to 338 synoptic weather
stations across the African continent and surrounding
areas). We only provide a short summary here including
a discussion of the study area, and the station and predic-
tors data used for the gridding.

2.3.2 Study area and station data

Africa is unique in the sense that it is the only continent
that almost symmetrically spans both sides of the equator,
and therefore exhibits a highly variable climate with both
northern and southern hemispheric climatic influences
(ODADA and OLAGO, 2005). Africa stretches about
8000 km in length from Tunisia in the north to the south-
ern tip of South Africa, and encompasses more than 20%
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of the global land area. The topography is characterized
by complex terrains in the southern (e.g. Table mountains,
Lesotho) and eastern regions (e.g. Tanzania), with moun-
tains higher than 1500 meters, and more localized high-
lands in the African tropics (e.g. Cameroon Mountains,
Jos Plateau in Nigeria, and the Guinea Highlands).
Owing to its location, vast size, and variable terrain fea-
tures, Africa comprises eight climate zones according to
the Köppen climate classification (SANDERSON, 1999).
Northern Africa is strongly influenced by atmospheric
subsidence due to the subtropical high-pressure system
and therefore is primarily desert or arid, while the central
and southern areas mainly consist of savannah and
rainforests.

For the gridding we used synoptic weather stations
(SYNOP) across the African continent (about 230 sta-
tions) and surrounding areas (about 100 stations).
Fig. 1 illustrates the poor station coverage across Africa,
with the location of these stations being unevenly distrib-
uted. The station coverage is most dense along the coast-
lines of the Mediterranean Sea, Western Africa, and
South Africa and lowest in tropical areas. SYNOP data
are available in near real time, but do not undergo a high
level quality control. To remove erroneous values we
excluded daily anomalies of Tmin and Tmax that devi-
ated by more than five standard deviations from the spa-
tially averaged daily anomalies (for each climate region
separately).

Evaluations of the CCLM simulations were carried
out with respect to 10� x 10� regions (see Fig. 1) and
to African climate regions (shown in Fig. 2f). Because
the RKRK dataset is of low quality in regions with very

low station coverage, the CCLM simulations were only
evaluated in 10� regions containing at least two observ-
ing stations (e.g. blacked regions in Fig. 1 not evaluated).
The distance to the next observing station is therefore
smaller than about 1000 km, which is approximately
the variogram range (or de-correlation length) used for
the gridding process. For the analysis of simulated fre-
quency distributions of daily Tmin/Tmax we selected five
10� regions in different climate regions where the station
number is higher than 10 (squares in red, see Fig. 1).
Note that only land points were used for the evaluations.

2.3.3 Predictors data

The gridding process includes two linear regression steps
in which the target variables (firstly the monthly averaged
daily Tmin and Tmax, secondly the daily anomalies of
Tmin/Tmax) were fitted against multiple predictors. We
used elevation, continentality index (GORCZYNSKI,
1920), climatological zonal mean temperature, and land
surface temperature for the regression of monthly aver-
aged daily Tmin and Tmax values, and cloud cover for
the regression of daily Tmin/Tmax anomalies (see
Fig. 2).

Mean monthly CRU TS3.1 data (CRU: Climatic
Research Unit; http://www.cru.uea.ac.uk; MITCHELL

and JONES, 2005) for the period 1961–1990 have been
used to derive the continentality index and the
climatological zonal mean temperature (see also
KRAEHENMANN et al., 2011). Land surface temperature
and cloud cover were retrieved using measurements of
the Spinning Enhanced Visible and Infrared Imager
(SEVIRI) radiometer mounted on the Meteosat Second
Generation (MSG) platform. MSG is a geostationary
satellite that allows high-time-resolution retrievals of land
surface temperature (every 15 minutes) and cloud cover
(every hour). The spatial resolution is 3 km at nadir
(e.g. the point of the earth directly below the satellite)
for both datasets. For cloud cover (obtained from Analy-
sis Satellite Applications Facility Nowcasting and Very
Short Range Forecasting (SAF NWC); available via
http://www.nwcsaf.org/HD/MainNS.jsp) we determined
averages for two time intervals, one in the morning
(0:00 – 6:00 UTC), and one in the afternoon (10:00 –
16:00 UTC). Land surface temperature was obtained
from Land Surface Analysis (LSA SAF; http://land-
saf.meteo.pt/). Daily maximum and minimum land sur-
face temperature was derived using the same time
intervals as for cloud cover. For the gridding process
we used monthly averaged daily maximum and mini-
mum land surface temperature because daily values con-
tain data voids where clouds prevent the retrieval of land
surface temperature. For consistency we adopted the dig-
ital elevation model (DEM) data available from the LSA
SAF homepage (to which land surface temperature data
were geo-referenced). The original data provider of the
DEM was the United States Geological Survey (USGS;

Figure 1: Locations of observing stations as used in the gridded
observations (blue asterisks) and in CRU (black circles). The
average number of African stations available per day in January
2009 is given in brackets. The rectangles represent the 10� regions
over Africa. Regions containing fewer than two observing stations
are blacked. Squares in red show those regions selected for the
analysis of frequency distributions.
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data can be obtained via http://eros.usgs.gov/#/Find_
Data/Products_and_Data_Available/gtopo30_info).

2.3.4 Gridding method

The gridding of daily 2-m maximum and minimum
temperatures (Tmax/Tmin) was performed using
the RKRK gridding algorithm, which was described
in KRAEHENMANN and AHRENS (2013). While
KRAEHENMANN and AHRENS (2013) used point kriging,
the present study applied the spatially more representa-
tive block kriging (e.g. DEUTSCH and JOURNEL, 1998).
Block kriging allows for estimation of grid values that
are representative for areal values and not for point values
(as is the case for standard kriging methods), which is
preferable if the dataset is to be used for climate model
evaluation.

Here the RKRKmethod is used for the interpolation of
daily anomalies: first, blockRK is applied tomonthly aver-
aged daily Tmin and Tmax values to determine the under-
lying spatial structure of the data; second, block RK is
applied to daily anomalies with regard to the monthly

mean.Multiple linear regression is used to estimate the spa-
tial variation explained by the predictors, and kriging to
account for the non-explainable variation. To ensure the
data were normally distributed, a normal score transforma-
tion (DEUTSCH and JOURNEL, 1998) was applied to the
regression residuals (of themonthly and daily data, respec-
tively) prior to each kriging step.

Both regression and kriging involve solving a set of
linear equations to minimize the mean squared error of
the residuals from the interpolating surface. This least
squares problem assumes that the data being interpolated
are homogeneous in space. However, this is not the case
for the stations across such a large and complex region as
Africa with its many climate zones. We addressed this
problem by conducting the gridding steps in four over-
lapping subregions (Fig. 2f), which were determined by
merging Köppen-Geiger climate zones (SANDERSON,
1999) so that the number of available stations per region
is large for robust regression. The subregions are: Medi-
terranean (ME), Northern Africa (NA), Tropical Africa
(TA), and Southern Africa (SA). Finally, the subregional
maps were merged by linearly weighting across an

Figure 2: Values of the predictors (a) elevation [m], (b) continentality index [1], (c) climatological zonal monthly mean temperature (here
for January), [�C], (d) land surface temperature, (here January 2009) [�C], and (e) cloud cover [1] for 1 January 2009. Locations of
observing stations for 1 January 2009 and the climate regions ME, NA, TA and SA are shown in (f).
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overlapping area of 1000 km, to yield the daily prediction
maps for Tmin and Tmax.

2.4 CRU dataset

Since the satellite data based RKRK dataset spans only a
short time period (2008–2010), the Climate Research
Unit (CRU, University of East Anglia, UK) monthly
mean global gridded dataset version TS 3.1 was used
as a further reference for the evaluation of monthly mean
Tmin/Tmax for the time period 1990–2009. A reference
for CRU TS 3.1 is in preparation (data available via
http://www.cru.uea.ac.uk). However, the production of
the dataset is very similar to that of TS 2.1 (MITCHELL

and JONES, 2005). The dataset consists of nine climate
variables, including monthly averages of daily maximum
and minimum temperatures at a 0.5� x 0.5� grid resolu-
tion, covers the global land surface (excluding Antarc-
tica) and spans the period 1901–2009.

The gridding of this dataset was based upon more
than 4000 weather stations around the world (about
230 stations over the African continent, see Fig. 1).
Monthly anomalies relative to the 1961–1990 normal
were used for interpolation to make it less vulnerable
to fluctuations in station coverage (MITCHELL and JONES,
2005). The normals were interpolated using three-dimen-
sional thin-plate splines depending on latitude, longitude
and elevation (NEW et al., 1999). For the interpolation of
the anomalies angular distance weighting was applied
(NEW et al., 2000), using the eight nearest stations. The
station weights were determined using the correlation
decay distance (JONES et al., 1997), and the angular sep-
aration of the data points from the grid point. Angular
distance weighting does not account for elevation, how-
ever, NEW et al. (1999) argued that the spatial variation
of monthly temperature anomalies (to the climate nor-
mals) is mainly determined by large-scale circulation pat-
terns and relatively independent of elevation. The
monthly climate data were finally obtained by applying
the gridded anomalies to the mean monthly climatology
of 1961–1990. For the present analysis the CRU dataset
was interpolated onto the native grid of CLM-0.22 and
CLM-0.44 applying inverse distance weighting and a
height correction with a constant lapse rate of 0.65�C/
100m.

3 Statistical analysis methods

3.1 Statistics used to quantify the
interpolation performances of the
gridding algorithms

The evaluation statistics for the gridding algorithms were
determined using cross validation (WACKERNAGEL,
2003). As the goal was to re-estimate point observations
in the evaluation of the gridding method these
results were based on point interpolation, and not block

interpolation. Although for block kriging the semivario-
gram calculates the covariance between blocks instead
of points, a particular interpolation algorithm will be
superior regardless whether block or point kriging is
applied.

The root mean square error (RMSE) measures the
deviation from the observed value, and is based on
squared errors. A perfect score is indicated by a value
of 0. To illustrate the performance of the interpolation
method in an area (e.g. the climate regions) we used
the RMSEA. The RMSEA was calculated for each day
from the daily prediction errors in the area and then aver-
aged over the considered time period (e.g. 2008–2010). It
is defined by:

RMSEA ¼
1

nd

Xnd

d¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ns

Xns

s¼1
ys;d � os;d

� �2
r� �

;

s ¼ 1 � � � ns; d ¼ 1 � � � nd ð3:1Þ
where ys,d is the predicted value and os,d is the observed
value at station s on day d, nd is the number of days of
the considered time period, and ns is the number of the
observing stations in the target area.

The VARIA is defined as the ratio of the variance of
predictions rd

2(y) to the observed variance rd
2(o) of sta-

tion locations in the area for each day d, averaged over
the complete evaluation period:

VARIA ¼
1

nd

Xnd

d¼1

r2
d yð Þ

r2
d oð Þ

� �
; d ¼ 1 � � � nd ð3:2Þ

The VARIAwas used to evaluate the degree of smoothing
by the tested gridding algorithms over the target area. A
score value close to 1 indicates that a high percentage of
observed variability is retained.

3.2 Statistics used to evaluate the CCLM
simulations

The BIASi,j is the difference between two datasets aver-
aged over nd at location s:

BIASS ¼
1

nd

Xnd

d¼1
ys;d � os;d

� �
; d ¼ 1 � � � nd ð3:3Þ

The temporal standard deviation at location s is denoted
rs. Prior to calculating rs the datasets were de-trended
subtracting a mean annual cycle (derived from the period
2008–2010 and smoothed using an 11-day running
mean). An 11-day running mean was selected after com-
paring preliminary results using 5-day to 31-day means.

VARId is the ratio of simulated rs(y) and observed
rs(o) temporal standard deviations of daily Tmin/Tmax
at locations s:

VARId ¼
rs yð Þ
rs oð Þ ð3:4Þ
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A perfect agreement between observed and modelled rs
yields a score value of 1. Score values smaller than 1
indicate an underestimation of rs in the model, the
reverse applies for score values larger than 1.

The Taylor diagram (TAYLOR, 2001) was used to ana-
lyse the statistical relationship between the simulated
fields and the reference field. The statistics were derived
for daily anomalies from the mean annual cycles of the
fields (derived from the period 2008–2010 and smoothed
by an 11-day running mean). Note that time series of
region-wise (e.g. NA, TA and SA) averages of daily
Tmin/Tmax were analysed (e.g. yA and oA are the spatial
averages of the predictions and the observations,
respectively).

The Taylor diagram displays the standard deviations
of the evaluated (rA(y)) and the reference (rA(o)) time
series, the correlation coefficient RA and the centred
RMSE (CRMSEA). The CRMSEA is equivalent to the
RMSEA, apart from subtracting the mean value
from the predicted and observed values prior to its
calculation:

CRMSEA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nd

Xn

d¼1
yA;d � �yA

� �
� oA;d � �oAð Þ

� �2
s

;

d ¼ 1 � � � nd ð3:5Þ

where the overall mean of the time series is indicated by
an overbar. CRMSEA and rA(y) were normalized dividing
by rA(o) (i.e. CRMSEA

no = CRMSEA/rA(o), rA(y)
no =

rA(y)/rA(o), and rA(o)
no = 1, where rA(y)

no is the nor-
malized standard deviation of the evaluated time series,
CRMSEA

no is the normalized CRMSEA, and rA(o)
no is

the normalized reference standard deviation, which is by
definition 1). This allows to display statistics of different
time series on the same plot.

To measure the similarity between modelled and
observed frequency distributions of daily Tmin/Tmax
we adopted the skill score SFD proposed by PERKINS
et al. (2007). SFD measures the mutual area between
two frequency distributions by summing the minimum
value of the two frequency distributions of each binned
value, i.e.

SFD ¼
1

n

Xn

i¼1
min Zm; Zoð Þ ð3:6Þ

where n is the number of bins used in the frequency
distribution, and Zm and Zo are the respective frequen-
cies of a value in a given bin for the model and the
observational reference. A perfect agreement between
observed and modelled frequency distributions yields a
skill score of 1 and a poor agreement with negligible
overlap of the frequency distributions yields a score
close to zero.

For both the observations and the simulations
we define a percentile function qp of the frequency
distribution FD(x) of daily Tmin/Tmax (over the period

2008–2010), which returns a Tmin or Tmax value at
the boundary of a given percentile level p, by

qP ¼ min x e R : FD xð Þ � pf g; p e 0; 1ð Þ ð3:7Þ

where FD(x) is a right continuous and increasing function
of x that strictly increases from 0 to 1. The analysis is per-
formed in five 10� regions in different climate regions
with at least ten observing stations (see Fig. 1).

The average diurnal temperature range (ADTR) was
calculated from daily Tmin/Tmax, averaged over nd
(e.g. the number of days over the period 2008–2010) at
location s, i.e.:

ADTRS ¼
1

nd

Xnd

d¼1
Tmaxs;d � Tmins;dð Þ; d ¼ 1 � � � nd ð3:8Þ

4 Results

This section starts with an evaluation of the RKRK grid-
ding algorithm used to generate the RKRK dataset. Next,
we present the analysis of the ERA-Interim driven
CCLM simulations for Africa (CLM-0.22 and CLM-
0.44), first in terms of mean bias of Tmin/Tmax and
the diurnal temperature range, and then in terms of the
model’s ability to simulate frequency distributions and
the temporal variability of daily Tmin and Tmax values,
and the 90th percentile of Tmax. Since the accuracy of
RCM simulations depends to some extent on the quality
of the driving data, and in particular on how well the
driving data represent observed circulation patterns for
the region of interest (JACOB et al., 2007), we also eval-
uated the ERA-Interim reanalysis.

4.1 Evaluation of the RKRK algorithm

4.1.1 Regression analysis

We evaluated the performance of the selected predictor
set, (see section 3.1.2) using multiple linear regression
of monthly (daily) temperature by means of the RMSEA.
The RMSEA was calculated from residuals of the regres-
sion between the selected predictors and the synoptic
weather stations inside 10� regions and averaged for
the period 2008–2010 (the corresponding Fig. S1 is pro-
vided as supplementary online material1). For monthly
regression (using the predictors zonal mean temperature,
continentality index and land surface temperature) the
RMSEA values were smallest in western and southern
Africa (1 to 1.5�C). A marked annual RMSEA cycle
was found over northern Africa (amplitude of ~1.5�C),
with the highest values (~3�C) in summer. We attribute
this to the lower reliability of land surface temperature
observations for very hot surfaces - the saturation temper-
ature (around 330 K) of the channels used for the

1Available on the journals website at www.schweizerbart.de/journals/metz
after material.
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retrieval is frequently exceeded by Tmax in arid areas in
summer (PINHEIRO et al., 2004). RMSEA values were in
most cases similar for Tmin and Tmax, except in summer
over northern Africa (RMSEA values were ~1�C lower
for Tmin) for the abovementioned reasons.

For daily regression (cloud cover was used as predic-
tor for the regression of daily anomalies) both Tmin and
Tmax showed almost identical RMSEA values all over
Africa. The lowest RMSEA values (~ 2�C) occurred over
western Africa, where the station network is relatively
dense. Surprisingly, we found considerably higher
RMSEA values of about 3�C over northern Africa,
despite a relatively dense station network. This may be
related to terrain complexity and the proximity to the
Mediterranean Sea. Over most of Africa the RMSEA
was relatively constant throughout the year (amplitude
< 0.6�C). However, in the Northeast we found consider-
ably higher RMSEA values during winter (rising from
2�C to 3�C).

4.1.2 Cross validation of RKRK and
comparison with simpler algorithms

The performance of the RKRK algorithm was evaluated
using cross-validation (e.g. re-estimation of point-wise
Tmin/Tmax observations leaving out each synoptic
weather station once in turn) and compared to regression
kriging kriging (RKK, see also KRAEHENMANN et al.,
2011; KRAEHENMANN and AHRENS, 2013) and two sim-
pler interpolation methods, namely inverse distance
weighting (IDW) and ordinary kriging (OK) of daily
observations. The RKK algorithm involves two major
steps: regression kriging (RK) of monthly Tmin and
Tmax values (using elevation, continentality index, cli-
matological zonal mean temperature, and land surface
temperature as predictors for regression of monthly mean
data), followed by simple kriging of the daily anomaly.

Table 1 displays the results, where RMSEA and
VARIA are given as averages of daily scores. The scores
were determined separately for the climate regions NA,
TA and SA and then averaged. The hybrid gridding algo-
rithms RKK and RKRK clearly outperformed the simpler
algorithms in terms of both RMSEA and VARIA. The val-
ues of both score values were fairly constant over the
year and differed negligibly between Tmin and Tmax
(not shown). These findings are consistent with the

results of the regression analysis, which indicated no
annual cycle in the relationship between the predictors
and target variables on the continental scale. The statisti-
cal response of using cloud cover as predictor for daily
anomalies was small. However, RKRK yielded a slightly
lower prediction error (smaller RMSEA) and preserved a
higher proportion of observed variance (higher VARIA).

Despite being more complex, RKRK is more appro-
priate given the size and climatological diversity of the
region, as well as the generally low station density. The
use of cloud cover accounts for the daily cycle of differ-
ential heating and cooling processes due to clouds. In
addition, the evaluations showed for RKRK a slightly
better performance in preserving the observed spatial
variability.

We also evaluated the predictive skills of the proposed
algorithms for the 10� regions (the corresponding Fig. S2
is provided as supplementary online material1). The
results showed very similar RMSEA patterns for all tested
algorithms, with RMSEA being high in eastern Africa
and the tropics and low over western Africa, yet the
hybrid algorithms (RKK and RKRK) yielded consider-
ably lower RMSEA values than both the IDW and OK
(on average 2.3�C for RKRK and 3.3�C for OK). An
evaluation of monthly averaged RMSEA showed negligi-
ble seasonal variations over most of Africa for the hybrid
algorithms for both Tmin and Tmax. However, in
western, eastern and tropical Africa the RMSEA was
0.5–1.5�C higher in June-July-August (JJA) than in
December-January-February (DJF) (this was also found
in the regression analysis). Meanwhile, OK and IDW
yielded over eastern Africa the largest RMSEA in JJA
(about 6�C). The large discrepancy in RMSEA between
the algorithms during months other than JJA, with the
RMSEA being around 2�C lower for the hybrid algo-
rithms, demonstrates the strong impact of the regression
on the gridding performance over eastern Africa.

4.2 Mean monthly CCLM temperature
statistics

4.2.1 Mean bias in Tmin/Tmax of the CCLM
simulations

Mean Tmin/Tmax fields of both CCLM simulations
(CLM-0.22 and CLM-0.44) were compared to CRU for

Table 1: Average daily RMSEA for four gridding algorithms in summer (JJA) and winter (DJF) for the period 2008–2010 for Tmin and
Tmax. The RMSEA is calculated region-wise (climate regions NA, TA, SA) and then averaged over all subregions.

DJF JJA Average

Tmin Tmax Tmin Tmax

RMSEA VARIA RMSEA VARIA RMSEA VARIA RMSEA VARIA RMSEA VARIA
RKRK 2.4 0.8 2.2 0.8 2.2 0.8 2.4 0.8 2.3 0.8
RKK 2.4 0.7 2.3 0.7 2.3 0.8 2.5 0.7 2.4 0.7
OK 3.3 0.5 3.2 0.5 3.4 0.4 3.5 0.5 3.3 0.5
IDW 3.5 0.5 3.4 0.5 3.6 0.4 3.8 0.4 3.6 0.4
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the period 1990–2009 and for 17 three year long sub-
periods to evaluate the information value of the sub-peri-
ods. Spatially averaged over the African continent both
the complete time period and the sub-periods showed
fairly similar annual bias cycles. The standard deviation
of the model biases of the sub-periods was for all months
smaller than 0.4�C (on average 0.2�C) and it was highest
during the northern winter (DJF). The annual bias cycle
had two maxima (in May and October) and two minima
(in January and July), which are not easily interpreted but
may be related to an erroneous simulation of the displace-
ment of the ITCZ. CLM-0.22 was approximately unbi-
ased relative to CRU for Tmax (annual mean difference
0�C) and positively biased for Tmin (annual mean differ-
ence around +2�C). On average over the period 1990–
2009, both simulations showed consistent patterns for
both Tmin and Tmax, but CLM-0.22 was around 0.5�C
warmer than CLM-0.44. As a consequence the overall
bias (considering both Tmin and Tmax) of CLM-0.44
was smaller than that of CLM-0.22.

Fig. 3 shows the results of evaluations of CCLM for
the 10� regions. In comparison to CRU, CLM-0.22
clearly overestimated Tmin over most of Africa (panel
a). For Tmax CLM-0.22 produced in some areas (inner
Sahara, and Ivory Coast) lower and in several other areas
(Madagascar, Angola, and Namibia) higher values than
CRU (panel b). In general, CLM-0.22 and CLM-0.44
performed similarly, except that the Tmax bias in CLM
0.44 was more negative over the Sahara and the African
tropics (not shown). The standard deviation of the mean
monthly CCLM biases (relative to CRU) was generally
between 0.5 and 1�C (extreme months with standard
deviations larger than 1�C, but in respective months the
bias was also large (> 5�C)). The relatively small vari-
ability in the biases of the three year long CCLM simu-
lation sequences indicates that the evaluation shown in
the next section done for daily data in the period 2008–
2010 is climatologically representative.

Next, mean Tmin/Tmax fields of the simulations were
evaluated against the specially generated RKRK dataset
for the period 2008–2010. Inter-comparison of CCLM

biases relative to both the RKRK dataset and to CRU
allows to encompass uncertainties in the reference data.

Fig. 4 displays the average Tmin for the period 2008–
2010, of the RKRK dataset (panel a) and the associated
biases of CLM-0.22, CLM-0.44 and ERA-Interim (pan-
els b-d). The annual cycles of the monthly mean Tmin
and the biases (plotted inside the boxes) were calculated
by averaging the (land only) grid square values inside the
10� regions. CLM-0.22 overestimated Tmin in most
regions by 1 to 4�C (panel b). Only along the coasts of
South Africa and Mozambique, in some parts of inner
Africa (Sudan) and in Madagascar the simulation was
unbiased or slightly negatively biased. CLM-0.22 was
overall around 0.5�C warmer and therefore slightly more
biased than CLM-0.44, yet yielded similar BIASs pat-
terns. ERA-Interim was on average about 1�C cooler
than the RKRK dataset (panel d), with the strongest cold
bias over the Tibesti Mountains in Chad (up to 3�C).
Adversely, over northern Africa ERA-Interim was
slightly warmer than the RKRK dataset.

For Tmax CLM-0.22 showed an even stronger warm
BIASs over tropical regions (Fig. 5b) than for Tmin.
However, we found considerable cold BIASs over the
eastern Sahara (where there was a warm-bias for Tmin).
Tmax was generally warmer by around 0.5�C in CLM-
0.22 than in CLM-0.44, which was also the case for
Tmin (also see section 4.2.1). The higher resolution sim-
ulation CLM-0.22 had smaller cold BIASs than CLM-
0.44 over the Sahel region, yet intensified the warm
BIASs over the tropics. The Tmax pattern in the ERA-
Interim reanalysis data was very similar to that of the
RKRK dataset, with temperature differences (BIASs)
mostly below 2�C (panel d).

Although CCLM biases relative to both CRU (Fig. 3)
and the RKRK dataset (Figs. 4 and 5) were comparable
over northernAfrica andMadagascar, they clearly differed
in the African tropics and over large parts of the southern
extra-tropics. These discrepancies refer to uncertainty in
the reference data. Mean Tmin/Tmax fields of CRU and
the RKRK dataset (period 2008–2009) differed by up to
6�C in tropical areas (not shown), due to differences in

Figure 3: Mean biases for the period 1990–2009 of CLM-0.22 compared to CRU data [�C]: (a) Tmin and (b) Tmax biases. Thick lines
show the annual cycles of the mean monthly bias standard deviations (the lower thin line indicates 0�C and the upper 2�C values).
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station coverage (Fig. 1) and applied mapping procedures.
However, the RKRK dataset bases on a larger number of
observing stations than CRU (338 versus 228), applies
satellite-derived predictors to compensate for the missing
temperature information in data sparse regions, and has
daily data coverage. Hence, the RKRK dataset provides
a more useful reference than CRU.

Moreover, on average over the period 2008–2010, the
evaluations revealed smaller differences between ERA-
Interim and the RKRK dataset than between CCLM and
the RKRK dataset, which also provides confidence into
the RKRK dataset. Furthermore, this means that the stated
biases of CCLM are not inherited from the global forcing
but develop within the regional climate model grid.

4.2.2 Average diurnal temperature range (ADTR)

Fig. 6 displays the RKRK dataset’s ADTRs (panel a) and
the bias in ADTRs for CLM-0.22, CLM-0.44 and ERA-
Interim (panels b-d) relative to the RKRK dataset. The
thick lines inside the 10� regions indicate the annual
ADTRs cycles of the RKRK dataset (panel a) and related
biases of the validated datasets (panels b-d) relative to
the RKRK dataset. Panels e-f show the bias in ADTRs

for CLM-0.22 relative to ERA-Interim for the period
2008–2010 and to CRU for the period 1990–2009, respec-
tively. Panels e-f were added to display biases in CLM-
0.22 in the 10� regions where a lack of observing stations
did not allow for an evaluation against the RKRK dataset.

Figure 4: (a) Average daily Tmin [�C] of the RKRK dataset (colour bar top right), and (b-d) BIASs for CLM-0.22, CLM-0.44 and ERA-
Interim for the period 2008–2010 (color bar bottom right). Thick lines show the annual cycles of mean monthly Tmin (panel a) with thin
lines indicating 0 and 40 �C and of the mean monthly biases (panels b-d) with lines indicating +/� 5 �C). 10� regions containing fewer than
two stations were not evaluated.
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The RKRK dataset (panel a) indicated low ADTRs in
tropical areas (around 5�C), where the humidity is high
and cloudiness is predominant, and along coastlines
(around 10�C), where the ocean serves as a temperature
regulator. The highest ADTRs values were found in
semi-arid and arid regions such as the Sahara desert
and the western Kalahari desert (15-20�C). CLM-0.22
(panel b) considerably underestimated ADTRs over the
Sahara, but overestimated ADTRs across the African tro-
pics, particularly in Tanzania and along the African
southwest coast. The ADTRs bias pattern in CLM-0.44
(panel c) was very similar to that in CLM-0.22, yet
CLM-0.44 overestimated less strongly ADTRs over the
tropics, the Ethiopian Highlands, southeast Africa, and
Madagascar. Both the RKRK dataset and ERA-Interim
showed small differences in ADTRs (panel d) in regions
just north of the equator, but ERA-Interim produced par-
ticularly high ADTRs values in arid regions. CLM-0.22

showed an overall similar bias pattern in comparison to
both the RKRK dataset and the ERA-Interim reanalysis.
Yet, in comparison to ERA-Interim, CLM-0.22 showed a
stronger positive bias over deserted areas (panel e).
CCLM’s ADTRs biases against CRU were somewhat dif-
ferent to those obtained relative to the RKRK dataset,
with a considerable underestimation in ADTRs over most
of Africa (panel f). This is in consistence with mean
biases in Tmin and Tmax fields (see Fig. 3, panels a
and b).

The RKRK dataset showed a strong annual ADTRs

cycle over the transition zones (e.g. northern and south-
ern Savannah regions), with the highest ADTRs during
the dry season (Fig. 6a). Over the subsidence regions
the annual ADTRs cycle was weaker and peaked during
the hemispheric summers. Both CCLM and ERA-Interim
considerably overestimated the annual ADTRs cycle over
the African tropics. For CCLM this was related to an

Figure 5: Same as in Figure 4, but for Tmax.
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underestimation in Tmin (Fig. 4b) and a concurrent over-
estimation in Tmax (Fig. 5b) in JJA. In ERA-Interim
Tmax was overestimated in JJA and underestimated in
DJF (Fig. 5d), resulting in a too strong annual ADTRs

cycle over the tropics (Fig. 6d).

4.3 Daily CCLM temperature statistics

In the preceding section we evaluated the ability of the
model to simulate the monthly and longer term Tmin/

Tmax. However, long-term averages can hide systematic
errors at the daily scale. Therefore, this section focuses on
the model’s ability to reproduce the observed frequency
distribution and the temporal variability of daily Tmin
and Tmax.

4.3.1 Frequency distributions

The simulated frequency distributions of Tmin/Tmax
allow assessing the model’s capacity to simulate the

Figure 6: (a) The RKRK dataset’s ADTRs [�C] (colour bar top right), (b-d) bias in ADTRs [�C] of CLM-0.22, CLM-0.44, ERA-Interim
compared to the RKRK dataset, and (e-f) bias in ADTRs [�C] of CLM-0.22 compared to ERA-Interim for the period 2008–2010, and to
CRU for the period 1990–2009 (color bar bottom right). Thick lines show the annual ADTRs cycles of the RKRK dataset (panel a) with thin
lines indicating 0 and 20 �C and of the bias in ADTRs (panels b-f) with thin lines indicating +/� 5 �C. 10� regions containing fewer than two
stations were not evaluated (panels a-d).
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complete rangeof observedvalues ondaily time scales. For
the analysis the ERA-Interim reanalysis and theCLM-0.44
simulation were interpolated to the CLM-0.22 grid using
inverse distance weighting and a height correction with a
constant lapse rate of 0.65�C/100m.For theRKRKdataset,
the ERA-Interim reanalysis, and both model simulations,
all daily Tmin/Tmax land only data within a given 10�
region were used to derive the frequency distributions.
The data were binned between �10�C and 50�C using a
bin size of 0.5�C. For the analysis we selected five 10�
regions in different climate regions where the station num-
ber is higher than 10 (see Fig. 1).

Fig. 7 shows the simulated and observed frequency
distributions for five selected regions (see Fig. 1) for
daily Tmin (panel a) and Tmax (panel b). Also given
in Fig. 7 are the frequency distribution-based skill scores
SFD that measure the degree of overlap between observed
and modelled frequency distributions. Both the very
tightly shaped frequency distributions in region 4 and
the broad frequency distribution in region 1 were well
reproduced by the simulations. In general, the simulated
frequency distributions were very close to those of the
RKRK dataset. However, the model tended to overesti-
mate the warmer temperatures in regions 3 and 5, while
it represented the probability of lower temperatures quite
well. In addition, the model considerably underrepre-
sented the observed peak in the frequency distributions
for Tmax in regions 2 and 5 (Fig. 7b). On the other hand,
the frequency distributions of ERA-Interim were very
similar to the observed ones in region 5, and thus provide
confidence into the RKRK dataset. ERA-Interim com-
pared worst with the RKRK dataset in region 4, under-
representing the observed peak and producing too
many low values in the frequency distribution for Tmax.

The overall skill scores for the simulations exceeded
0.8 in all regions for Tmin (Fig. 7a) and were in most
cases lower for Tmax (SFD > 0.6 in all regions). The
worst performing areas for Tmax were regions 2 and 5

with skill scores between 0.7 and 0.8. The skill scores
of both model resolutions were very similar. ERA-
Interim performed overall best (SFD > 0.8), and was only
outperformed by the CCLM simulations in region 4.

Fig. 8 allows a closer inspection of extreme percentiles
(the 5th, 10th and 20th percentiles for Tmin and the80th, 90th

and 95th percentiles for Tmax). In four of the five regions
(e.g. regions 1 to 4) both models were within ± 1�C of
the observed for Tmin percentiles (panel a). There was a
general trend inbothmodels to overestimate the higher per-
centiles for Tmax by 1–4�C (panel b). The overall largest
discrepancies were found in region 5 for Tmax and also
to a minor extend for Tmin as it can also be seen in
Fig. 7.The evaluations further revealed relatively small dif-
ferences between the two CCLM simulations. The model
performed equally well for the lower percentiles of Tmin
at both resolutions, while CLM-0.22 was about 1�C war-
mer than CLM-0.44 for the higher percentiles of Tmax.
As a consequence the overall bias of CLM-0.22 was
slightly larger than that of CLM-0.44.

Figure 7: Frequency distributions for regions 1–5 (see Fig. 1) for: (a) daily Tmin and (b) daily Tmax [�C]. Frequency distribution-based
skill scores (SFD) are given in numbers (colours correspond to the respective simulation datasets).

Figure 8: Percentile values for regions 1-5 (see Fig. 1) for: (a) Tmin
and (b) Tmax [�C]. Squares represent the 5th (80th) percentile,
triangles the 10th (90th) and diamonds the 20th (95th) for Tmin (Tmax).
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4.3.2 Temporal variability of Tmin/Tmax (rs)

Fig. 9 displays the ratio (VARId) of simulated and
observed temporal standard deviation (rs) for CLM-
0.22 (panels a and d), CLM-0.44 (panels b and e), and
ERA-Interim (panels c and f) for daily anomalies in
Tmin (panels a-c) and in Tmax (panels d-f). Thick lines
inside the 10� regions indicate the annual cycle of VARId
(e.g. ratio for rs,of monthly time series).

The RKRK dataset showed the largest temporal stan-
dard deviation (2-3�C) in areas of continental climate
(high continentality index) and particularly small
(<1�C) over the African tropics and in coastal regions
where the seasonal temperature variability is reduced
by the maritime effect (not shown). In tropical areas
VARId was about 1 in both CCLM simulations. Other-
wise, the simulations considerably overestimated the tem-
poral standard deviation for both Tmin and Tmax
(VARId~2-3), particularly over desert areas (Sahara and
Kalahari desert). Also ERA-Interim showed VARId val-
ues greater than 1 in arid areas, yet the temporal standard
deviation was less strongly overestimated than in CCLM.

The RKRK dataset indicated very similar annual
cycles of the temporal standard deviation for Tmin and
Tmax and the amplitude of the cycle increased towards
higher latitudes (not shown). Over both the northern
and southern extra-tropical regions in Africa the temporal

standard deviation was about 2-3�C during the hemi-
spheric winters and about 1�C during the hemispheric
summers. Over the northern and southern Savannas off
the coasts, the temporal standard deviation was largest
(2�C) during the transitional seasons (spring and
autumn). The modelled annual cycles of temporal stan-
dard deviations of Tmin/Tmax were generally not too dif-
ferent to those of the RKRK dataset. However, over the
Sahel region and the southern tropics CCLM clearly
overestimated the temporal standard deviation for both
Tmin and Tmax, particularly in the hemispheric summers
(VARId up to 3). ERA-Interim captured the RKRK data-
set’s annual cycle of the temporal standard deviation gen-
erally well, yet it was slightly overestimated during the
hemispheric summer months in arid areas (VARId~1.5,
see Fig. 9f).

The Taylor diagram (TAYLOR, 2001) in Fig. 10 sum-
marizes the statistics of the anomaly time series (daily
Tmin/Tmax relative to smoothed mean annual cycles)
for the period 2008–2010 in three climate regions for
the RKRK dataset, CLM-0.22, CLM-0.44, and ERA-
Interim.

Both CCLM simulations agreed well with the stan-
dard deviation rA(o)

no of Tmax in the climate region
TA depicted by the RKRK dataset, but underestimated
rA(o)

no of Tmin in the region TA and overestimated

Figure 9: VARId [-] for (a and d) CLM-0.22, (b and e) CLM-0.44 and (c and f) ERA-Interim reanalysis. Panels a-c display VARId for daily
anomalies in Tmin and d-f in Tmax. The annual cycle of VARId was calculated from land points only inside the 10� regions and is given by
thick lines inside the boxes, lower thin lines indicate 0 times and upper thin lines 3 times the observed temporal standard deviation. 10�
regions containing fewer than two stations were not evaluated.
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rA(o)
no of Tmin and Tmax in the regions NA and SA

(rA(y)
no 1.2-1.4). This is in consistence with results pre-

sented in Fig. 9 that depict an overestimation in rs over
the African extra-tropics for CCLM (VARId~2). The sim-
ulations captured the temporal evolution of daily Tmin/
Tmax anomalies well in the region NA (RA~0.75), but
suboptimal in the regions TA and SA (RA~0.5).
CRMSEA

no was smallest for Tmax in the region NA
(~0.8), otherwise CRMSEA

no was about 1. The two
CCLM simulations performed similarly.

The driving dataset ERA-Interim performed consis-
tently better than the CCLM simulations. However, in
terms of RA and CRMSEA

no there were large differences
among the climate regions. RA ranged from 0.5 in the
region TA to 0.85 in the regions NA and SA, and
CRMSEA

no ranged from 0.9 in TA to 0.55 in NA and
SA. Although rA(y)

no was in most cases close to 1,
ERA-Interim underestimated rA(o)

no for Tmin in the
region TA (rA(y)

no~0.7). The better agreement of
ERA-Interim with the RKRK dataset supports our find-
ings for mean Tmin/Tmax fields (Figs. 4 and 5 and fre-
quency distributions of daily Tmin/Tmax (see Fig. 7).

4.3.3 90th percentiles of Tmax

Fig. 11 displays the 90th percentile (q90) of daily Tmax
for the period 2008–2010, of the RKRK dataset (panel
a) and the percentage of daily Tmax values greater or
equal to the observed 90th percentile (should be 10%)
for CLM-0.22, CLM-0.44 and ERA-Interim (panels b-
d). The RKRK dataset (panel a) showed the highest

q90 values over the northern subtropics (about 45�C)
and the lowest q90 values over complex terrain, the tro-
pics and over southern Africa (about 30�C). CLM-0.22
clearly overestimated q90 over wide parts of Africa (panel
b), particularly over the Mporkoso Mountains between
Congo and Zambia and the mountainous regions of Tan-
zania where more than 50% of daily Tmax values
exceeded the observed q90. Only along the coastlines of
Cameroon and Guinea q90 was underestimated. CLM-
0.44 performed similarly to CLM-0.22, yet less strongly
overestimated q90 as the lower resolution CLM-0.44
simulation was on average about 0.5�C cooler than
CLM-0.22 (see also Fig. 5). The ERA-Interim reanalysis
compared overall better with the RKRK dataset than
CCLM (panel d), particularly over the African tropics.
ERA-Interim, however, deviated strongly from the
observed q90 over the Ethiopian Highlands and over
the mountainous region to the east of the Gulf of Guinea,
which may be related to high uncertainties in the refer-
ence datasets over these areas due to very low station
numbers (see Fig. 1).

5 Discussion

Our results showed significant differences between both
the high- and low-resolution COSMO-CLM (CCLM)
simulations and the RKRK dataset. In the annual mean
both simulations overestimated ADTR over tropical
areas, particularly over Tanzania and along the African
southwest coast, related to a moderate warm bias in Tmin
(~1�C) and a strong warm bias in Tmax (4�C). In con-
trast, ADTR was underestimated over most of the Sahara,
which is likely because of uncertainties in cloud cover
and aerosol parameterizations (KOTHE and AHRENS,
2010) and errors in soil thermal conductivity (J.-P.
Schulz, DWD, pers. com., 2012). In CCLM soil thermal
conductivity is prescribed assuming semi-wet soil condi-
tions throughout the African continent, and is thus
strongly overestimated in arid zones causing an overesti-
mation of the ground heat flux and consequently a too
small ADTR in respective regions (MURRAY, and VER-

HOEF, 2007; J.-P. Schulz, pers. com., 2012). The same
argument applies in tropical regions but reversed. Inter-
estingly, CCLM concurrently overestimated Tmin and
Tmax during the summer months in arid regions, most
likely caused by a wrong representation of the cloud diur-
nal cycle in the model. Indeed, a total cloud cover valida-
tion study by PFEIFROTH et al. (2012) indicated a not
correctly modelled cloud diurnal cycle during summer
in deserted areas, with an afternoon maximum and a
morning minimum. The driving ERA-Interim reanalysis
agreed overall better with the RKRK dataset. Tmin was
on average 1�C too cold with a strong cold anomaly over
Chad (~3�C) and Tmax biases were generally smaller
than 1�C, thereby ADTR biases were smaller than ±1�C.

The evaluations revealed for CCLM, and to a lesser
extend for ERA-Interim, a strong overestimation of

Figure 10: Taylor diagram showing the temporal patterns of daily
Tmin/Tmax anomalies in three climate regions for the period 2008-
2010 for the RKRK dataset, CLM-0.22, CLM-0.44, and ERA-
Interim. Results for Tmin are given in black and for Tmax in red.

Meteorol. Z., 22, 2013 S. Krähenmann et al.: Evaluation of daily maximum and minimum 2-m temperatures 311



eschweizerbart_xxx

temporal Tmin/Tmax variability during the summer
months over both the northern and southern extra-tropics
(VARId ~2–3). This can be linked with the summer dry-
ing problem (e.g. HAGEMANN et al., 2004), a well-known
problem in current RCMs (BERGANT et al., 2007;
CHRISTENSEN et al., 2007). Investigations of several
ERA40 driven RCMs (e.g. MACHENHAUER et al.,
1998; HAGEMANN et al., 2004) showed for different
regions in Europe an overestimation in precipitation
throughout the year except during summer. The summer
drying has been associated with deficient features in the
general circulation of the models where insufficient mois-
ture is advected into the region. This leads to a too low
cloud cover and thus to an overestimation in solar radia-
tion, which eventually results in an excessive drying out
of the soil due to enhanced evaporation (SCHRODIN and
HEISE, 2002; SENEVIRATNE et al., 2006). However, the
drier the soil becomes, the more the evaporative fluxes
(that act to limit temperature variability) will decrease
and the more the temperature variability will increase.

Both CCLM simulations reproduced the RKRK data-
set’s frequency distributions for Tmin and Tmax in five
selected 10� regions reasonably well (see Fig. 7). In terms
of Tmin, SFD was in all regions greater than 0.8, and gen-
erally lower for Tmax (SFD 0.7-0.8 in two out of five
regions). An evaluation of the percentiles derived from

the frequency distributions indicated high model skill in
the lower percentiles for Tmin (within ± 1�C of the
RKRK dataset), yet an overestimation of higher percen-
tiles (80th to 95th) for Tmax by 2–4�C. ERA-Interim gen-
erally agreed well with the frequency distributions and
the derived percentiles showed by the RKRK dataset
for both Tmin and Tmax (SFD > 0.8). However, over
region 4 lower Tmax values were overrepresented by
ERA-Interim, indicating a stronger uncertainty of the ref-
erence data in this region. The high model skill in repro-
ducing the frequency distributions for Tmin indicates that
the models are capturing the radiative cooling processes
(associated with cloud cover and water vapour) generally
well. The lower model skill for Tmax can be explained
by the larger number of associated processes that have
to be captured by the model (PERKINS et al., 2007).
Besides clouds interacting with incoming solar radiation
and atmospheric moisture modifying net infrared radia-
tion, aerosols and surface albedo affect Tmax through
absorption of solar radiation (KOTHE and AHRENS,
2010). Moreover, in regions 2 and 5, both located in tran-
sitional zones between non-limiting and limiting soil
moisture (KOSTER et al., 2004), an erroneous modelling
of soil moisture may produce flawed Tmax values
through a feedback cycle with evaporation processes
(COLLATZ et al., 2000).

Figure 11: 90th percentile of daily Tmax [�C] of the RKRK dataset (colour bar top right), and (b-d) percentage of daily Tmax greater than
or equal to the 90th percentile of the observed daily Tmax for CLM-0.22, CLM-0.44 and ERA-Interim for the period 2008–2010 (color bar
bottom right). 10� regions containing fewer than two stations were not evaluated.
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CCLM’s low skill in simulating Tmax was confirmed
by an analysis of the 90th percentile of Tmax. Across
wide parts of Africa q90 was overestimated, particularly
over the African tropics where the observed q90 was
exceeded in more than 50% of the days. However, q90
was underestimated in the Gulf of Guinea region, which
resulted from an underestimation of Tmax in summer
(Fig. 5), due to an overestimation of convective activity
in CCLM (KOTHE et al., 2013). Also ERA-Interim
underestimated q90 in the Golf of Guinea region, which
complies with the overrepresentation of low Tmax values
in region 4 (see Fig. 7b). However, unlike CCLM ERA-
Interim underestimated q90 over the east African tropics,
probably due to an erroneous representation of the annual
precipitation pattern in ERA-Interim over the African tro-
pics that is better represented in CCLM (see also
NIKULIN et al., 2012).

Although both model simulations showed overall
consistency, CLM-0.22 was on average about 0.5�C war-
mer in the annual means of both Tmin and Tmax, more
strongly overestimated the higher percentiles for Tmax.
Also the spatial variability in Tmin/Tmax was higher in
CLM-0.22, which is due to increased fine-scale structures
associated with better-resolved landscape and topography
compared to CLM-0.44. This is consistent with a valida-
tion study by JAEGER et al. (2008) in which a comparison
of two ERA40-driven CCLM simulations of differing
horizontal resolutions (0.22� and 0.44�) for Europe
showed similar performance by both model resolutions
in terms of 2-m temperature and precipitation.

6 Summary

We present an evaluation of 2-m temperature over the
African continent done with the RCM COSMO-CLM
(CCLM) (version 4.8) applying two different grid-spac-
ings (0.22� and 0.44�) and driven by the ERA-Interim
reanalysis for the period 2008–2010. Performance of
the model was evaluated in detail for different aspects
of African 2-m temperature at daily time scales, namely:
diurnal temperature range, day-to-day variability and fre-
quency of Tmin/Tmax, and the 90th percentile of Tmax.
Besides the specially generated RKRK dataset our eval-
uations included also the driving model, to see if CCLM
biases are affected by the quality of ERA-Interim. A pre-
liminary inter-comparison at seasonal mean time scales
for the period 2008–2009 revealed that CRU and the
RKRK dataset differed by as much as 6�C due to very
few or no reporting stations over large parts of Africa.
Yet, the RKRK dataset based on a larger number of
observing stations than CRU, included satellite-derived
observations to compensate for missing temperature
information and has daily data coverage, and thus was
considered a more useful reference than CRU.

Evaluations of the CCLM simulations detected a
moderate warm bias in Tmin over the African tropics
(~1�C), which coincided with a strong warm bias in

Tmax (4�C), resulting in a considerable overestimation
of the diurnal temperature range. In contrast, the diurnal
temperature range was mainly underestimated over the
Sahara, due to uncertainty in the cloud cover parameter-
ization (KOTHE and AHRENS, 2010; PFEIFROTH et al.,
2012) and soil thermal conductivity (J.-P. Schulz, pers.
com., 2012). The day-to-day variability of Tmin and
Tmax was overestimated, particularly during the summer
over desert areas (e.g. Sahara, Kalahari). A possible
explanation is the so-called summer drying problem of
RCMs (HAGEMANN et al., 2004), which leads back to
a wrong surface energy budget probably due to erroneous
parameterizations of convection and a displacement of
the general circulation. CCLM reproduced the RKRK
dataset’s frequency distributions for daily Tmin and
Tmax with considerable skill (SFD > 0.7). The model
was able to capture the changes in the shape of the fre-
quency distributions in different climates over Africa.
Yet it overestimated the higher percentiles (80th to 95th)
for Tmax by 2-4�C, while the lower percentiles (5th to
20th) of Tmin were fairly accurate (within ±1�C). The
observed 90th percentile of Tmax was exceeded in more
than 50% of the days in the African tropics, and underes-
timated over the Gulf of Guinea region. The generally
lower accuracy of the simulations for Tmax can be
explained by the large number of processes that have
to be captured by the model. Besides the clouds and
the atmospheric moisture, which are interacting with
the solar radiation, also aerosols and soil albedo signifi-
cantly modify Tmax through absorption of solar radia-
tion. Although both CCLM simulations provided
overall consistent results, distinct differences were found.
Mean Tmin/Tmax was ~0.5�C higher in CLM-0.22, and
the higher percentiles for Tmax were more strongly
overestimated.

Differences between ERA-Interim and the RKRK
dataset were, on average, smaller than differences
between CCLM and ERA-Interim, indicating that the
model biases originate to a large extent from within the
model domain (e.g. JACOB et al., 2007). CCLMs biases
need to be further investigated and reduced. In particular,
the parameterization of aerosol and cloud radiative effects
(KOTHE and AHRENS, 2010) and the soil thermal conduc-
tivity that affect the ground heat fluxes (J.-P. Schulz, pers.
com., 2012) require a detailed analysis, and in general the
CCLM model needs further tuning and optimization for
applications on non-European domains.
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entalisme et son application dans la climatologie. – Geogr.
Annaler. 2, 324–331.

GRASSELT, R., D. SCHUETTEMEYER, K. WARRACH-SAGI, F.
AMENT, C. SIMMER, 2008: Validation of TERRA-ML with
discharge measurements. – Meteorol. Z. 17, 763–773.
doi:10.1127/0941-2948/2008/0334.

HAGEMANN, S. B., B. MACHENHAUER, O. B. CHRISTENSEN,
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