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[1] A multi-scale soil moisture and temperature monitoring network, consisting of 55 soil
moisture and temperature measurement stations, has been established in central Tibetan
Plateau (TP). In this study, the station-averaged surface soil moisture data from the network
are used to evaluate four soil moisture products retrieved from the Advanced Microwave
Scanning Radiometer-Earth Observing System (AMSR-E) and four land surface modeling
products from the Global Land Data Assimilation System (GLDAS). Major findings are (1)
none of the four AMSR-E products provides reliable estimates in the unfrozen season, in
terms of the mission requirement of the root mean square error (RMSE)< 0.06m3m�3. These
algorithms either evidently overestimate soil moisture or obviously underestimate it, although
some of them showed the soil moisture dynamic range, indicating that the retrieval algorithms
have much space to be improved for the cold semi-arid regions. (2) The four GLDAS models
tend to systematically underestimate the surface soil moisture (0–5 cm) while well simulate
the soil moisture for 20–40 cm layer. In comparison with the satellite surface soil moisture
products, three among the four models give low RMSE and BIAS values, but still falling out of
the acceptable range. The causes for the modeling biases in this cold region were discussed.
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1. Introduction

[2] Soil moisture controls a variety of the hydro-
meteorological, hydro-climatological, ecological, and bio-
geochemical processes in various spatial and temporal
scales [e.g., Milly and Dunne, 1994; Douville and Chauvin,
2000; Koster et al., 2004; Balsamo et al., 2009; Falloon
et al., 2011], but conventional observations are too sparse to
satisfy the needs for improving remote sensing and land
surface modeling [e.g., Crow et al., 2012], which have poten-
tial to provide regional soil moisture datasets that are urgently
required for many research and application purposes.
[3] Early field and aircraft experiments demonstrated that

the low-frequency microwave emissions (passive and active)
are related to the surface soil moisture [e.g., Schmugge,
1977], thus the soil moisture can be potentially retrieved from
the microwave signals. Over the past two decades, great
efforts have beenmadewithin the international remote sensing

community to develop soil moisture products from both active
and passive microwave signals [e.g., Jackson, 1993; Njoku
et al., 2006; Wagner et al., 2003; Koike et al., 2004;
Owe et al., 2008; Kerr et al., 2012; Scipal et al., 2009;
Entekhabi et al., 2010] with the launch of several micro-
wave sensors. The accuracy of soil moisture estimated from
satellite sensors needs to be characterized before being used
in practical applications. Some studies have assessed
satellite soil moisture products through inter-comparisons with
scale-comparable model simulations [e.g., Wagner et al.,
2003; Rüdiger et al., 2009], other satellite soil moisture prod-
uct [de Jeu et al., 2008], or both of them [e.g., Scipal et al.,
2008; Dorigo et al., 2010], but evaluations against directly
measured “ground truth” are needed. It is risky to use measure-
ments at a single station to represent the ground truth because
of the high spatial variability of soil moisture; and therefore,
dense soil moisture networks are required for valid evalua-
tions [e.g., Yang et al., 2009a]. With the development of
the International Soil Moisture Network [e.g., Dorigo
et al., 2011], many evaluation activities were conducted in
North America [e.g., Jackson et al., 2010, 2012; Bitar
et al., 2012; Collow et al., 2012; Gherboudj et al., 2012],
Europe [e.g., Brocca et al., 2011; Albergel et al., 2012,
Dall’Amico et al., 2012; Sánchez et al., 2012; Lacava et al.,
2012], and Australia [e.g., Draper, et al., 2009; Merlin et al.,
2012], but less evaluation activities were performed in Asia
[Su et al., 2011] and Africa [Gruhier et al., 2010]. In particu-
lar, most of these studies are conducted in temperate climate
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regions; and therefore, more evaluations in other climate re-
gions are anticipated to test the applicability of a remote sens-
ing algorithm.
[4] Meanwhile, land surface models (LSMs) have the

potential to estimate regional soil moisture distribution,
but their accuracy is hindered by model deficiencies, and
uncertainties in both model parameters and atmospheric
forcing. Soil moisture simulated by LSMs was also evaluated
against point-scale measurements [e.g., Boisserie et al., 2006;
Li et al., 2007; Albergel et al., 2012]. However, evaluation of
a model’s performance is a difficult task due to the scale
mismatching issue [Prigent et al., 2005].
[5] In this study, we evaluated four satellite products and

four land surface modeling outputs of soil moisture in the
central Tibetan Plateau (TP), where the weather is cold and
soil moisture has large seasonal variations. In a recent study,
Su et al. [2011] have evaluated satellite soil moisture products
in a dry area of the western TP and a semi-humid area of the
eastern TP against observations from two soil moisture
networks. The products were also evaluated for the central
TP, but the number of measuring stations is limited and
the stations are deployed within a small area. In this study,
we evaluated soil moisture products using a much denser
multi-scale network that has been constructed recently. In
the following parts, the observation network and the soil
moisture products will be briefly introduced in section 2;
the results and discussions will be presented in section 3
and section 4, separately; finally, the concluding remarks
are given in section 5.

2. Data and Methods

2.1. Ground Data

[6] Tibetan Plateau (TP) is the highest plateau in the world
with an average elevation of over 4000m above sea level
(ASL) and an area of approximately 2.5� 106 km2, which
has been experiencing significant hydro-climatic change in
the past decades [e.g., Yang et al., 2011; Qin et al., 2009].
A multi-scale soil moisture and temperature monitoring

network is deployed in the central TP around Naqu city
(hereafter called Naqu network, see Figure 1) with an aver-
age elevation of 4650m ASL. The terrain is fairly flat with
rolling hummocks and hills. Due to low air mass and clear
sky, the land surface receives much stronger solar radiation
than low elevation regions [Yang et al., 2010]; thus, the
weather experiences large diurnal variations and evident
seasonal changes. The strong land-atmosphere interactions
in summer induce very active local convection in this high
elevation area. The annual precipitation is ~500mm, and
75% of this amount is received from May to October, due
to the significant impact of the South Asian summer mon-
soon. Because of the cold environment, soil thawing and
freezing occur around May and November, respectively.
The area is mostly covered by alpine grassland, consisting
of tiles of prairie grasses and meadows, with moderately
low aboveground biomass [the normalized difference vege-
tation index (NDVI) ~0.15–0.51, derived from 2000–2006
Moderate Resolution Imaging Spectroradiometer data], thus
the vegetation exerts less impacts on soil moisture retrieval.
Therefore, this low-biomass and large soil moisture range
make Naqu network be an ideal site for evaluations of satel-
lite soil moisture products.
[7] The buildup of Naqu network started in 2010. The first

30 Soil Moisture and Temperature Measurement System
(SMTMS) stations (see black rectangles in Figure 1) were
deployed since July 2010 within a 1� � 1�area (hereafter
called the large coarse network) to approximately match a
Global Climate Model (GCM) grid. Then, 20 SMTMS
stations (see white triangles in Figure 1) were added in
July 2011 to enhance a 0.25� � 0.25�observing network
(31.5–31.75�N, 91.75–92.0�E, hereafter called the small
dense network). The network was further enhanced by
adding five stations in the summer, 2012. The sensors used
in the network are EC-TM and 5TM capacitance probes
manufactured by Decagon Devices (http://www.decagon.
com/). The sensor can simultaneously measure soil moisture
and temperature with an accuracy of �0.03m3m�3/�1�C
and resolution of 0.001m3m�3/0.1�C for mineral soils. Note

Figure 1. The location of the soil moisture network within a 1� � 1�area (the large coarse network)
around Naqu of the central TP. The bold black square in the right panel denotes a 0.25� � 0.25�observing
network (the small dense network) with enhanced observations. Black rectangles denote 30 stations
deployed in 2010, and white triangles denote 20 stations deployed in 2011.
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that only the liquid water content is measured within frozen
soils during winter. At each station, one sensor is obliquely
inserted into 0–5 cm topsoils, and other three are horizon-
tally inserted at 10 cm, 20 cm, and 40 cm depths, respec-
tively. Measuring time interval is set to 30min, and each
record reflects the average state of soil moisture over the past
half-hour. Meanwhile, soil texture and soil organic carbon
(SOC) content were measured for each 5 cm soil layer at
each station. Within the topsoil of the alpine grasslands, high
SOC contents are found due to high accumulative rate under
the cold conditions. This may significantly affect the soil
thermal/hydraulic properties [Chen et al., 2012] and soil
dielectricity, and thus the effect of SOC has been taken into
account for the sensor calibration.
[8] A two-step sensor calibration approach is developed to

make the observational data reliable. First, the official rela-
tionship to convert the apparent dielectric permittivity into
soil water content, which is developed for mineral soil, is re-
placed by the equation developed by Schaap et al. [1996]
that considers the effects of soil organic matter, a major soil
component in this region. Second, the derived soil water
content in the first step is linearly calibrated with measured
soil moisture by the gravimetric method in laboratory.
Note that the sensor can only measure liquid water content
and thus the measurements cannot denote the total water
in frozen soil. With this in mind, the conclusions are
mainly derived from the evaluation during unfrozen season
in this study.

2.2. Soil Moisture Products

2.2.1. Satellite Data
[9] The Advanced Microwave Scanning Radiometer-Earth

Observing System (AMSR-E) is a radiometer operating on-
board the Aqua satellite of the National Aeronautics and Space
Administration (NASA) sinceMay 2002. AMSR-E sensor has
provided passive microwave measurements at six bands, rang-
ing from 6.9 to 89GHz at HH-VV polarization, with daily as-
cending (13:30 equatorial local crossing time) and descending
(01:30 equatorial local crossing time) overpasses. It provides
the opportunity to retrieve the first standard satellite soil mois-
ture product with an expectant accuracy goal [i.e., the root
mean square error (RMSE) <0.06m3m�3] [Njoku et al.,
2003]. Several soil moisture products have been developed
based on AMSR-E data [e.g.,Njoku and Chan, 2006; Jackson,
1993; Koike et al., 2004; Paloscia et al., 2006; Owe et al.,
2008], and a few evaluation efforts of these products have
been performed against observations from dedicated soil
moisture evaluation site [e.g., Jackson et al., 2010; Brocca et
al., 2011; Draper, et al., 2009; Su et al., 2011; Gruhier et
al., 2010]. These evaluations show diverse performance for
AMSR-E products in different regions; the most encourag-
ing results are found for the semi-arid regions with light
vegetation.
[10] In this study, the four interested AMSR-E products

are: the NASA standard soil moisture product [Njoku and
Chan, 2006], the Japan Aerospace Exploration Agency
(JAXA) soil moisture product [Koike et al., 2004; Lu
et al., 2009; Fujii et al., 2009], and both the C-band and
X-band soil moisture products developed using the Land
Parameter Retrieval Model (hereafter called LPRM_C and
LPRM_X products) [Owe et al., 2008]. The daily level-3
data of these soil moisture products are evaluated in this

study. It should be noted that the NASA and JAXA standard
products were retrieved using X-band signal to avoid the
well-known radio-frequency interference with C-band
observations in some regions, but the LPRM product used
both C-band and X-band signals. In addition, the time period
for the NASA and LPRM data is from 1 August 2010 to 20
September 2011; while the time period for JAXA data is
from 1 August 2010 to 31 July 2011.
2.2.2. Model Data
[11] The Global Land Data Assimilation System (GLDAS)

is developed to generate optimal fields of land surface states
and fluxes by integrating satellite- and ground-based observa-
tional data products, using land surface modeling and data
assimilation techniques [Rodell et al., 2004]. GLDAS drives
multiple, offline LSMs, integrates a huge quantity of observa-
tion based data and executes globally at multi-resolutions.
A vegetation-based “tiling” approach is used to simulate
sub-grid scale variability, with a 1-km global vegetation
dataset as its basis. Soil and elevation parameters are derived
from high resolution global datasets. Observation-based
precipitation and downward radiation products and the best
available analyses from atmospheric data assimilation systems
are employed to force the models. GLDAS data are archived
and distributed at the website of the Goddard Earth Sciences
Data and Information Services Center (http://disc.sci.gsfc.
nasa.gov/hydrology/data-holdings).
[12] In this study, the 3-hourly 0.25� and 1.0� GLDAS

Version 1 products (GLDAS-1) are used. The GLDAS-1
products integrate outputs from four LSMs: Community Land
Model (CLM), Noah model, MOSAIC model, and Variable
Infiltration Capacity (VIC) Model. At present, only Noah pro-
vides both 0.25� and 1� products, while other three LSMs pro-
vide only 1� products.

2.3. Methods

[13] First, we evaluate AMSR-E surface soil moisture
products. Considering the spatial representativeness issue,
we averaged the measurements at 30 stations (black
rectangles in Figure 1) to represent the values for the large
coarse network. The station-averaged surface soil moisture
(0–5 cm) is compared with AMSR-E data averaged over all
grids within the large coarse network. The ascending and
the descending passes are evaluated, separately, as their re-
trieval accuracy may be different. Their performance is given
by the mean bias (BIAS), the root mean square error (RMSE),
and the determination coefficient (R2). We also evaluate the
accuracy of AMSR-E soil moisture at the small dense net-
work with enhanced measurements. Within this grid and its
neighbor, eight stations started measurements in 2010, and
the other nine stations started in 2011. To give a longer-term
evaluation, we used the average over the eight stations for
the evaluation. In addition, a discussion on sensitivity to the
measurement density will be given in section 4.1.
[14] Then, we evaluate GLDAS simulated soil moisture

outputs against the station-averaged soil moisture observa-
tions for 0–5 cm and for 10–40 cm (the average of values at
10, 20, and 40 cm), respectively, for the large coarse network.
Also, the soil moisture measurements for the small dense
network are used to evaluate the output from Noah, which is
the only one among the four models that has a spatial resolu-
tion comparable to the small dense network.
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3. Results

3.1. AMSR-E Soil Moisture Products

[15] The station-averaged soil moisture exhibits an obvi-
ous seasonal variation, ranging from 0.05 to 0.42m3m�3

(Figure 2), in the large coarse network. The surface soil
(0–5 cm) is frozen at the beginning of November with the
soil moisture dropping abruptly from above 0.2 to below
0.1m3m�3 and is thawed at the beginning of May with
abruptly soil moisture rising. Figures 2 and 3 present the
time series and the scatter plot of the station-averaged soil
moisture and four AMSR-E estimates for both the descending
and the ascending orbits for the period from 1 August 2010 to
20 September 2011. The error metrics are presented in Table 1

for the unfrozen season (May to October) and the frozen
season (November to April), respectively.
[16] For the descending orbit, Figures 2a and 3a indicate

that the NASA product evidently underestimates soil mois-
ture in the unfrozen season while slightly overestimates soil
moisture in the frozen season and exhibits a dampened range
compared to the observed one. This seems to be a common
phenomenon found by many other studies [e.g., Jackson
et al., 2010]. The NASA product gives the largest BIAS
and RMSE as well as the minimum R2 for the unfrozen
season (Table 1). Figure 2a also suggests that both JAXA
and LPRM products can reflect the soil moisture dynamic
range but with larger amplitude than observations. The JAXA
product slightly underestimates the soil moisture in average

Figure 2. The time series of the station-averaged soil moisture and the four AMSR-E estimated ones for
(a) the descending orbit and (b) the ascending orbit, separately, from 1 August 2010 to 20 September 2011
for the large coarse network. Note: both LPRM_C and LPRM_X products are presented; the time period
for the JAXA data is from 1 August 2010 to 31 July 2011.

Figure 3. The scatter plots of the station-averaged soil moisture and the four AMSR-E estimated ones
for (a) the descending orbit and (b) the ascending orbit, respectively, for the large coarse network.
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with the minimum BIAS and RMSE for the unfrozen season.
The LPRM_C and LPRM_X products obviously overestimate
the soil moisture but with high R2 for the unfrozen season;
meanwhile, the LPRM_C product performs better than the
LPRM_X product (Figures 2a and 3a). Note that the descend-
ing LPRM data are not available in the frozen season. As
shown in Table 1, none of the four soil moisture estimates
can give an acceptable RMSE value (i.e., RMSE
<0.06m3m�3).
[17] For the ascending orbit, the results for the four

AMSR-E products are somewhat better than the results for
the descending orbit for the unfrozen season. As indicated in
Table 1, the products for the ascending orbit have small BIAS
and RMSE. This conflicts with the expectation that a retrieval
method may be reliable for nighttime overpass (i.e., the
descending orbit), when the near-surface soil moisture and
temperature profiles are more uniform than daytime overpass
(i.e., the ascending orbit). Brocca and Hasenauer, 2011 also
found that the retrieval from the daytime overpass seem to
be more accurate and suggested that the daytime overpass
have a positive effect at certain vegetation densities. Some
studies found that there is no obvious difference between the
daytime overpass and the nighttime overpass for AMSR-E
soil moisture products [e.g., Jackson et al., 2010] and for
Soil Moisture and Ocean Salinity soil moisture products
[e.g., Jackson et al., 2012; Sánchez et al., 2012]. However,
many other studies [e.g., Draper et al., 2009; Gruhier et al.,
2010; Su et al., 2011] only evaluated the nighttime overpass
AMSR-E soil moisture products with the abovementioned
expectation. Note that the LPRM soil moisture data are
available in the frozen season for the ascending orbit, but
the large BIAS and RMSE indicate that the LPRM algorithm
does not work well for the frozen season. Again, the RMSE
for the four ascending AMSR-E products fall out of the
acceptable range. Differing from other products, the LPRM
products performs rather different between the ascending and
the descending orbits (Table 1). Recent studies [Jackson et al.,
2010; Su et al., 2011] suggest that the error in LPRM is most
likely associated with the retrieval of the surface temperature.
[18] AMSR-E soil moisture products are also evaluated

against station-averaged observations of the small dense
network. The grid value is averaged over the six stations

within the grid and two adjacent stations that are set up since
2010. Figure 4 shows the time series for the descending and
the ascending orbits, respectively. The error metrics are also
presented in Table 1. Similar to the results for the large coarse
network, the NASA algorithm still exhibits a dampened range
while the JAXA algorithm and the LPRM can reflect the
seasonal variation of soil moisture. Also, the results for the
ascending orbit are better than the results for the descending
orbit in unfrozen season. For the LPRM algorithm, the
soil moisture climatology is still obviously different for the
ascending and the descending orbits; the ascending product
performs much better than the descending product and
almost meets the mission accuracy requirement in unfrozen
season (Table 1). An exception is that the JAXA algorithm
tends to reach its global maximum value (0.6m3m�3) under
very wet conditions in the small grid, which lead to an
overestimation of soil moisture. In a word, the evaluation
results for the small dense network are consistent with the
results for the large coarse network.
[19] The aforementioned results indicate that the four

AMSR-E derived soil moisture products cannot meet the
mission accuracy requirement (i.e., the RMSE< 0.06m3m�3)
in unfrozen season. The NASA algorithm exhibits a dampened
range while the JAXA algorithm and the LPRM can reflect the
seasonal variation of soil moisture but with too large amplitude.
The ascending orbit products perform somewhat better than
the descending orbit products in the unfrozen season. The
evaluation results for the small dense network are consistent
with the results for the large coarse network.

3.2. GLDAS Simulated Soil Moisture

[20] In GLDAS, the soil layer specification is model-
dependent, as shown in Table 2. The simulated soil moisture
is the depth-averaged values. To better match the depths
between the simulated soil moisture and the measured
ones, the averaged values for the upmost two layers of CLM
(0–4.5 cm), the values for the first layer of Noah (0–10 cm),
MOSAIC (0–2 cm), and VIC (0–10 cm) are evaluated against
the observed ones for 0–5 cm. The simulated soil moisture
for the second layer of Noah (10–40 cm) and the averaged
values for the fourth to sixth layer of CLM (9.1–49.3 cm)
are also evaluated against the average of observations at

Table 1. Error metrics of AMSR-E estimated soil moisture for Naqu networka

Period Area Products

Descending Ascending

BIAS RMSE R2 No. BIAS RMSE R2 No.

Unfrozen season Large coarse network NASA �0.18 0.19 0.315 161 �0.17 0.17 0.479 161
JAXA �0.06 0.12 0.547 115 �0.01 0.10 0.687 114
LPRM_C 0.14 0.15 0.729 120 0.09 0.10 0.653 146
LPRM_X 0.17 0.18 0.683 120 0.09 0.10 0.768 146

Small dense network NASA �0.16 0.17 0.181 161 �0.15 0.16 0.381 162
JAXA 0.07 0.17 0.439 101 0.08 0.17 0.591 113
LPRM_C 0.10 0.12 0.671 145 0.05 0.06 0.703 161
LPRM_X 0.13 0.15 0.670 145 0.06 0.07 0.759 161

Frozen season Large coarse network NASA 0.01 0.04 0.001 125 �0.01 0.05 0.187 125
JAXA �0.03 0.05 0.453 113 �0.04 0.06 0.578 114
LPRM_C - - - - 0.19 0.20 0.045 107
LPRM_X - - - - 0.19 0.20 0.005 107

Small dense network NASA 0.02 0.05 0.001 126 0.00 0.05 0.180 133
JAXA �0.04 0.07 0.678 133 �0.02 0.05 0.468 114
LPRM_C - - - - 0.15 0.15 0.297 125
LPRM_X - - - - 0.15 0.15 0.166 125

aBIAS is the mean bias (unit: m3m�3), RMSE is the root mean square error (unit: m3m�3), R2 is the determination coefficient, and No. is the sample number.
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10, 20, and 40 cm. This evaluation is not conducted for VIC
and MOSAIC, as the model depth does not match the
observed one. In addition, all the simulated soil moisture
for the frozen season (November 2010 to April 2011) are
not evaluated, as the models provide the total soil moisture
(both liquid and solid water) data while the sensor only
measured liquid water.
[21] Figure 5 displays the time series of the simulated

soil moisture and the station-averaged ones for 0–5 cm and
10–40 cm, respectively. Table 3 gives the error metrics.
Figures 5a and 5b show that the four models can reflect
the seasonal variation for surface soil moisture but system-
atically underestimate surface soil moisture, as indicated
by the negative BIAS values in Table 3. Among these
LSMs, VIC model gives the lowest BIAS (�0.02m3m�3)
and RMSE (0.05m3m�3). However, VIC also gives the
lowest R2 (0.358). Noah model gives moderate BIAS
(�0.06m3m�3) and RMSE (0.08m3m�3). The performance
of CLM is slightly poorer than Noah. MOSAIC has the largest
RMSE, perhaps due to the soil depth mismatch between
the model (0–2 cm) and the observation (0–5 cm). Figure 5c
and the error metrics in Table 3 indicate that Noah and CLM
well simulate the soil moisture for 10–40 cm soil layer. In
comparison with AMSR-E algorithms, the LSMs give low
RMSE and BIAS values except for Mosaic. However, the
errors are still large and the R2 are low for GLDAS surface soil
moisture outputs (Table 3).

[22] The station-averaged soil moisture for the small dense
network is also used to evaluate the 0.25� Noah outputs. The
error metrics are presented in Table 3, and the performance
is similar to that for the large coarse network.
[23] In a word, the GLDAS LSMs systematically underesti-

mate the moisture for the surface soil layer but well simulate
the moisture below the surface soil layer for this region. This
issue will be discussed in section 4.2.

4. Discussions

4.1. Sensitivity to the Measurement Density

[24] In the aforementioned evaluation for the small dense
network, we used eight stations that have data records since
2010. The network was enhanced in 2011, with nine
additional stations installed within the small dense network.
Figure 6 shows the soil moisture time series averaged over
the eight stations and the one averaged over all 17 stations
for the period from 1 July 2011 to 20 September 2011.
The latter is slightly larger than the former, with their mean
difference of 0.021m3m�3, root mean square difference of
0.024m3m�3, and R2 of 0.99. We re-evaluated AMSR-E
soil moisture products against the all-station averaged
values. The error metrics in Table 4 show BIAS and RMSE
change slightly, but the errors are still too large to meet the
mission requirement. Regarding the Noah simulation, its

Figure 4. The time series of the station-averaged soil moisture and the four AMSR-E estimated ones for
(a) the descending orbit and (b) the ascending orbit, separately, for the small dense network.

Table 2. The specified depths of soil layers for four LSMs in GLDAS

LSMs Vertical Layers

CLM (10 layers) 0–1.8, 1.8–4.5, 4.5–9.1, 9.1–16.6, 16.6–28.9, 28.9–49.3, 49.3–82.9, 82.9–138.3, 138.3–229.6, and 229.6–343.3 cm
Noah (four layers) 0–10, 10–40, 40–100, and 100–200 cm
Mosaic (three layers) 0–2, 2–150, and 150–350 cm
VIC (three layers) 0–10, 10–160, and 160–190 cm
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performance becomes even worse when evaluated with the
all-station averaged soil moisture.

4.2. Underestimation of Surface SoilMoisture inGLDAS

[25] It is well known that uncertainties in atmospheric
forcing and model parameters cause simulation errors. In
this study, the four GLDAS LSMs systematically underesti-
mate the surface soil moisture, but two (CLM and Noah)

among them can well simulate the 10–40 cm soil moisture
in the central TP. In the following, we investigate the cause
of this phenomenon.
[26] Concerning soil moisture simulation, precipitation and

soil properties are two dominant factors. First, the measured
precipitation at CMA (China Meteorological Administration)
Naqu station, which is located at the center of our network,
is compared with GLDAS precipitation. Figure 7 shows the

Figure 5. The time series of the station-averaged soil moisture and the simulated ones (a) for 0–5 cm by
CLM and Noah, (b) for 0–5 cm by VIC and MOSAIC, and (c) for 10–40 cm by CLM and Noah for the
large coarse network. Note: all the simulated soil moisture for the frozen season are not evaluated, as
the models provide the total soil moisture (both liquid and solid water) data while the sensor only
measured liquid water. The deeper layer data from MOSAIC and VIC are not evaluated because the
depths in the models do not matchup with the depth of the observation.

Table 3. Error metrics of GLDAS simulated soil moisture (for 0–5 cm and 20–40 cm, respectively) during the unfrozen season for the
Naqu network

Area Depth LSMs BIAS (m3m�3) RMSE (m3m�3) R2 No.

Large coarse network 0–5 cm CLM �0.08 0.09 0.473 1878
Noah �0.06 0.08 0.483 1878
VIC �0.02 0.05 0.358 1878

Mosaic �0.13 0.14 0.491 1878
10–40 cm CLM 0.01 0.02 0.609 1878

Noah 0 0.02 0.585 1878
Small dense network 0–5 cm Noah �0.07 0.09 0.466 1878

10–40 cm Noah �0.04 0.04 0.528 1878
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time series of GLDAS daily precipitation and the observed
one at CMA Naqu station from 1 August 2010 to 20 Septem-
ber 2011. During this period (a total of 416 days), the total
amount of GLDAS precipitation (659mm) is slightly smaller
than the observed one (720mm), but the precipitation events
in GLDAS (141 days with daily precipitation≥ 1mm) are
more frequent than those measured at CMA Naqu station
(106 days with daily precipitation≥ 1mm). As a result, LSMs

may yield higher soil water content when being driven by
GLDAS precipitation than being driven by the observed pre-
cipitation. Therefore, the precipitation is not the main cause
leading to the LSM’s underestimation of surface soil moisture.
[27] On the other hand, the areal soil hydraulic proper-

ties may significantly impact the simulation of the
surface soil moisture. Several studies indicate that
SOC substantially affect the soil thermal/hydraulic properties

Figure 6. The time series of surface soil moisture averaged over the eight stations deployed in 2010 and
over all 17 stations within the small dense network from 1 July 2011 to 20 September 2011.

Table 4. Error metrics of AMSR-E soil moisture against the averaged values over eight stations deployed in 2010 (outside the parentheses)
and against the averaged values over all 17 stations (inside the parentheses) for the period of 1 July to 20 September 2011 for the small
dense networka

Products BIAS (m3m�3) RMSE (m3m�3) R2 No.

NASA �0.15(�0.17) 0.17(0.18) 0.28(0.271) 57
Descending JAXA 0.19(0.17) 0.22(0.21) 0.379(0.221) 21

LPRM_C 0.17(0.15) 0.18(0.15) 0.724(0.764) 52
LPRM_X 0.19(0.16) 0.19(0.17) 0.696(0.719) 52
NASA �0.14(�0.16) 0.15(0.17) 0.628(0.626) 57

Ascending JAXA 0.26(0.24) 0.26(0.24) 0.159(0.163) 21
LPRM_C 0.1(0.08) 0.11(0.08) 0.696(0.75) 57
LPRM_X 0.09(0.07) 0.1(0.08) 0.742(0.767) 57

aThe period for the JAXA data is only from 1 July 2011 to 31 July 2011.

Figure 7. The time series of (a) the GLDAS daily precipitation and (b) the observed one for Naqu station
from 1 August 2010 to 20 September 2011 for the large coarse network.
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[e.g., Yang et al., 2005; Lawrence and Slater, 2008; Chen
et al., 2012]. According to our measurements in Naqu network,
the SOC content is substantially high within the topsoil (mean
volumetric content of 28.8% for 0–5 cm layer) while rapidly
decreases with soil depth (around 6.2% at depth of 40 cm).
This lead to evident soil stratification, for example, large soil
porosity and water retention capability for the topsoil but
low values for the deeper soil. Therefore, we observed high
surface soil water content in this region. However, this SOC-
induced stratification of soil properties is not well represented
in GLDAS LSMs, which causes the significant underestima-
tion of the surface soil moisture. More detailed investigations
are needed to clarify this issue. In addition, the accuracy of the
simulated evaporation may also affect the soil moisture in the
model. Evaporation is determined by several transfer resis-
tances (e.g., turbulent transfer resistance, canopy stomatal
resistance, and soil evaporation resistance), and each of them
is difficult to be handled in the model. For example, the
thermal transfer resistance in SiB2, Noah, and CLM is lower
than the observed one for arid and semi-arid conditions [Yang
et al., 2009b], which further changes surface energy partition
[Chen et al., 2010, 2011; Liu et al., 2012]. However, its effect
on the simulation of soil moisture is indirect and needs further
investigations. Furthermore, the uncertainties in available soil
texture and other parameter databases should not be ignored.
The simulation error sources are indentified at an alpine
grassland site with Noah model. We found that the soil
texture-induced error is minor than the SOC-induced error
(not shown).

5. Conclusions

[28] In this study, we evaluated four AMSR-E soil mois-
ture products and four GLDAS soil moisture outputs against
the ground measurement at two spatial scales (1� � 1�and
0.25� � 0.25�) in the central Tibetan Plateau, which is a cold
semi-arid region with low biomass.
[29] Compared to the ground truth, the four AMSR-E

products have large discrepancies in this region. In terms
of the mission requirement of RMSE< 0.06m3m�3, none
of them provides reliable estimates in the unfrozen season
(May to October). The JAXA, LPRM_C, and LPRM_X
products can reflect the soil moisture dynamic range but give
too large seasonal amplitude, whereas the NASA product
exhibits a dampened range of soil moisture. The JAXA
product gives the smallest BIAS, while the NASA product
evidently underestimates the soil moisture and LPRM
products have large positive biases. These suggest that
AMSR-E soil moisture retrieval algorithms need more
improvements in cold semi-arid regions.
[30] The GLDAS LSMs systematically underestimate the

moisture within the topsoil but well simulate the soil mois-
ture below the topsoil. Compared with AMSR-E algorithms,
the GLDAS LSMs give low RMSE and BIAS values except
the Mosaic model. However, the errors in GLDAS are still
large, and the R2 of GLDAS products are lower than those
of the satellite products. The cause for the systematic
underestimation in the simulations is due to the absence
of high amount of soil organic carbon, which was found
in the central TP.
[31] The evaluation in this study assumes that the arith-

metic average over station-measured soil moisture represents

the ground truth. In consideration of high spatial variability
of soil moisture, the assumption may lead to uncertainties
in the evaluation. To reduce this uncertainty, it is indispens-
able to up-scale soil moisture from point measurements to
areal average.
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