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Abstract: Modeling soil salinity in an arid salt-affected ecosystem is a difficult task when using remote sensing 
data because of the complicated soil context (vegetation cover, moisture, surface roughness, and organic matter) 
and the weak spectral features of salinized soil. Therefore, an index such as the salinity index (SI) that only uses 
soil spectra may not detect soil salinity effectively and quantitatively. The use of vegetation reflectance as an indirect 
indicator can avoid limitations associated with the direct use of soil reflectance. The normalized difference vegeta-
tion index (NDVI), as the most common vegetation index, was found to be responsive to salinity but may not be 
available for retrieving sparse vegetation due to its sensitivity to background soil in arid areas. Therefore, the arid 
fraction integrated index (AFII) was created as supported by the spectral mixture analysis (SMA), which is more 
appropriate for analyzing variations in vegetation cover (particularly halophytes) than NDVI in the study area. Using 
soil and vegetation separately for detecting salinity perhaps is not feasible. Then, we developed a new and opera-
tional model, the soil salinity detecting model (SDM) that combines AFII and SI to quantitatively estimate the salt 
content in the surface soil. SDMs, including SDM1 and SDM2, were constructed through analyzing the spatial 
characteristics of soils with different salinization degree by integrating AFII and SI using a scatterplot. The SDMs 
were then compared to the combined spectral response index (COSRI) from field measurements with respect to the 
soil salt content. The results indicate that the SDM values are highly correlated with soil salinity, in contrast to the 
performance of COSRI. Strong exponential relationships were observed between soil salinity and SDMs (R2>0.86, 
RMSE<6.86) compared to COSRI (R2=0.71, RMSE=16.21). These results suggest that the feature space related to 
biophysical properties combined with AFII and SI can effectively provide information on soil salinity. 
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Only considering soil reflectance may not be enough 
to measure variation in soil salinity because of the 
influence of the complicated soil context (surface 
roughness, organic matter and moisture) (Metternicht 
and Zinck, 2003). Therefore, to avoid the limitations 
of soil reflectance, some studies have introduced 

vegetation as an indirect indicator to determine soil 
salinity over a local area (Dehaan and Taylor, 2002). 
As a remotely sensed indicator, the type and growing 
conditions of vegetation can provide a spatial over-
view of salinity distribution (Tilley et al., 2007). 
Vegetation reflectance has been studied to determine 
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the response to certain factors, including ozone, 
pathogens, senescence, and dehydration (Carter, 1993). 
The increased visible reflectance (VIS) and the re-
duced near-infrared reflectance (NIR) have been 
found to be a consistent measure of chlorophyll reduc-
tion and cell structure damage among various species 
in response to stress (Carter, 1993). These changes in 
VIS and NIR were also found in the response to salt 
stress (Tilley et al., 2007). Soil salinity has been esti-
mated in numerous studies by using vegetation reflec-
tance, and many of these studies preferred the use of 
vegetation indices, especially the normalized differ-
ence vegetation index (NDVI) (Tilley et al., 2007). 

The above studies also researched the response of 
NDVI to soil salt but did not consider soil and vegeta-
tion simultaneously. Therefore, Fernandez-Buces et al. 
(2006) used a modified NDVI to acquire a high corre-
lation with salinity (R2>0.8) in a semi-arid area in 
Mexico. Although the progress in detecting soil 
salinization has been made, the predictive power of 
this approach has not been examined in other locations, 
such as an arid region. Moreover, NDVI is sensitive to 
the optical properties of soil and is difficult to inter-
pret with sparse information on the vegetation (such 
as vegetation cover) in an arid area. Therefore, a 
number of derivatives and alternatives to NDVI have 
been proposed to address this limitation, such as the 
soil-adjusted, modified soil-adjusted and optimized 
soil-adjusted vegetation indices (SAVI, MSAVI and 
OSAVI, respectively). Although vegetation indices 
such as the SAVI considerably reduce inconsistencies, 
this method still suffers from some limitations, espe-
cially at relatively low vegetation cover (Rondeaux et 
al., 1996), if no information about the target is known. 
Nevertheless, according to the results of some studies, 
NDVI is an appropriate index to estimate the vegeta-
tion cover fraction where crops are concerned 
(Wardlow and Egbert, 2008; Yang et al., 2011), but it 
is not appropriate for shrub lands and grasslands due 
to the effect of mix-pixel (Montandon and Small, 
2008), especially soil components at a sub-pixel level. 
Spectral mixture analysis (SMA) has often been im-
plemented to address the problem of mixed pixels and 
has been promoted as an effective method of deriving 
the vegetation cover from multispectral imagery in 

arid areas (Jiapaer et al., 2011). Therefore, the arid 
fraction integrated index (AFII), which incorporates 
the fractions of bare soil and vegetation obtained from 
SMA, was developed to estimate the vegetation cover 
in arid lands. 

The salinity index (SI), which combines the blue 
and red band, is sensitive to the surface reflectance of 
salt-affected land with spare vegetation cover 
(Douaoui et al., 2006). We used SI along with AFII to 
simultaneously detect soil salinity. To utilize the syn-
ergistic relationship between soil and vegetation, we 
employed the concept of two-dimensional feature 
space to determine the response of this relationship to 
soil salinity. A number of studies have documented 
that two-dimensional feature space has a potential to 
permit the retrieval of soil moisture, air temperature, 
fire detection, evapotranspiration, land cover classifi-
cation, and desertification monitoring based on dif-
ferent relationships, such as LST (Land surface tem-
perature) and VI, LST and Albedo (Yang and Wang, 
2011), surface-air temperature and VI (Gillies et al., 
1997), Red and NIR (near-infra-red) (Ghulam et al., 
2007a), NDVI and Albedo (Ghulam et al., 2007b), and 
others. However, there are few studies on soil salini-
zation detection based on two-dimensional feature 
space in arid areas. 

The purpose of this study was to develop a meth-
odology to detect soil salinity in the Kuqa River delta. 
A Landsat 5 Thematic Mapper (TM) image was used 
to: (1) develop an AFII index that incorporates SMA 
to extract vegetation fraction; (2) examine the rela-
tionship between AFII and SI in response to the varia-
tion in soil salt content; and (3) construct a soil salin-
ity detecting model (SDM) that integrates AFII and SI 
in feature space. 

1  Materials and methods 

1.1  Study area 

Covering approximately 2,500 km2, the study area is 
between 83°01′–83°37′E and 41°23′–42°50′N in the 
north fringe of the Taklimakan Desert, Xinjiang Uygur 
autonomous region, China. It is located in the north-
east of the delta oasis of the Kuqa River (Fig. 1). The 
area has an extremely arid desert climate with a mean 
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annual precipitation of 51.6 mm, a mean potential an-
nual evapotranspiration of 2,723.7 mm, and an annual 
accumulated temperature (>10°C) of 4,500°C. 

 
Fig. 1  Location of the study area 

With plenty of runoff and groundwater from the 
mountains, the oasis of the Kuqa River establishes 
itself in a river delta, on the edge of diluvial-alluvial 
fans and alluvial-diluvial plains, and thus a green ring 
forms by the oasis around the edge of the Tarim Basin. 
The topographic elevation in this area ranges from 920 
to 1,100 m, decreasing from northwest to southeast. 
The soil types in the study area include agricultural 
anthrosols with low salinity (soils that human activi-
ties have resulted in profound modification to their 
properties) in the upper part of the oasis, orthic so-
lonchak with low albedo (dark topsoil with a thick 
crust due to changes in the accumulation of salt con-
tent after evaporation) in the upper-middle part of the 
oasis and solonchaks with high albedo (white and 
strongly salinized soils formed by a continuous in-
crease of salt content) in the lower part of the oasis. 

Agricultural land along the Kuqa River has ex-
panded drastically to provide for the growing popula-
tion, especially during the last 50 years. Irrigation and 
backward drainage systems have caused over 10% of 
the total land area of the oasis to become salinized, 
and have subsequently accelerated a rise in the level 
of groundwater. Groundwater levels fluctuate by at 
least 2–3 m in depth, and the water in this part of the 
surface aquifer system is highly mineralized. Strong 
surface evaporation of water and transpiration by 

plants has resulted in the salt accumulation in the root 
zone or at the soil surface because of capillary rise, 
leading to the formation of crusts. As a result, salt 
content in the surface soil (0–10 cm) is 0.6%–1.0% in 
some localized areas and even 2% in the low-lying 
area when including surface salt crusts (Zhang et al., 
2012). Therefore, the stability of these areas which are 
threatened by serious soil salinization, is very low 
(Luo et al., 2009). 

The vegetation types include halophytes and crops. 
The major halophyte communities are characterized 
by Nieraria langutorum, Halostachys caspica, 
Phragmites australis, Alhagi sparsifolia, Karelinia 
caspica, and Kalidium gracile, which grow well in the 
moderately and lightly salinized soils and have an av-
erage cover of 30% as shown by field surveys. 

1.2  Data 

1.2.1  Remote sensing imagery 
A Landsat 5 TM image covering the study area (Path 
145, Row 31) for 25 July 2007 was acquired. For the 
quantitative inverse analysis of surface variables, re-
moving the influence of the atmosphere is a critical 
pre-processing step. The TM data were geometrically 
corrected, and digital numbers were converted into 
radiances. Then, the ENVI FLAASH (fast line-of- 
sight atmospheric analysis of spectral hypercube) 
model was employed for correcting atmospheric ef-
fects, and the MODTRAN (moderate resolution at-
mospheric transmission) was used as the atmospheric 
radiation correction model with high precision. The 
values of reflectance were determined last. 
1.2.2  Field investigation 
Samples were collected according to a systematic, 
random sampling design in the salt-affected soils ac-
cording to previous work in the study area (Jiang et al., 
2008). Each sampling plot covers an area of 900 m2. A 
total of 62 samples (soil and vegetation cover) were 
measured during a field survey carried out at the time 
of the Landsat acquisition. At each sampling plot, five 
soil samples were taken. Vegetation (crops and halo-
phytes) cover was measured within each 900-m2 sam-
pling plot. In the laboratory, the composite soil sam-
ples were air-dried, ground and sieved through a 
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2-mm sieve and then analyzed for soil salt content. 
Individual spectral measurements were the average of 
5–10 scans of bare soil, and each canopy was gener-
ally sampled 10 or more times. These samples were 
then averaged to provide a single spectrum for each 
target. Figure 2 shows the field-derived average spec-
tra of salt-affected soils and vegetation. Halophye has 

relative sparse canopies compared to crops and con-
sequently has lower reflectance across the visible 
spectrum. The average reflectance of halophytic 
vegetation is higher than that of crops at 560 nm due 
to active excretion of the salt excess by salt glands on 
leaf surfaces. This result is similar to that found by 
Zhang et al. (2012). 

 
Fig. 2  Field-derived average spectra of salt-affected soils and vegetation. (a) Spectral responses to salt stress can be classified as two 
classes (crops and halophytes). Cotton and corn produced a similar shape, with lower reflectance in the green region (528–609 nm, 
particularly at 560 nm) and higher reflectance in the NIR (nearinfra-red) region (776–904 nm) compared to halophyte. (b) Reflectance of 
various salt-affected soils without saline crusts. 

1.3  Methodology 

As soil salinity levels become more extreme, the 
growth response of the vegetation is greatly affected. 
As the soil salt content increased, vegetation diversity 
decreased (Bui and Henderson, 2003; Fernandez- 
Buces et al., 2006), soil surface temperature increased, 
and soil moisture and soil evapotranspiration de-
creased when a salt crust was present (Mougenot et al., 
1993), which resulted in an increase in soil reflectance. 
This study proposed a soil salinity detection model 
(SDM) derived from remote sensing data and related  

to two indicators, AFII and SI.  
Figure 3 shows a flow chart describing the major 

steps in the methodology used to monitor soil salinity. 
First, AFII was established from spectral mixture 
analysis (SMA) and evaluated by comparison with 
field data. During this step, the soil and vegetation 
factors that were obtained from SMA were considered 
in AFII. 

Subsequently, the SDM was constructed by ana-
lyzing the scatter trajectory feature in AFII-SI space 
and its biophysical process. Finally, the study evalu-
ated the performance of SDM compared with the 
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Fig. 3  Flow chart of soil salinity detection methodology proposed using two indices, AFII, related to vegetation (crops and halophytes) 
cover, and SI, related to soil brightness in the salt-affected soil area. AFII is developed from the relationship among the fractions of crops, 
halophytes, dark soil and light soil that derives from SMA. The SDM (soil salinity detecting model) was constructed from the two indices 
based on the two-dimensional feature space and was evaluated by measured data.  

Combined Spectral Response Index (COSRI) based 
on the measured data (Fernandez-Buces et al., 2006). 
The COSRI was calculated for bare soil and vegeta-
tion by adjusting the NDVI to predict soil salinity. 
1.3.1  Establishment of AFII 
SMA has often been used to address the problem of 
mixed pixels. This approach decomposes each pixel 
in an image into a linear component of a reference 

spectrum, referred as endmembers. This spectrum can 
be either developed from laboratory or field spectra or 
derived directly from image data. The linear spectral 
unmixing model (Vandermeer, 1995) is by far the 
most common type of SMA, and although it is theo-
retically imperfect due to the omission of the effect of 
multiple scattering between cover types, the errors 
associated with the linear assumptions have been 
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found to be relatively minor. Linear SMA models 
have also been proven to be reasonably effective in 
estimating endmember fractions and are widely used 
due to their simplicity, reasonable effectiveness and 
interpretability (Xiao and Moody, 2005). SMA pro-
vides a method for determining the fraction of plant 
and soil within a pixel, without effective limitations 
on the number of bands. Different soil types or back-
grounds can be parameterized adequately based on 
SMA to quantitatively decrease the influence of soil 
on plants in a mixed pixel. 

Because of the existing correlation between bands, 
the intrinsic spectral dimensionality of a multispectral 
image is usually lower than the number of image 
bands. This is especially true for the Landsat TM and 
ETM+ instruments, where the bands in the visible 
domain are highly correlated. Therefore, only four or 

five endmembers can be supported (Small and Lu, 
2006). 

To reduce the number of endmembers and ensure 
that the SMA algorithm is effective, the modified 
normalized difference water index (MNDWI) (Xu, 
2006) and NDVI were used to delete pixels that in-
cluded water bodies and Gobi desert. The key to suc-
cessful SMA is appropriate endmember selection. De-
termination of endmembers involves identifying the 
number of endmembers and extracting their corre-
sponding spectral signatures. 

Four endmembers were selected, including high 
albedo, low albedo, crops, and halophytes (Fig. 4). 
The minimum noise fraction (MNF) algorithm (Green 
et al., 1988) was applied to the image of the study area 
in that the MNF-transformed data were used as input 
to determine the most spectrally pure pixels in the 

 

Fig. 4  Extraction of representative soil and vegetation endmembers of the study area with minimum noise fractions (MNFs) (first and 
third MNF) and RED-NIR feature space. (a) The false color composite images (bands 3–5); (b) map of NDVI with green, red and yellow 
colors indicating areas with farmland, bare soil (low albedo) and high-density halophytes; (c) false color composition images of halo-
phytes (bands 3–5) with blue pixels covered by white and strongly salinized soils (high albedo); (d) determining the locations of the three 
endmembers (crops, halophytes and low albedo) in MNFs 1 and 3 feature space; (e) determining the location of high albedo in RED-NIR 
feature space; (f) the MNF band’s eigenvalues showing most information accounted for by the first three MNFs.  
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image. Low albedo, halophyte and crop endmembers 
were extracted according to a feature space represen-
tation constructed with the first and third components 
of MNF (Fig. 4c). In this study, crop endmembers 
consist of cotton and corn. Halophyte endmembers 
consist of Nieraria langutorum, Halostachys caspica, 
Phragmites australis, Alhagi sparsifolia, Karelinia 
caspica, and Kalidium gracile, which can be used as 
the training endmembers for SMA because of their 
similar shape and reflectance value (Fig. 2a). Low 
albedo primarily consists of typic solonchak contain-
ing dark topsoil with a thick crust (Fig. 1d). The 
two-dimensional feature space plot between the RED 
and NIR bands was also used for the selection of 
endmembers (Peterson and Stow, 2003). The up-
per-right apex is characterized by bright soil with high 
reflectance values (Figs. 4d and e). We did not spe-
cially process the shadow/shaded problem in this 
analysis because there is little impact from solving 
mixed spectra among the endmembers. The spectral 
signatures of all selected endmembers are shown in 
Fig. 5 and are similar to the field spectral measure-
ments (Fig. 2). 

 
Fig. 5  Spectral curves of selected endmembers 

AFII was established to interpret the vegetation 
cover. An algorithm was built by the hypothesis that 
the presence and proportion of vegetation, particularly 
halophytes, implied different degrees of soil saliniza-
tion (Dehaan and Taylor, 2002). AFII is an index to 
measure the abundance of vegetation cover within a 
30 m×30 m pixel. Through utilizing this concept, we 

made use of the fractional abundance of vegetation 
and soil to define AFII on a pixel-by-pixel basis as 
follows: 

 
.

1
hv cr

la ha

f f
AFII

f f
+

=
+ +  
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Where fhv, fcr, fla and fha are the fractions of halophytes, 
crops, low albedo and high albedo, respectively. The 
addition of 1.0 in the denominator limits AFII from 0 
to 1, with high values indicating high vegetation cover, 
and lower values correspondent to high ground cover. 
Using the above equation, the coverage of sparse 
vegetation may be estimated in the study area. 
1.3.2  Spectral response of salt-affected soil 
Alterations of chemical equilibria and loss of soil fer-
tility are concomitant with structural degradation, 
which results in salt crusts, especially in salt-affected 
areas. Salt-affected soils have been found to reflect 
more incident radiation on the visible spectrum 
(0.45−0.68 μm) than salt-unaffected land cover fea-
tures (Khan et al., 2005). This response of saline soils 
is extremely useful as it helps the segregation of dif-
ferent salt-affected soils. With respect to the spectral 
reflectance of individual bands appropriate for 
salt-affected soils, various combinations were tested 
for the Landsat TM sensor, but SI performed best at 
low surface moisture content (Douaoui et al., 2006). 
Figure 2 shows the reflectance of band 1 and band 3 
of the Landsat 5 TM with various salt-affected soils in 
the study area. These results are similar to those in 
previous works (Khan and Sato, 2001). SI equation is 
expressed as follows: 

 1 3 .SI ρ ρ= ×
 

 (2) 

Where ρ1 and ρ3 are the reflectance of band 1 and 
band 3 of the Landsat, respectively. 
1.3.3  Construction of SDM 
Figure 6a shows the conceptual diagrams of different 
salinized soils in AFII-SI feature space. Within the 
AFII-SI space along the x-axis, AFII increases due to 
better vegetation cover, while along the y-axis, SI in-
creases, reflecting a rise in salt content in the surface 
soil. Such a combination can contribute to land cover 
mapping and land cover change analysis in the 
AFII-SI space, which contains information on many 
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Fig. 6  Conceptual diagram showing the expected relationship 
between AFII and SI in salt-affected soil. For illustrating the soil 
salinization concept, four ellipses have been drawn. (a) Severely 
salt-affected soil A is considered to have high SI and low AFII. 
Only a few high-tolerance halophytes can survive in this soil. 
Moderately salt-affected soil B is considered to be in the areas 
that are occupied by halophytes and dark soil. Slightly 
salt-affected soil C is considered to be in areas with high crop 
cover and few halophytes present, resulting in high AFII and low 
SI. Non salt-affected soil D is covered by farmland. (b) and (c) are 
the sketch maps of salinity detecting model (SDM)1 and SDM2.  

biophysical attributes and processes of soil saliniza-
tion. Figure 6 illustrates the conception of the soil 
salinization process. Here, the AD line represents the 
direction of soil salinization from severely 
salt-affected soils to moderately salt-affected soils, 
slightly salt-affected soils and non salt-affected soils, 
which can be expressed by the following equation: 

 .SI K AFII C= × +   (3) 
Where K refers to the slope of AD, and C is the inter-
ception on the vertical axis. 

A line T that crosses the coordinate (1, 0) and is 
vertical to the line AD can be delineated in Fig. 6b. 
Therefore, as the normal function of a line, T can be 
mathematically formulated from the AD equation: 

 1 1.SI AFII
K

= − +   (4) 

With an increasing amount of vegetation, the plot 
shifts upward vertical to line AD, while with a de-
crease in the soil salt content, the plot shifts parallel to 
line AD and orthogonal to normal line T. That is, the 
farther the distance from T, the stronger the soil 
salinization. Therefore, it is possible to determine the 
soil salinity using the mathematical expression of the 
distance from the appropriate point to line T. Taking a 
random point in the AFII-SI space, H (XAFII, YSI), the 
distance indicated by SDM1 from H (XAFII, YSI) to line 
T, can be calculated using the following: 

 
2

1
1 .

1
SI AFIIKY X

SDM
K

+ −
=

+  
 (5) 

Therefore, pixels placed near line T are always crop 
land (low saline) which infinitely approaches 0; while 
the area farthest from line T represents an extremely 
salinized soil surface. 

Figure 6c shows another, simpler conception com-
pared to Fig. 6a. Taking a random point H (XAFII, YSI) 
in the AFII-SI space, the distance represented by SDM 
2 from the point (1.0) indicates a different salinity 
condition. The farther the distance from the point (1.0), 
the stronger the soil salinization. The SDM2 can be 
expressed by the following equation: 

 
( )

1
2 2 22 1 .AFII SISDM X Y⎡ ⎤= − +⎣ ⎦  

 (6) 

1.4  Validation 

The resulting actual measured soil salt contents and 
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vegetation covers of the samples were then compared 
with their predicted values from sample TM pixels to 
evaluate the different models. A coefficient of deter-
mination (R2) was used to assess the accuracy of this 
method. We also compared the models by computing 
the root mean square error (RMSE), as shown below: 

 ( ) ( )2 2
2 ` `1 / .

n n
R Y Y Y Y

i i
= − − −∑ ∑   (7) 

 
( )21 ` .

n
RMSE Y Y

N i
= −∑

 
 (8) 

Where Y﹑and Y are the measured and predicted values, 

respectively, Y  is the mean of the observed values, 
and n is the number of observations. 

2  Results 

2.1  Responses of vegetation cover to salt stress 

Soil salinization is categorized into four classes: se-
vere salinization, moderate salinization, slight salini-
zation and non salinization according to the soil salt 
content and plant salt-tolerance capacity. The charac-
teristics of each soil category are described in Table 1.  
The degree of soil salinity as a selection mechanism 
characterizes a relationship that is exemplified by 
lower vegetation cover or diversity in response to 
higher soil salt stress in the study area, and vice versa 
(Table 1). A relatively strong correlation between 
vegetation cover and soil salt content, an R2 greater 
than 0.74, was found according to regression analysis 
(Fig. 7). This preliminary result indicates that deter-
mination of the vegetation fraction might be a useful 
tool to detect soil salinity. 

 

Fig. 7  Correlation between soil surface salt content and total 
vegetation cover in the study area; n=62 

2.2  Performance of AFII 

Figure 8 shows the distribution of vegetation derived 
from an image using two vegetation indices, AFII and 
NDVI. A high abundance of vegetation is indicated by 
a bright tone and a low abundance by a darker tone. 
The distribution of halophytes and crops, revealed by 
AFII, is concentrated in the northwest and southwest, 
but NDVI is only good at indicating irrigated land. 
Sparse vegetation is clearly observed at low elevations 
when using AFII (Fig. 8a) compared to NDVI (Fig. 8b) 
in the northeast, and especially in the southeast. Vis-
ual examination confirmed the ability of AFII and 
NDVI to retrieve vegetation information, and an ac-
curacy assessment was also carried out using the field 
measured data. 

Table 1  Primary characteristics of the salt-affected soil classification categories, in terms of soil salt content and vegetation cover ac-
cording to He et al. (2006) 

Category Characteristics 

Severely salt-affected soil High soil salt content (SSC>75 g/kg); low total vegetation cover (0–3%); few halophytes survive 

Moderately salt-affected soil Moderate soil salt content (45 g/kg<SSC<75 g/kg); moderate total vegetation cover (3%–15%); few types of 
halophytes survive 

Slightly salt-affected soil Light soil salt content (15 g/kg<SSC<45 g/kg); total vegetation cover ranging from 15% to 50%; various types of 
halophytes survive 

Non salt-affected soil Low soil salt content (SSC<15 g/kg); total vegetation cover ranging from 55% to 100%; crops dominate 
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Fig. 8  Distribution of vegetation indices. (a) AFII, (b) NDVI. The 
whiter the color, the higher the proportion of vegetation cover is 
within the pixel. The dark areas mask water bodies and Gobi 
desert. 

A total of 62 plots were sampled to estimate the ac- 
curacy of AFII. NDVI was compared to AFII. The 
regression analysis for NDVI achieves a relatively low 
positive goodness of fit (R2=0.67), whereas that for 
AFII obtains a higher goodness of fit (R2=0.84) and a 
lower RMSE (Figs. 9a and c). Assessing the soil salt 
content with AFII and NDVI exhibits similar trends to 
those mentioned above, but a different relationship 
was found, linear for vegetation and exponential for 
soil salt content. AFII outweighs NDVI in estimating 
soil salt content (Figs. 9b and d). AFII achieves a 
slightly higher coefficient of determination (R2=0.75) 
and a notably lower RMSE of 7.3 compared to the 
results of NDVI with salinity (R2=0.70, RMSE=17.5).  

 
Fig. 9  Regression relationship between the vegetation index and field data. (a) NDVI vs. VC (vegetation cover, %); (b) NDVI vs. soil salt 
content (g/kg); (c) AFII vs. VC; (d) AFII vs. soil salt content (g/kg); n=62. 

2.3  The relationship between AFII and SI in fea-
ture space 

Feature space was constructed based on the assump-
tion presented in Fig. 6a. A negative relationship be-
tween AFII and SI is revealed in Fig. 10a. Pixels near 
the top of the y-axis and the left of the x-axis are al- 

tered significantly and present a high risk of soil 
salinization with high SI and low AFII. Moderately 
salt-affected soil dominates the middle area of feature 
space, with salinity increasing from non salt-affected 
soil to severely salt-affected soil. T1, T2, T3 and T4 are 
the mean values of non salt-affected soil, slightly 
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salt-affected soil, moderately salt-affected soil, and 
severely salt-affected soil, respectively. There is a 
negative correlation (R2=0.6437, Fig. 10b) with 95% 

confidence (P≤0.001) between AFII and SI, in which 
the greater the distance from T1, the stronger the soil 
salinization (Fig. 10b). 

 
Fig. 10  Construction of two-dimensional feature space using AFII and SI. (a) Scatter plot of AFII and SI from an image of the study area. 
(b) Relationship between AFII and SI retrieved from the image corresponded with measured data. The individual symbols represent 
different types of salt-affected soil: triangle (non salt-affected soil), circle (slightly salt-affected soil), square (moderately salt-affected soil), 
and diamond (severely salt-affected soil).  

2.4  Model validation 

The K value of –0.1436 in Eq. 9 is the calibration re-
sult of the parameter from line AD, which was calcu-
lated based on 300 random samples from the TM im-
age of the study area. By introducing K into Eq. 5, the 
final equation of SDM1 can be written as: 

 
2

0.1436 1
1 .

1 0.1436
SI AFIIY X

SDM
− + −

=
+

  (9) 

The predictive ability of the two models (SDM1 
and SDM2) was assessed using ground truth data by 
comparisons with COSRI. The COSRI is defined as 
follows: 
 ( ) ( )1 2 / 3 4 .COSRI b b b b NDVI= + + ×⎡ ⎤⎣ ⎦  (10) 

Where b1, b2, b3 and b4 are the first four bands of the 
TM image. 

Table 2 summarizes the valuation of the three mod-
els (Fig. 11) using the coefficient of determination (R2) 
and RSME with respect to the field measurements. It 
can be seen in Table 2 that two nonlinear relationships, 
an exponential form (Model A) and a polynomial 
form (Model B), exist between the soil salt content 

and estimated value. Goodness-of-fit performs rea-
sonably well for both Model A and Model B over all 
participants, including COSRI, SDM1 and SDM2. 
Among those outcomes (Table 2), there is no marked 
contrast in overall accuracy between SDM 1 and SDM 
2, whether using Model A or Model B. The values of 
RMSE for SDM 1 were 10.43 with Model A and 
11.36 with Model B, and 10.12 with Model A and 
11.28 with Model B for SDM2. In contrast, COSRI 
has a relative high RMSE of 15.10 with Model A and 
16.41 with Model B. The coefficients of determination 
(R2) between SDM2 and soil salt content are the high-
est, followed by SDM1 and, finally, COSRI. There- 

Table 2  Ability of COSRI, SDM1 and SDM2 to predict soil sa-
linity in exponential and polynomial forms 

 Model Equation R2 RMSE

Model A y=18.296e–10.131x 0.7410 15.10 
COSRI

Model B y=452.49x2–212.86x+26.155 0.6540 16.41 

Model A y=0.6285e5.1765x 0.8134 10.43 
SDM1

Model B y=153x2–83.403x+12.988 0.7658 11.36 

Model A y=0.5655e5.2757x 0.8156 10.12 
SDM2

Model B y=155.22x2–87.914x+14.296 0.7708 11.28 
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Fig. 11  Regression between the three models and soil salt 
content. (a) SDM1 vs. soil salt content (g/kg); (b) SDM2 vs. soil 
salt content (g/kg); (c) COSRI vs. soil salt content (g/kg); n=62. 

fore, exponential models are recommended for esti-
mating soil salt content. 

Exponential models were chosen because of their 
relatively better performance. To further analyze the 
prediction capability, we performed a contrast analysis 
on the predicted values of these three models with in 
situ measurements. A total of 30 samples were se-
lected from the field measurements for model valida-
tion. These samples are spatially independent of those 
used as training data for the construction of models 
mentioned above (32 samples). The results revealed 
that the coefficient of determination of the soil salt 
content predicted by the COSRI (R2>0.718) was lower 
than that from the SDM1 (R2>0.867) and SDM2 
(R2>0.865). Soil salt content was predicted by SDM1, 
and SDM2 well matched the field measurements. 
RMSEs for SDM1 and SDM2 are 6.86 and 6.97, re-
spectively (Table 3). These results imply a superior  

Table 3  Relationship between estimated and measured values 

Model Number of samples R2 RMSE 

COSRI 30 0.7185 16.21 
SDM1 30 0.8673 6.86 
SDM2 30 0.8652 6.97 

performance of the two new models when compared 
to COSRI, which illustrates that the SDMs, especially 
SDM1, were better indicators than the COSRI. 

3  Discussion 

The study area is demonstrated by a spatially hetero-
geneous group of saline soils and vegetative cover that 
is strongly driven by topography. Spatial variability is 
related to the distribution of soil types (dark soil and 
light soil) and vegetation communities (crops and 
halophytes) in the study area. Because of the existence 
of a spectral mixture of soil and vegetation in pixels in 
this situation, limitations exist with respect to assess-
ing the soil salt content using remote sensing data di-
rectly, such as Landsat images (Metternicht and Zinck, 
2003). Therefore, we attempted to utilize the informa-
tion from vegetation; hence, we considered soil and 
vegetation simultaneously to detect the soil salt con-
tent. Plants can be used to predict soil variables such 
as the salt content, either from field observations or by 
remote sensing (Fernandez-Buces et al., 2006), as was 
also noted in field measurements of soil salt content 
and vegetation cover in this study (Fig. 7). Therefore, 
effective and accurate information on certain vegeta-
tion as a reflection of the soil salt content is the key 
factor in evaluating the soil salt content. NDVI shows 
a positive correlation with photosynthetic activity, 
biomass and leaf area index, and has proven to be 
useful in analyzing vegetation patterns and assessing 
vegetation dynamics. In addition, Brunner et al. (2007) 
found a relationship (R2=0.63) between an uncali-
brated salinity map (NDVI-based) and field data (soil 
salinity) during summer in Yanqi Basin, northwestern 
China. We examined the ability of NDVI to retrieve 
the soil salt content and vegetation cover from remote 
sensing in the study area (Figs. 7a and b). However, 
low vegetation (halophyte that indicates the extent of 
the soil salt content) density has not been considered 
explicitly by NDVI, nor has high RMSE been used to 
retrieve the soil salt content (Fig. 9b). NDVI has low 
sensitivity to sparse vegetation because of the inter-
ference by light soil backgrounds and is an ambiguous 
indicator for the extent of salinity in arid regions. 
Therefore, AFII, which is an auxiliary index for the 
estimation of soil salt content, was established to in-
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terpret vegetation cover based on SMA (Fig. 5).  
As illustrated in Fig. 9a, soil salinization was ana-

lyzed appropriately by AFII (Fig. 9b). The amplitude 
of change in both vegetation cover and soil salt con-
tent was captured better by AFII than by NDVI (Fig. 
7). This index achieved a higher accuracy, presumably 
due to a better representation of intra-class spectral 
variability. De Asis and Omasa (2007) used a fraction 
combined with different endmembers to extract vege-
tation cover based on SMA, achieving a very high 
correlation coefficient (r=0.94) with field measure-
ments. However, the improvement in AFII was not 
sufficient enough to accurately estimate the soil salt 
content compared to retrieving the vegetation cover 
(Figs. 9c and d). Therefore, the feature space employed 
AFII and a component of SI and was structured to 
improve the detection of soil salinity (Fig. 10a). 

Increases in soil salt content decrease the greenness 
of the canopy and increase soil reflectance. Being 
quite a similar shape to that of Ts-NDVI space, corre-
sponding different SSS was obtained with AFII-SI 
scatter plot when the axes were substituted with an 
improved vegetation index and soil salinity index (Fig. 
10a). As shown in Fig. 10b, heterogeneous surfaces 
with different salt-affected soils have further validated 
the hypothesis presented in Fig. 6a. 

Two types of models were developed, including 
exponential and polynomial forms. The prediction 
level was improved when the exponential model was 
used in place of the polynomial model that considers 
the models proposed here, including COSRI and 
SDMs. The SDMs showed superior results when 
compared with the COSRI according to measurements 
of precision and stability. COSRI was built for a 
semi-arid environment in Mexico and may not be 
suitable for arid areas. The ambiguity of NDVI-based 
models (such as COSRI) for predicting salinity is re-
lated to species differences existing in the spectral 
thresholds and spectral responses to salinity. These 
differences may originate from the diverse adaptation 
mechanisms to salinity, such as salt sensitivity (crops) 
and halophyte characteristics captured by AFII in 
SDMs according to SMA. This improvement com-
pensates for the limitation of only using soil reflec-
tance. Furthermore, unlike NDVI, which utilizes only 

the visible and near-infrared bands, the SMA makes 
use of the full spectral reflectance. 

Although soil moisture has been shown to be a ma-
jor factor controlling soil reflectance, the area we 
study is almost completely dry because of a high rate 
of evapotranspiration. In addition, many other physi-
cal properties (e.g. surface roughness and organic 
matter) also influence surface reflectance. This was 
not considered in the present study. Moreover, the 
time of image acquisition should be at a specific sea-
son when various vegetation species grow, which can 
relatively indicate the extent of soil salinization at that 
location. If the proposed method is applied in other 
arid or semi-arid areas in the future, a map of vegeta-
tion types may be needed to better interpret the remote 
sensing image. 

4  Conclusion  

Using only the soil spectrum might not meet the re-
quest to quantitatively estimate soil salinity. Vegeta-
tion as a potential factor may help to improve the ac-
curacy of detecting soil salt content. Our study pre-
sented a simple methodology for detecting soil salinity 
called SDMs, including SDM1 and SDM2. The SDMs 
were built by combining the spectra of halophytes and 
bare soil based on a feature space that consists of AFII 
and SI.  

The paper compared six types of remote sensing 
inversion approaches (COSRI, SDM1 and SDM2 in 
exponential and polynomial forms) to determine an 
appropriate model for deriving soil salinity in an arid 
region. The result found that SDM1 and SDM2 in an 
exponential form exhibited the highest accuracy. The 
results of this study validated our assumptions and 
successfully countered the negative situation in which 
lower precision in evaluating the soil salt content due 
to vegetation factors leads to spectral confusion. 

It should be noted that AFII is based on the average 
spectra of halophytes and soil supported by SMA. 
Further studies should focus on each halophyte sepa-
rately with a specific spectral mixture model. Another 
relatively new technique, the multiple-endmember 
SMA model (MESMA), may also be able to better 
capture the spectral variability in surface reflectance 
in heterogeneous salt-affected landscapes. 
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