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Phenology event responses, based on vegetation types, are strong indicators of cli-
mate variability and the ability of the vegetation to adapt to future climate changes.
However, the sensitivity of phenology events to climate change along either environ-
mental or vegetation type gradients is rarely examined. Phenological curves of major
vegetation types along the North−South Transect of Eastern China (NSTEC) have
been developed using wavelet and smooth-spline methods based on the normalized
difference vegetation index from 1982 to 2006. Spatial−temporal patterns, trends of
greenup-onset dates, dormancy dates, and growing season lengths (GSLs) during the
period of 1982−2006 are presented.

The greenup-onset dates were most significantly and negatively related to the tem-
perature in cold and humid areas, but insignificantly and positively in semi-arid regions.
However, dormancy date showed a positive correlation with temperature. In popu-
lations of the same vegetation type, distributed along thermal gradients of NSTEC,
the phenology sensitivities to warming were different. Greenup sensitivities of cold
temperate coniferous forest (CTCF) and temperate meadow steppe (TMS) increased sig-
nificantly from −6.0 to 0 days ◦C−1 (p < 0.001) and from about −2.0 to 2.0 days ◦C−1

(p < 0.001), respectively. In contrast, temperate grass steppe (TGS) and temperate
deciduous shrubland (TDS) showed a decreased trend of greenup sensitivity from 2.0 to
−4.0 days ◦C−1 (p < 0.001) and from 2.0 to −6.0 days ◦C−1 (p < 0.001), respec-
tively. For the dormancy date sensitivity, CTCF showed a decreasing trend from about
6.0 to 0 days ◦C−1 (p < 0.001), and subtropical evergreen-broadleaved forest (SEBF)
decreased from 5.0 to −5.0 days ◦C−1 (p < 0.05).

1. Introduction

Phenological records are a useful proxy in the study of climate change, because the seasonal
pattern of vegetation is sensitive to small variations in climate (Tan et al. 2011). Vegetation
phenology is an important component of dynamic vegetation models and it reflects the
dynamics of the carbon−water exchange between the land surface and the atmosphere.
Shifts in plant phenology are seen as fingerprints of global warming (Jentsch et al. 2009).
Phenological event variation and its response to climate change have drawn a lot of attention
due to increasing temperatures in the northern hemisphere since the 1980s (Chmielewski,
Muller, and Bruns 2004). Advances of spring greenup have been found in mid- and high-
latitude areas (Schwartz and Reiter 2000; Defila and Clot 2001; Parmesan 2007), and also
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in low-latitude areas (Heumann et al. 2007; Xiao et al. 2006). The changes in phenological
events may have potential impacts on the net primary productivity of vegetation (Lucht et al.
2002), altering global carbon, water, and nitrogen cycles, the duration of the pollination
season, and the distribution of diseases (Schwartz and Reiter 2000; White, Running, and
Thornton 1999; Menzel 2000). Therefore, there is a critical need to examine the relationship
between climate change and phenological reponses on a large scale.

Satellite remote sensing repeatedly monitors and characterizes phenological informa-
tion on a large scale (White, Thornton, and Running 1997; White et al. 2005), which reflects
the seasonal cycles of leaf functions (Botta et al. 2000). Zhang, Friedl, and Schaaf (2009)
investigated the impacts of temporal resolution sampling on the sensitivity of phenology
detection and showed that vegetation phenology could be precisely estimated using satel-
lite data with temporal resolutions of 6−16 days. The normalized difference vegetation
index (NDVI) time-series data set is widely used because it has an advantage in present-
ing vegetation information in broad spatial coverage, especially in quantifying vegetation
variations at regional, continental, and global scales (Reed et al. 1994; Tucker et al. 2001;
Zhou et al. 2001, 2003).

Although shifts in phenology have been reported in many studies, less attention
has been paid to the impacts of continuous warming on plant species sensitivies.
For example, many woody plant species require chilling to break their dormancy and
respond to springtime warming (Baldocchi and Wong 2008; Luedeling, Zhang, and
Girvetz 2009). If chilling is insufficient, more springtime warming is required to ini-
tiate budburst for some species (Murray, Cannell, and Smith 1989). Hence, for the
population of vegetation distributed in different temperature conditions, the responses
of phenologic sensitivities to warming may be different. In addition, although many
studies have documented the shift of phenological events in Europe (Menzel and
Fabian 1999; Beaubien and Freeland 2000; Menzel, Estrella, and Fabian 2001; Zhou
et al. 2001) and Eastern Asia (Piao et al. 2006; Yu et al. 2003; Chen, Hu, and
Yu 2005), fewer studies have been performed on modelling vegetation phenology
of plants in tropical and subtropical areas, due to the challenge of removing large
amounts of noise from the remote-sensing data. Therefore, simulations of precise vege-
tation phenologic processes will be required before our study on vegetation phenology
using remote sensing can begin, especially for tropical and subtropical areas in
China.

In this study, we used the National Oceanic and Atmospheric Administration (NOAA)
Advanced Very High Resolution Radiometer (AVHRR) NDVI data sets and meteorologi-
cal data to examine recent trends in natural plant phenologies in the North−South Transect
of Eastern China (NSTEC) from 1982 to 2006. Based on water and heat gradients along
the NSTEC, this study aims (1) to develop a new algorithm to remove noise, reconstruct
time-series NDVI, and detect phenological events for wide geographical ranges of vege-
tation; (2) to quantify change patterns in vegetation phenologic events along NSTEC over
the past two decades; and (3) to investigate the response of phenologic events to climate
change.

2. Study area

The NSTEC ranges longitudinally from 110◦ E−120◦ E for latitudes less than 40◦ N, and
from longitudes 118◦ E−128◦ E for latitudes greater than 40◦ N, covering nearly one-
third of the land area of China (Peng et al. 2002). As a core project of the International
Geosphere−Biosphere Programme (IGBP), the transect was established to coordinate
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7314 Z. Yu et al.

diverse research activities with objectives to answer scientific questions pertinent to global
change (Gao, Li, and Yang 2003). Average annual precipitation and mean temperature
decrease from 1800 mm and 22◦C, respectively, in the warm and humid tropical south,
to 500 mm and 1◦C, respectively, in the cold, semi-humid north of the transect (Gao, Li,
and Yang 2003). The vegetation along the transect includes cold temperate coniferous for-
est (CTCF), temperate coniferous forest (TCF), temperate mixed forest (TMF), temperate
deciduous-broadleaved forest (TDBF), temperate deciduous shrubland (TDS), temperate
meadow steppe (TMS), temperate grass steppe (TGS), temperate grassland (TG), sub-
tropical deciduous-broadleaved forest (SDBF), subtropical and tropical coniferous forest
(STCF), subtropical evergreen-broadleaved forest (SEBF), and subtropical and tropical
grassland (STG) (Figure 1).

3. Data and methods

3.1. NDVI, climate, and land-cover data

The NDVI data set used in this study was processed by the Global Inventory Modeling
and Mapping System (GIMMS) at NASA’s Goddard Space Flight Center at spatial
resolution of 8 km × 8 km and 15 day intervals, as described by Tucker et al.
(2005). Monthly mean temperature and precipitation data were collected from 752 stan-
dard observations and interpolated to the same resolution as NDVI using Anusplin
(Ver. 4.1, Australian National University, Centre for Resources and Environmental Studies,
Canberra, Australia). Vegetation type and land-cover data were obtained from digitized
1:1,000,000 vegetation maps (Compiling Committee of Vegetation Maps of 1:1000, and
000 in China 2001) and raster maps (Ran, Li, and Lu 2010) of China, respectively.

3.2. Method

Vegetation phenologies derived from remote-sensing methods are unequal to phenology
records of species levels from a ground-measured approach. The onset of growing seasons
at a species level can hardly be detected from sensors on a landscape scale. However, the
large-scale land-surface phenology, which refers to aggregated information from the spatial
resolution of satellite sensors, can be observed from remote-sensing platforms (Tan et al.
2011). Rather than attempting to identify a vegetation-specific developmental stage, the
growing season derived from remote sensing refers to the stage of great intensity in large-
scale plant activities.

3.2.1. Spatial interpolation of meteorological variables

Monthly mean temperature and precipitation data were interpolated to the same resolution
as NDVI using Anusplin. The Anusplin package, which supports transparent analysis and
interpolation of noisy multi-variate data using thin plate smoothing splines (Hutchinson
and Gessler 1994), is widely used in interpolating climatic factors such as temperature
and precipitation. The use of Anusplin for spatial interpolation of hydrometeorological
variables and its enhanced utility over other spatial interpolation approaches, including
kriging, are summarized in McVicar et al. (2007). In this study, a quart-variate partial thin
plate spline incorporating a bi-variate thin plate spline as a function of longitude, latitude,
and constant linear dependences on elevation was used in simulating surfaces of monthly
temperature and precipitation.
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International Journal of Remote Sensing 7315

Figure 1. Vegetation types and distribution in the NSTEC.

Note: CTCF, cold temperate coniferous forest; TCF, temperate coniferous forest; TMF, temperate
mixed forest; TDBF, temperate deciduous-broadleaved forest; TDS, temperate deciduous shrubland;
TMS, temperate meadow steppe; TGS, temperate grass steppe; TG, temperate grassland; SDBF,
subtropical deciduous-broadleaved forest; STCF, subtropical and tropical coniferous forest; SEBF,
subtropical evergreen-broadleaved forest; and STG, subtropical and tropical grassland.
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3.2.2. Wavelet denoising

A generalized NDVI temporal profile is continuous and smooth because vegetation canopy
changes are small with respect to time (Ma et al. 2006; Bhandari, Phinn, and Gill 2011).
However, there are frequent fluctuations because of the variations in cloudiness, data
transmission errors, incomplete or inconsistent atmospheric corrections, and bi-directional
effects in the NDVI data sets (Ma and Veroustraete 2006). Noise reduction or model fit-
ting to raw NDVI data is therefore necessary before phenological stages can be accurately
determined (Pouliot et al. 2011), especially in tropical and subtropical areas.

In this study, we employed wavelet denoising to remove the noise from raw NDVI data.
Wavelets separate a signal into multi-resolution components, which are expressed by a set
of functions. The set of basic functions, {ψa,b(t)}, can be generated by translating and
scaling the so-called mother wavelet, ψ(t), according to Daubehies (1992), and Martínez
and Gilabert (2009):

ψa,b (t) ≡ 1√
a
ψ

(
t − b

b

)
, a > 0, −∞ < b < ∞. (1)

Here, the variable a is the scaling factor of a particular basis function and b is the shifting
variable along the function’s range (Bruce, Morgan, and Larsen 2001; Pu and Gong 2004).
The function oscillates around zero and is localized in a finite-width interval (Martínez and
Gilabert 2009). The smooth (low frequency) signals and the noise (high frequency) signals
can be derived from wavelet decomposition. Refer to Quiroz et al. (2011) and Martínez
and Gilabert (2009) for a more detailed description of the Wavelet method. The process of
wavelet denoising was implemented using a multilevel 1-D wavelet decomposition package
in MATLAB (v2011b, The MathWorks Inc., Natick, MA, USA).

Wavelet transformation is widely used in identifying the timing of events for a data
series such as localized objective signals in the presence of noise. A few examples of
these events are noise reduction in lidar signals (Fang and Huang 2004), estimating for-
est leaf area index (LAI), detecting the interannual variability of NOAA/AVHRR NDVI
and its relationship with the El Niño/Southern Oscillation index (Li and Kafatos 2000;
Park, Bayarsaikhan, and Kim 2012), and analysis of the variability of vegetation (Li
and Kafatos 2000). However, wavelet transformation is seldom used for smoothing tem-
poral NDVI data, and Figure 2 shows the denoised data set derived from raw NDVI
data. Evidently, using wavelet denoising can help smooth these abnormal values and pre-
serve the trends (variation of increase and decrease) and shape (width and amplitude) of
the curve.

3.2.3. Reconstructing a daily NDVI dynamic curve by spline smoothing interpolation

The bi-weekly maximum value composite (MVC) NDVI data is obtained from the AVHRR,
available from GIMMS. However, the phenologies of many plant species consist of a con-
tinuous and gradual change process for some plant attribute (Ma and Veroustraete 2006).
Therefore, we need to develop a daily NDVI time-step series for convenience in further
processing of phenologies. Here, we performed a spline fitting analysis of the relationship
between the bi-weekly NDVI and the corresponding days of the year (DOY) from 1982 to
2006 for the whole study area, to represent the daily changes in NDVI as a function of DOY.
The smoothing spline is constructed for the specified smoothing parameter t (Yu, Sun, and
Liu 2010), and minimizes the following two terms for the solution:
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Figure 2. Wavelet denoising.

t
∑

i

(yi − s (xi))
2 + (1 − t)

� (d2s

dx2

)2

dx,

where t is defined between 0 and 1. The first term is the sum of the squares of all of the
entries, which represents the deviation from input datapoints. The second term denotes the
second derivative of the function, which represents the quantification of roughness of the
fitted curve. As t moves from 0 to 1, the smoothing spline changes from a least-square
straight-line fit to a cubic spline interpolant (Mathworks 2012).

The 25 year NDVI data set is deemed a continuous time series, which is advantageous in
two aspects. First, since single year interpolation of previous methods can omit interannual
phenologic information, the continuous time series allows for the inclusion of this data.
Second, the difficulty in the identification of growing seasons in tropical and subtropical
areas due to misalignment of the natural year and phenological year can be solved (Yu,
Sun, and Liu 2010). Spline fit subroutines were implemented in Interactive Data Language
(v4.5, the EXELIS Inc., McLean, VA, USA).

3.2.4. Identifying vegetation phenology events

We calculated the first and second NDVI deviations to determine the rates of change and
change points in the seasonal NDVI curves. The timing of the greatest NDVI change was
then used to identify the onset dates of vegetation greenup and dormancy. After phenology
data were extracted, the non-vegetation pixels were masked for analysis by the land-cover
map of China. In addition, the pixels of greenup dates later than 200 days and dormancy
dates before 200 days were removed from the analysis because they were non-vegetation
or ‘contaminated’ by other land-cover types. In analysing the vegetation’s response sensi-
tivities to temperature, we applied 2 km buffer zones to extract pixels in core areas of the
vegetation map to further reduce noise.

3.2.5. Sensitivity index of greenup and dormancy to temperature

In accordance with similar studies (Han et al. 2011; Potts et al. 2008; Schwalm et al. 2010),
the regression coefficients of greenup, dormancy dates, and temperature were calculated
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7318 Z. Yu et al.

to further explore the underlying effects of climate change on phenological variations.
If phenologic events were unresponsive to temperature, then the regression coefficients
are close to zero. Alternatively, if phenologic events are affected by temperature, then
the regression coefficients are either positive (postponed effect) or negative (advanced
effect). The greater the impacts of temperature on phenology, the larger the regression
coefficients are. The slope of the linear correlation between phenologic events and tem-
perature therefore can be applied as an easily quantifiable index of greenup and dormancy
sensitivities to temperature that may be compared between sites with different acclimated
temperatures.

4. Results

4.1. Distribution of phenology events

4.1.1. Greenup

The spatial patterns of greenup-onset dates generally followed the moisture gradients from
east to west in northeastern China and followed the temperature gradients from the middle
to the south in the transect. The earliest greenup was found in the middle of the transect
(at about 100 DOY), followed by the southern region. The western portion of the northeast
transect had the latest greenup date of about 150 DOY (Figure 3(a)). An advance in the
greenup-onset date was found in most areas within the transect from 1982 to 2006. In con-
trast, the greenup-onset date in the northeast China plain had a positive trend (Figure 4(a)),
suggesting that the greenup-onset dates in this area were delayed from 1982 to 2006.

4.1.2. Dormancy

The onset dates of dormancy have an evident gradient along the transect from about
300 DOY in the south to 250 DOY in the north (Figure 3(b)). In the past two decades,
parts of the northeast region of the transect have shown a delayed trend in dormancy dates
of 0−0.5 days per year (Figure 4(b)). In contrast, dormancy dates in the southern transect
showed both advanced and delayed trends in different locations (Figure 4(b)).

Figure 3. Distribution of (a) greenup date − day of year; (b) dormancy date − day of year; and (c)
length of growing season − days.

Note: SGS, greenup date; EGS, dormancy date; and GSL, growing season length.
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Figure 4. Distribution patterns of greenup date trend, dormancy date trend, and growing season
length trend from 1982 to 2006. Blue, significantly positive at p < 0.05; green, insignificantly
positive; yellow, insignificantly negative; and orange, significantly negative at p < 0.05.

4.1.3. Growing season length

The spatial patterns of GSLs (among different vegetation types in the NSTEC were gen-
erally linked to moisture and temperature gradients (Figure 3(c)). We found that the GSLs
range from 100 days in the northeast to about 200 days in southwest and have lengthened
from 0 to 1.0 days year−1 for the past two decades (Figures 3(c) and 4(c)). The length-
ened trend most obviously occurred in the northernmost portion of the transect. In contrast,
the western portion of the northeast showed a slightly curtailed trend of a growing season,
which was distinct from other regions of the transect.

4.2. Correlation between phenology and climatic factors

4.2.1. Correlation between greenup date, dormancy date, and climatic factors

Figure 5 illustrated the spatial distribution patterns of the changing rates of mean annual
temperature (MAT) and mean annual precipitation (MAP) during the period of 1982−2006.
Extensive warming was detected along the NSTEC with a rate of 0.05 ± 0.03◦C year−1,
with the largest amplitude increase between latitudes 36◦ N−40◦ N (Figure 5(a)). MAP
showed a decreasing trend in the north of the transect with a rate of 10 ± 5 mm year−1,
and an increasing trend in the south transect with a maximum of about 5 ± 3 mm year−1

(Figure 5(b)).
Significantly negative relationships were found between greenup dates and tempera-

tures in the northeast and middle portions of the transect (Figure 6(a), p < 0.05). However,
significantly negative correlations between greenup dates and precipitation were only found
in a few locations of transect (Figure 6(b), p < 0.05). The greenup-onset dates were signif-
icantly negative when related to the temperature in cold and humid areas (p < 0.05), but
insignificantly positive in semi-arid regions (Figure 6(a)). However, there is a portion in the
middle of the transect, where the greenup date was significantly negatively correlated with
both temperature and precipitation (p < 0.05), though the area is considered a semi-arid
region.
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7320 Z. Yu et al.

Figure 5. Distribution patterns of mean annual temperature trend (a) and mean annual precipitation
trend (b).

Figure 6. Distribution patterns of correlation between greenup, temperature, and precipitation from
1982 to 2006. (a) greenup and temperature; (b) greenup and precipitation. Blue, significantly positive
at p < 0.05; green, insignificantly positive; yellow, insignificantly negative; and orange, significantly
negative at p < 0.05.

Increasing temperatures encourage a delay of dormancy dates in most areas of the
transect, which were most significant in the north of the transect (Figure 7(a), p < 0.05).
The dormancy dates of most plants in the transect showed an insignificant relation with
autumn precipitation. An exception was found in the southeast region of the northeast
transect, where dormancy dates showed a slightly negative relationship with temperature,
but a positive relationship with precipitation.
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Figure 7. Distribution patterns of correlation between dormancy, temperature, and precipitation
from 1982 to 2006. (a) Dormancy and temperature; (b) dormancy and precipitation. Blue, signif-
icantly positive at p < 0.05; green, insignificantly positive; yellow, insignificantly negative; and
orange, significantly negative at p < 0.05.

4.2.2. Inter-vegetation phenologic sensitivities to climatic factors

Figure 8 shows changes in different vegetation phenologies along the temperature and pre-
cipitation gradients in the NSTEC. Heat and moisture gradients along the NSTEC caused
a phenological events gradient, i.e. the onset dates of greenup follow a time sequence
spanning zones of cold temperate vegetation (CTCF) > temperate vegetation (TCF, TMF,
TDBF, TDS, TMS, TGS, TG) > subtropical vegetation (SDBF, STCF, SEBF, STG) and
the onset dates of dormancy and GSLs span zones of subtropical vegetation > temperate
vegetation > cold temperate vegetation.

For different vegetation types distributed along the NSTEC, an increase of 1◦C in
annual temperature encourages the advancement of a greenup date by 1.54 days and the
delay of dormancy date by 2.16 days, and lengthens the growing season by 3.70 days
(Figure 8). In comparison, an increase of 1 mm in annual precipitation encourages the
advancement of the greenup date by 0.02 days and the delay of dormancy date by 0.03 days
and lengthens the growing season by 0.06 days (Figure 8). The variations in greenup dates,
dormancy dates and GSLs, however, show a decreasing trend, spreading from the middle
of the transect to the north and south ends.

4.2.3. Phenologic sensitivities of vegetation acclimated under different temperatures

We plotted the sensitivity index of each vegetation type against the acclimated temperature
(average temperature of 1982 to 2006), as shown in Table 1. We found that temperature
acclimation has resulted in different vegetation responses distributed along the thermal
gradient of the NSTEC.

Greenup sensitivity of CTCF ranged from −6.0 to 0 days ◦C−1 with an increasing trend
of 0.56 days ◦C−2 (p< 0.001) along the temperature gradient of the transect. Alternatively,
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7322 Z. Yu et al.

Figure 8. Vegetation phenology change along temperature and precipitation gradient in the NSTEC.
(Along temperature gradients from low to high: CTCF, TMS, TMF, TGS, TDBF, TDS, TCF, STCF,
TG, SDBF, STG, and SEBF; and along precipitation gradients from low to high: TGS, TMS, CTCF,
TDS, TG, TCF, TMF, TDBF, STCF, SDBF, STG, and SEBF.)

greenup sensitivity of TDS ranges from 2.0 to −6.0 days ◦C−1 with a decreasing rate
of 0.07 days ◦C−2 (p = 0.001), which means that the greenup sensitivity is greater in
warm areas than in cold areas. In addition, when acclimated temperatures increase, the
greenup sensitivity of TMS changes from −2.0 to 2.0 days ◦C−1 with an increased rate
of 0.01 days ◦C−2 (p < 0.001); alternatively, the greenup sensitivity of TGS changes from
about 2.0 to −4.0 days ◦C−1 with a decreasing rate of 0.18 days ◦C−2 (p < 0.001) from
cold areas to warm areas. The dormancy sensitivity of CTCF decreases from 6.0 days ◦C−1

in cold areas to 0 days ◦C−1 (p < 0.001) in warm areas. Also, the dormancy sensitiv-
ity of SEBF changes from 5.0 days ◦C−1 to −5.0 days ◦C−1 with a decreasing rate of
1.15 days ◦C−2 (p < 0.05) along the heat gradient.

D
ow

nl
oa

de
d 

by
 [

E
in

dh
ov

en
 T

ec
hn

ic
al

 U
ni

ve
rs

ity
] 

at
 2

3:
42

 1
4 

Fe
br

ua
ry

 2
01

5 



International Journal of Remote Sensing 7323

Table 1. Vegetation’s greenup and dormancy sensitivities to temperature.

Greenup sensitivity Dormancy sensitivity

Range
(days ◦C−1)

Trend
(days ◦C−2) p-Value

Range
(days ◦C−1)

Trend
(days ◦C−2) p-Value

CTCF −6.0 to 0 0.56 <0.001 6.0 to 0 −0.56 <0.001
SEBF − − − 5.0 to −5.0 −1.15 <0.05
TMS −2.0 to 2.0 0.01 <0.001 − − −
TGS 2.0 to −4.0 −0.18 <0.001 − − −
TDS 2.0 to −6.0 −0.07 0.001 − − −

5. Discussion

5.1. Phenology variations and the impacts of climatic factors

It is reported that many methods, such as the MVC method and the cloud algorithm for
AVHRR (CLAVR), have been commonly applied on the NDVI data set to reduce error
sources (Holben 1986; Stowe et al. 1991). However, significant residual effects remain in
the data series (Ma and Veroustraete 2006). In this study, the Wavelet method was used to
further remove noise from the raw NDVI data series, and then a spline smoothing interpola-
tion method was performed to reconstruct a daily NDVI dynamic curve. The algorithm we
presented has successfully reduced the noise, and the methods also have resolved the chal-
lenge of modelling plant phenology in tropical and subtropical areas where some methods
failed to apply, such as the inverted parabola equation functional model (Piao et al. 2006).
The former algorithms, which fit phenology curves for each year, lead to an omission of
interannual phenology information when applied to the tropical and subtropical areas.

The earliest and latest greenup dates were found for about 100 DOY in the middle of
the NSTEC and about 150 DOY in the western portion, northeast of the transect. Dormancy
dates showed an evident gradient along the transect from about 300 DOY in the south to
250 DOY in the north, which is consistent with the data reported by Piao et al. (2006) in
northern China. We found that NSTEC showed both an advance of greenup and a delay of
dormancy at a rate of 0−1.0 days per year, and extension of the GSL at a rate of 0−2.0 days
per year during the period of 1982−2006. However, the magnitude of phenology trends
varied with vegetation type and location. The phenologic shift in amplitude in the NSTEC
is close to that found in Europe and North America (Parmesan 2007; Stockli and Vidale
2004).

Climate variation could play a key role in interannual variability of phenology (Yu et al.
2003; Chmielewski, Muller, and Bruns 2004; Piao et al. 2006; Tao et al. 2008). Yu, Sun,
and Liu (2010) reported that an extensive warming has occurred across the NSTEC during
the past two decades which has contributed to the lengthening of the growing season in
the northern portion, northeast of the transect. In contrast, warming and drying in arid
and semi-arid regions of the NSTEC during the past two decades has resulted in a slightly
curtailed trend of the GSL in the western portion of the northeast area (Figures 4(c) and
5). Spatial patterns of GSLs among biomes in the NSTEC have been generally linked to
temperature and moisture gradients.

5.2. Variations of phenology sensitivities of inter-vegetation types to climatic factors

According to Thornthwaite’s classification of climate of Chang (1955), the southern
transect and the western portion of the northeast transect were classified as humid, arid, and
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semi-arid based on the amount of water available. The relationship between greenup-onset
dates and temperature were most significantly negative in cold and humid areas (p< 0.05),
but insignificantly positive in semi-arid regions, suggesting that temperature-induced water
stress could delay greenup in semi-arid areas. This conclusion was also supported by the
slightly negative correlation between precipitation and greenup dates in arid and semi-
arid areas (the western portion of the northeast transect), indicating that spring rainfall
contributes to the mitigation of water stress in the area. Tao et al. (2008) also suggested
that water stress during the preceding months could delay greenup onset in the arid and
semi-arid regions of the northeast China Transect.

Dormancy dates were slightly negatively correlated with temperature but positively cor-
related with precipitation in the southeast portion of the northeast transect, suggesting that
the dormancy of vegetation in the warm and humid areas was greatly affected by water
stress. In the northern portion of the northeast transect, which is predominately cold and
humid, however, vegetation dormancy was primarily controlled by heat, because warming
encourages the delay of dormancy dates in the region.

5.3. Greenup sensitivities of inter-vegetation types to climatic factors

For the same type of vegetation, distributed in different temperature conditions, the
phenologic sensitivities to warming were different. We found that trends of greenup
sensitivity along the heat gradients of NSTEC varied with vegetation type.

For tree types, the greenup onset may be controlled by three key factors: the degree of
winter chilling, photoperiod (day length relative to night length), and temperature (Chuine
and Cour 1999; Hay 1990; Körner and Basler 2010). Insufficient chilling in the winter
may delay spring bud break (Murray, Cannell, and Smith 1989; Körner and Basler 2010),
which would lead to an advance in bloom dates of lilac, caused by a reduction in chilling
accumulation at a rate of −1.6 to −2.2 days per 100 hours, compared with the much higher
rate of −5.0 to −4.2 days per 100 hour reduction after the chilling requirement has been
met (Schwartz and Hanes 2010). We also found that greenup sensitivity of CTCF ranged
from −6.0 to 0 days ◦C−1 with an increased rate of 0.56 days ◦C−2 (p < 0.001) along the
thermal gradient of the transect. Low greenup sensitivity of CTCF in warmer areas may be
a result of reduced chilling hours in the dormancy period, because the chilling requirement
was easier to attain in colder areas; this in turn encouraged higher heating units for the onset
of plant growth in the spring (Chen, Hu, and Yu 2005) and led to a much lower sensitivity
to warming in comparatively warm areas.

Sun et al. (2012) reported that TMS had suffered from growing season water deficits
from 1982 to 2006. Changing trends in greenup sensitivity from negative to positive indi-
cated that spring phenophases of TMS may be affected by water stresses in the area. These
plants are more vulnerable to temperature-induced water stresses in warmer areas than
in cooler areas, which can be seen from the conversion of greenup sensitivity from an
advanced effect (negative) to a postponed effect (positive). With an increasing intensity
of warming, the reduced carbon sequestration of shorter growing seasons in warmer areas
may offset the increases of carbon sequestration in colder areas.

TGS and TDS are grass and shrub species distributed in areas dominated by humid and
warm climates. These types of plants showed a greenup sensitivity change from positive
to negative, suggesting that warming may postpone greenup dates in cold areas but will
advance the greenup dates in warm areas.
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5.4. Dormancy sensitivities of inter-vegetation types to climatic factors

Dormancy sensitivity of CTCF continued to decrease from 6.0 to 0 days ◦C−1 with acclima-
tion temperature increases from −8.0◦C to 0◦C (p < 0.001). This indicates that warming
has a larger impact on postponing dormancy dates in colder areas than in warmer areas.
The dormancy dates of CTCF tend to become less sensitive to temperature with long-term
warming acclimation. Therefore, the warming effect on the lengthening of the growing
season of CTCF is reduced as dormancy sensitivity decreases.

In comparison, the dormancy sensitivities of SEBF change from positive to negative
along the heat gradient (p < 0.05), indicating that warming postponed dormancy in cooler
areas but advanced dormancy in warmer areas. However, dormancy sensitivities of TCF,
TG, TDS, TMS, TGS, TDBF, TMF, SDBF, STG, and STCF have no significant trends
under different acclimation temperatures. Dormancy dates of these vegetation types tend to
have constant responses to climate change.

The sensitivities of vegetation to climate change were assumed to be constant when
modelling the global carbon cycle (Kaduk and Heimann 1996). However, we found that
the greenup sensitivities of CTCF, TG, TMS, TGS, and TDS and dormancy sensitivities
of CTCF and SEBF will change with warming. Therefore, the global cycle models, with
consideration of the change, may draw completely different results.

6. Conclusions

In our study, the wavelet and spline methods were employed to detect vegetation phenolo-
gies and analyse their responses to climatic variables. The greenup date was affected more
by temperature than precipitation and was most significantly and negatively related to the
temperature in humid areas, and positively and insignificantly related in semi-arid regions.
In contrast, the dormancy date mainly showed a positive correlation with temperature.

The greenup sensitivity for CTCF significantly increased from negative to 0 with
increasing acclimated temperatures. Also, the greenup sensitivity in TMS significantly
increased from negative to positive, while the greenup sensitivities of TGS and TDS
reversed from positive to negative. For dormancy, CTCF is more sensitive in cold areas
than in warm areas. In comparison, dormancy sensitivities of SEBF reversed from positive
to negative along the thermal gradient.
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