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Soil salinity is one of the most common soil degradation processes, found particularly
in both arid and semi-arid areas. Salt (Cl)- and sodium (Na)-affected soils impact veg-
etation and plant communities. Under these conditions, soil salinity can serve as an
indicator of vegetation salinity. In this study, we explored whether spectroscopy could
quantitatively assess foliar Cl and Na concentration as indicators to assess salinity in
tomato plants. Reflectance spectra of soil samples were obtained in the 400–2500 nm
region using a hyperspectral radiometer. The relationship between the Na and Cl
contents of tomato plants growing in various saline environments and soil spectral
reflectance was determined using partial least squares regression. The Cl-content model
was more accurate for determining leaf salinity (R2 = 0.92, root mean square error
of prediction (RMSEP) = 0.2%) than the Na-content model (R2 = 0.87, RMSEP =
0.6%). We conclude that reflectance spectroscopy is potentially useful for characteriz-
ing the key properties of salinity in growing vegetation and assessing its salt quality. The
results of this study can serve as a starting point in precision agriculture for salinity mea-
surements in tomato fields and could be further upgraded for use by airborne/satellite
remote-sensing modes.

1. Introduction

Saline- or salt-affected soils are prevalent in both arid and semi-arid regions, with high lev-
els of evapotranspiration and irrigated agriculture (Gleick 1993). The degradation of soils
in the Jezreel Valley, one of Israel’s most important agricultural areas, is a good example of
this phenomenon. Over the years, this area has experienced large increases in soil salinity
resulting from the use of saline water (Metternicht 1998). This practice can lead to crop
damage if salinity levels exceed plant tolerance limits. Therefore, crop monitoring is crit-
ical for taking timely corrective action, such as drainage system construction (Zinck and
Metternicht 2009).

Conventional methods of monitoring changes in soil salinity are based on field obser-
vation and laboratory analyses of both crops and soils. This is mostly done by measuring
the electrical conductivity (EC) of the soil solution as well as the exchangeable sodium
percentage (ESP) and pH. However, these methods are time-consuming, expensive, and
restricted to certain areas.

Reflectance spectroscopy is one of the fastest-growing analytical technologies globally,
with an overwhelming application in virtually all the fields of science (e.g. Williams and
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Norris 1987; Demattê et al. 2004). In general, all compounds exhibit absorption/emission
spectra that can be analysed both quantitatively and qualitatively. Specifically, visible–near
infrared–shortwave infrared spectra (VIS–NIR–SWIR: 400–2500 nm) provide key aspects
of both organic and inorganic matter which constitute invaluable diagnostic information
for environmental scientists. Salt mineralogy (e.g. carbonates, sulphates, chlorides) deter-
mines the presence (or absence) of absorption bands in the electromagnetic spectrum.
For instance, pure halite (NaCl) is transparent and its chemical composition and struc-
ture preclude absorption in the visible and near to thermal IR bands (Hunt, Salisbury, and
Lenhoff 1972). Middle-IR bands, reflecting water and OH absorption, allow differentiation
between chlorides (as halite) and sulphates when both are dry. Mulders (1987) reported
the 1500–1730 nm range as one of the absorption regions for soil-surface features con-
taining gypsum (CaSO4·H2O). By inhibiting growth, soil salinity influences the spectral
reflectance of vegetation features (Rud, Shoshany, and Alchanatis 2011). Therefore, crop
canopy reflectance is indirectly related to soil salinity (Zhang et al. 1997; Szabo et al. 1998).
Importantly, salt has no spectral fingerprints across the VIS-NIR-SWIR spectral range. To
the best of our knowledge, there is no study by reflectance spectroscopy on the interaction
between soil and vegetation salinity.

In this study, we propose employing soil reflectance spectroscopy to predict the Na or
Cl content of tomato growing in various saline environments. We selected tomato because
it is one of the main field crops grown in the Jezreel region, where saline water is used for
its irrigation (Cuartero et al. 2006). Multivariate data analysis based on partial least squares
(PLS) regression was carried out to assess plant salinity from soil reflectance data. We used
Cl and Na contents measured in tomato plants as tracers for soil salinity.

2. Materials and methods

2.1. The study area

We selected two irrigated fields in the Jezreel Valley (northern Israel) that are affected
seasonally by soil salinity: Ifat and Mizra (Figure 1).

High hydrodynamic pressure is created in the upper soil layer by a buried riverbed
with restricted exit, inhibiting the lowering of groundwater levels by means of subsur-
face drainage systems. The resultant shallow saline water table contributes significantly
to increased salinity in the root zone (Mirlas et al. 2003). The Ifat field, extending over
some 50 ha, is bounded on the south by the embankment of the large Genigar Reservoir.
As a result of this reservoir’s impact on the upper groundwater, groundwater levels rise
close to the soil surface around the reservoir’s embankment. Evaporation from this shal-
low groundwater contributes to the formation of saline soils. The soils of both fields are
Chromic Vertisols, characterized by high smectite clay mineral content (Goldshleger et al.
2004). During the dry summer, wide and deep soil cracks increase deep percolation of irri-
gation water by preferential flow. During the winter rains or under summer irrigation, the
soils swell and the cracks close, resulting in a considerable reduction in saturated hydraulic
conductivity (Dan et al. 1976).

There is a salinity gradient to the north and Ifat field to the south by the embankment of
the large Maale Kishon Reservoir. As a result of the supporting impact of the reservoir on
the upper groundwater, the groundwater levels were elevated near to the soil surface around
the embankment of the reservoir. Evaporation from these shallow groundwaters contributed
to the formation of saline soils.
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Maale  Kishon

Figure 1. Location of Jezreel Valley on a map of Israel (left), with the two study fields bordering
the Genigar Reservoir (right).

Sampling location

Figure 2. Tomato planted in rows in the irrigated field at Mizra, marking the sampling locations for
soils and plants.

2.2. Sample description

2.2.1. Soil sampling

In each field, soil samples were obtained at points located at 20 m intervals along three
100 m transects aligned to capture the salinity gradient (Figure 2). Furthermore, subsamples
were taken at each point at depth increments of 0–30 cm using an auger (diameter 5 cm)
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and then bulked into one sample per point. These samples were then placed into plastic
bags for laboratory analysis. A total of 72 soil samples were collected from the two fields.

2.2.2. Tomato sampling

Tomato leaves were sampled along the transects within a 0.2 m radius of the soil sampling
points, with each sample including 3 leaves. Twenty-two leaf samples were taken from
the Mizra field and 50 from Ifat, giving a total of 72 tomato plant samples. The plants were
fertilized prior to the growth stage at which they produce fruit, and were in the reproduction
stage during spectral measurements. The plants and the soil were sampled simultaneously.

2.3. Chemical analyses

The soil samples were dried at 65–70◦C for 72 hours and milled to a size of 2 mm (by
passage through a 10 mesh sieve). For soil samples, sodium (Na) and chloride (Cl) contents
(both mg/l) in the soil solution extracted from saturated paste were analysed by flame
photometry and calometry (titration with AgNO3 solution), respectively. For plant samples,
Na content (%W) was analysed by flame photometry following digestion with H2SO4 and
H2O2. Cl content (%W) was analysed by chloridimetry following extraction with 0.1 N
HNO3 (Hille 1998; Kalra 1998).

2.4. Spectral reflectance measurements

Immediately following chemical analyses, spectral reflectance measurements were
obtained in the laboratory by scanning oven-dried soil samples with an Analytical Spectral
Devices (ASD; Boulder, CO, USA) Full-Range (FR) spectrometer (Figure 3). The FR
spectrometer samples a spectral range of 350–2500 nm, and uses three detectors span-
ning the VIS and NIR (VNIR, comprising a Si photodiode array) and shortwave infrared
(SWIR1 and SWIR2, comprising two separate InGaAs photodiodes). Spectral resolution,
as defined by full width half max, is 3 nm in the VNIR region and 10 nm in the SWIR
region.

All soil samples were held in a glass dish with a black carbon background placed
underneath (Figure 3). Spectral reflectance was measured in the laboratory by attaching the
high-intensity contact probe (‘potato’) to the soil sample. The ‘potato’, which uses a tung-
sten halogen lamp for artificial illumination, was set on a stable tripod base and maintained
in a constant position at a nadir-angle. The fibre optical cable from the ASD spectrometer
is joined to the stable tripod, which has a handle allowing vertical movement of the ‘potato’
relative to the soil sample. For each soil sample, three spectral measurements were taken
and averaged (each reflectance measurement includes an average of 40 readings).

For all experiments, BaSO4 powder of the same geometry as each soil sample was used
as a white reference to enable conversion of the radiance data to reflectance values.

2.5. Data analyses

Cl and Na contents, which are indicators of the presence of salinity in soil and vegetation,
were selected as the soil properties to be investigated in relation to spectroscopy. First, we
analysed the changes in Na and Cl contents occurring at 0–30 cm soil depth and com-
pared these with changes in Na and Cl contents occurring in the tomato plants. Next, we
correlated the soil contents of Na and Cl with the chemical properties of the corresponding
leaves.
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(a)

Figure 3. Field spectroradiometer (1) with glass dish placed above a black carbon background
(a); high-intensity contact probe ‘potato’ (2), stable tripod base (3), and fibre optic cable from
spectrometer (4).

2.6. Multivariate calibration analyses

Multivariate calibration models were generated using PLS regression (Esbensen 2002),
with the goal being to define a relationship between the VIS–NIR–SWIR spectra
(400–2400 nm) of soil samples and leaf contents of Na or Cl as an indicator of salinity
in tomato leaves:

Y = A + A1X1 + A1X1 + A1X1 + · · · + AnXn, (1)

where Y is the chemically measured Na versus Cl contents of a leaf sample, A is an empir-
ical coefficient, and X is the soil spectral reflectance at a specific wavelength. The PLS
regression is based on latent variable decomposition of two blocks of a variable’s X matrix
based on soil spectral data and Y matrix based on measured vegetation salinity data.

Since there were a limited number of samples, statistical parameters for the calibration
model were calculated by leave-one-out cross-validation (only one sample at a time is omit-
ted from the calibration and used for prediction). Leave-one-out cross-validation is the best
alternative when there are insufficient samples for a separate test set (Esbensen 2002).
To confirm the quality of the model, besides internal validation, we used another inde-
pendent validation set: from the total of 72 samples, a cross-calibration set consisted of
57 samples and the remaining 15 samples were used as a test set for prediction. The qual-
ity of the model was assessed using this group of separated samples to form the test set
rather than the samples used to optimize the model. Since the basic requirement for the
test set is to be as similar as possible to the calibration set, with regard to both population
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6084 N. Goldshleger et al.

and sampling conditions, we used PCA analyses (PCA transforms the original indepen-
dent variables (wavelengths) into new axes, or principal components (PCs). These PCs are
orthogonal, so that the data sets presented on these axes are uncorrelated with each other
(Esbensen 2002). The spectral patterns derived using PCA provide information about the
characteristic peaks, indicating which are the most significant ones when discriminating
soil samples) to identify spectrally similar samples and those having similar Na and/or Cl
contents to those of the calibration set. These samples were then manually separated and
used as a separate test set. This is required to ensure that the populations selected provide
stable chemical and spectral assessments, which can form the basis for reliable prediction
of soil properties.

The difference between the predicted and measured Cl and Na contents (measured sep-
arately) was expressed as RMSEP. RMSEP is the direct estimate of the prediction and
modelling errors, expressed in original units, and is defined as the square root of the aver-
age of the squared differences between the predicted and measured values of the validation
objects (Esbensen 2002):

RMSEP =
[∑(

Xm − Xp
)2

nv

]1/2

, (2)

where X m is the chemically measured salinity of the sample, X p is the predicted value of the
sample on the basis of spectral analysis, and nv is the number of samples in the calibration
stage. Root mean square error of cross-validation (RMSECV) is a measure of a model’s
ability to predict new samples. RMSECV is defined as the square root of the average of
the squared differences between the predicted and measured values of the cross validation
objects (Esbensen 2002). RMSECV is related to the PRESS value for the number of latent
variables (LV components) included in the model:

RMSECV =
√

PRESS

n
, (3)

where PRESS is the sum of squares prediction error. PRESS is calculated via leave-one-out
cross-validation (each sample is left out of the model and predicted once).

In addition, we used the ratio of prediction to deviation (RPD), which is defined as the
ratio of standard deviation of the reference values (e.g. STDEV of infiltration rates) to the
RMSECV or RMSEP (Mouazen et al. 2005):

RPD = STDEVIR

RMSECV (or RMSEP)
, (4)

for predicted versus measured salinity in cross-validation and prediction. R2 indicates that
the percentage of variance in the Y variable is accounted for by the X variable. An RPD
value below 1.5 indicates that the model is unusable, between 1.5 and 2.0 indicates that the
model has the potential to distinguish between high and low values, and between 2.0 and
2.5 indicates that quantitative prediction is possible. RPD values between 2.5 and 3.0 and
above 3.0 indicate that the predictive capability of the model is excellent.

Initially, the spectral data considered were reflectance (R), absorbance (–log10R), and
Kubelka–Munk units. To obtain a more linear relationship between spectral readings and
the concentration of samples measured by reflectance, the spectra are usually converted to
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absorbance or Kubelka–Munk units. To calculate Kubelka–Munk units, the reflectance (R)
at each wavelength is calculated as follows (Mark 2000):

f (R) = (1 − R)2
/

2R. (5)

Next, the first derivative using the Savitzky–Golay algorithm was applied to each soil
reflectance spectrum to remove extraneous spectral variation and create robust calibration
models (Savitzky and Golay 1964; Mark 2000). The Savitzky–Golay method enables
computation of first- or higher-order derivatives, including a smoothing factor that deter-
mines how many adjacent variables (wavelengths) will be used to estimate the polynomial
approximation for the derivation.

We also investigated the influence of using the whole spectral region as well as individ-
ual selected wavelengths to generate an optimal PLS model to predict the Na or Cl content
in tomato. Models were run on the entire wavelength region with the aim of identifying the
significant wavelengths. Significant variables were estimated using Martens’ uncertainty
test (Esbensen 2002). Many plots and results are associated with the test, which allows
estimation of the stability of a PLS regression model, identifying perturbing samples or
variables, and selecting significant X variables. The test is performed with cross-validation
over the whole spectral range. Therefore, each PLS model (raw and preprocessed) was first
run on the whole range of spectra, and then restricted to significant wavelengths, which
were identified based on Martens’ test and previous knowledge of plant absorbencies. The
model was then run solely on the selected wavelengths and reassessed until acceptable
results (in terms of model stability and prediction accuracy) were achieved. All data man-
agement, calculations, PLS analyses, and different spectral pretreatments were performed
using Unscrambler version 9.7 (Camo Software, Oslo, Norway).

3. Results

3.1. Chemical variations

For the purpose of definition, saline soils have an electrical conductivity of saturation
extracts of more than 4 dS m−1 at 25◦C. Soil salinity is measured as the salt concentra-
tion of the soil solution in terms of electric conductivity EC in dS m−1. Sensitive plants
are affected at half this salinity, and highly tolerant ones at about twice this level (Richards
1954). As can be seen from Table 1, on average, the soils studied were saline with an EC of
3.6. A high degree of variability in soil salinity is indicated by a standard deviation of 4.7,
which exceeds the mean by more than 100%. Furthermore, although there was sufficient
range in Na+ and Cl+ contents, the frequency distributions of Na+ and Cl+ concentration
measurements were skewed to minimum values (Table 1). Consequently, we might expect
that the predicted accuracy of Na+ and Cl+ in a final constructed model might be low.
Also note that there is a relatively small dynamic range of salt content measured in tomato
leaves (Table 1), which might also have an impact on model stability.

The relationships between soil and leaf Na content (Figure 4(a)) or soil and leaf Cl
content (Figure 4(b)) have R2 equal to 0.51 and 0.59, respectively. In other words, for Cl,
approximately 59% of the variability in soil content can be explained by variability in Cl
(%) leaf content. A similar comparison can be done for Na. Based on these linear regres-
sion results, we conclude that both Na and Cl contents measured in soil and leaves are
related. The following section reports the results of calibrating the relationship between
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Table 1. Average, standard deviation, median, minimum, and maximum values of Cl and Na
concentrations in soil and tomato.

Soil Tomato leaves

Cl (mg kg−1) Na (mg kg−1) EC (dS m−1) Cl (w%) Na (w%)

Average 25.9 16.8 3.6 1.45 0.22
Standard deviation 37.05 14.73 4.7 0.63 0.07
Median 56 28 1.9 1.25 0.2
Minimum 2.7 3.4 0.6 0.75 0.12
Maximum 181.0 67.6 5.28 3.9 0.53

soil and leaf Na content, and soil and leaf Cl content, using multivariate data analysis,
where wavelengths are additional explanatory variables based on PLS regression.

3.2. Calibration modelling

The importance of spectral salinity changes for the calibration is indicated from a plot of
factor loadings (LVs or regression coefficients) versus wavelength (Figures 5 and 6). The
dominant wavelengths identified by Martens’ test for predicting Cl content were centred at:
400–540, 620, 700, 940, 990–1004, 1378, 1646, 1660, 1740, 1780, 2023, 2084, 2200–2240,
2350, and 2372 nm (Figure 5). The wavelengths selected for the prediction of Na content in
soils were centred at 400–560, 720, 983, 1158, 1345, 1377, 1423, 1538, 1623, 1660, 1777,
1804, 1844, 1880, 1950, 2200–2240, and 2350 nm (Figure 6).

For the Cl calibration model, the first three loading vector (LV) components in the PLS
model explained 95% of the X variance (spectra) and 90% of the Y variance (Cl). This indi-
cates that most of the spectral variation is related to the Cl components modelled by PLS.
For the Na calibration model, five LVs explained more than 98% of the X variance (spectra)
and 88% of the Y variance (Na). For both models, the first three LVs alone accounted for
90% of the variance in the data, and the remainder of the loadings were responsible for only
a small part of data variability.

The spectral range 500–700 nm represents the change in salinity levels and may be
related to the presence of iron oxides (Clark 1999). The wavelengths centred at 950 and
2100 nm are associated with OH in water, clays (2200 nm), and calcite (2300 nm) (Hunt
1977; Clark 1999). The spectra at 1750, 1950, and 2200 nm are related to the presence of
gypsum, which is a good indicator of the presence of halite (Ben-Dor et al. 2009).

Table 2 presents the results of PLS modelling of salinity using various models with
raw and preprocessed spectra. The relatively high predictive ability of the external test set,
at the validation test set level, enables us to surmise that our PLS models can be used to
predict plant salinity based on soil spectral reflectance. As indicated by R2 and RMSEP,
PLS regression using first-derivative values and selected wavelengths to predict Cl content
provided the best precision and accuracy of all models (Table 2), with a slope of near unity
and Y intercept near zero (Figure 7). The PLS model based on first derivative values and
selected wavelengths was less precise for assessing the Na content (Table 2), but the desired
slope and offset are near 1.0 and 0.0, respectively (Figure 8).

Based on our results, an RPD value of 5.5 for Cl indicates that the calibration gave good
results, whereas a value of 2.6 for Na indicates minimally acceptable performance.

Figures 9 and 10 present the measured versus predicted values applied to the external
test set data using the models shown in Figures 7 and 8. For plant Cl content, applying
our model to the external test set gave favourable prediction values, with RMSEP of 0.23,
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Figure 4. (a) Scatter plot of soil versus leaf Na content. (b) Scatter plot of soil versus leaf Cl content.
Note: w, weight.

confirming the model’s confidence level with five PLS components (Figure 9). For plant
Na content, applying our model to an external test set of 15 samples provided an accuracy
of 0.04, R 2 of 0.78, and RPD of 1.9 (Figure 10).

PLS models (first derivative) run on the whole wavelength region were found to be
more complex (with 9–11 LV components) than models run on the individual wavelengths
(3–5 LV components). The more complex models resulted in higher RMSEP and lower
R2 (for Cl content, RMSEP = 0.73 and R2 = 0.62, whereas for Na content, RMSEP =
0.11 and R2 = 0.4). Therefore, selection of specific wavelengths with reasonable spectral
assignments is important to optimize spectroscopic modelling results. Furthermore, consid-
eration of the spectra in different spectral units, run either on the whole wavelength region
or on selected wavelengths, did not improve the accuracy of the final constructed models.
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Figure 6. Partial least squares loading vectors (LV1-4) versus wavelength for the optimal calibration
model for Na content.

In practice, more samples would be needed spanning a wide range of values (e.g. a
chemical reference) to produce a more robust model. Nevertheless, these results suggest
that soil reflectance spectroscopy is potentially useful for predicting soil and plant salinity.
In addition, since there is a relatively small dynamic range of salt content measured in
tomato leaves, even extremely small differences between the PLS model and reference
values can increase RMSEP values. Furthermore, several samples were measured as having
the same Cl or Na content, but spectrally predicted as having different contents, presumably
due to lack of precision in either the reference measurement or calibration.
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Table 2. Root mean square error of calibration (RMSEC) and coefficient of multiple determina-
tion (R2) obtained for the calibration and cross-validation data sets for various data preprocessing
techniques.

Calibration
Prediction

(external test set)

RMSECV RMSEP

Model (%) r2 (%) R2 RPD

To assess Cl:
Raw spectra 1.5 0.53 1.7 0.3 1.71
Spectra in Kubelka–Munk units 1.5 0.58 1.6 0.32 1.68
Absorbance 1.3 0.56 1.6 0.35 1.7
First derivative (whole spectral range) 0.73 0.62 0.8 0.46 2.5
First derivative (selected wavelengths) 0.2 0.92 0.23 0.93 5.5
Kubelka–Munk first derivative (selected wavelengths) 0.22 0.90 0.17 0.88 5.3
To assess Na:
Raw spectra 0.15 0.36 0.17 0.55 1.60
Spectra in Kubelka–Munk units 0.18 0.35 0.18 0.52 1.52
Absorbance 0.18 0.31 0.18 0.52 1.6
First derivative (whole spectral range) 0.11 0.40 0.35 0.56 1.75
First derivative (selected wavelengths) 0.03 0.87 0.04 0.78 1.9
Kubelka–Munk first derivative (selected wavelengths) 0.04 0.85 0.08 0.74 1.9
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Figure 7. Scatter plot of measured versus predicted leaf Cl content for calibration and validation
data sets.

4. Discussion and conclusions

The soils of the areas tested are saline mostly because they are influenced by a shallow
saline water table. As halite (NaCl), which is the main salt product, does not have any
spectral features in the VNIR region, it is difficult to use reflectance spectroscopy for its
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Figure 8. Scatter plot of measured versus predicted leaf Na content for calibration and validation
data sets.
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Figure 9. Scatter plot of measured versus predicted leaf Cl content for the cross-validation PLS
model.

identification. However, Ben-Dor et al. (2009) found good correlation between soil-surface
gypsum (CaSO4) and halite concentration in soil-solution extracts taken from selected
fields in Israel. In this study, we asked whether reflectance spectra of soil can predict the
salinity status of tomato. To this end, we assessed the relationship between the leaf Na
and Cl contents of tomato plants growing in a saline environment and their correspond-
ing soil spectra measured in the laboratory by fitting PLS regression analyses. Specifically,
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Figure 10. Scatter plot of measured versus predicted Na content for the cross-validation PLS model.

soil reflectance data were used to predict the Cl and Na contents in tomato plants. The
PLS model aimed at predicting leaf Na content from soil reflectance spectra was less pre-
cise than the model aimed at predicting leaf Cl content. Importantly, in assessing tomato
salinity by the presence of either plant Cl or Na content, the selection of specific wave-
lengths with reasonable spectral assignments is important and provides better results than
using the entire wavelength spectrum.

Therefore, based on our results, we conclude that reflectance spectroscopy across the
400–2400 nm wavelength range can be used to assess plant salinity based on soil spectra.
This conclusion supports timely decisions on crop water management. It should be noted
that all samples were measured spectrally under laboratory conditions using a ‘potato’.
Further study is required to assess the relationships between soil salinity and crop Na or
Cl status in a field setting. Furthermore, when in situ field measurements are collected in
different environments with varying soil properties and salt contents, additional parameters
might be considered such as soil moisture content, surface area of field of view (FOV),
illumination type, and structure of the measured surface. Nevertheless, our results are
sufficiently promising to suggest that future hyperspectral airborne remote-sensing mea-
surements of soil salinity have a promising potential in the assessment of leaf salinity over
farm fields. In this regard, the results of this study can serve as a starting point in preci-
sion agriculture for salinity measurements in tomato fields, and can be further upgraded to
airborne/satellite remote-sensing modes. For instance, airborne remote sensing was used
to assess the spatial distribution of soil salinity on a pixel-by-pixel basis (Goldshleger et al.
2012). This capability is especially important for distantly located and inaccessible areas,
as it can provide information on environmental changes in soil and vegetation salinity
changes.

Although salts lack spectral fingerprints across the NIR–SWIR spectral region, by using
PLS regression analyses, we were able to assess quantitatively, with moderate accuracy,
the salinity of tomato plants based on soil spectra. Although there was sufficient range
in Na+ and Cl+ contents, the distribution of values was skewed to the minimum values.
Future study is required to construct a more robust PLS model for implementation from
field-to-field and area-to-area.
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Another important issue that requires consideration in future research is the depen-
dence of salt content on many different environmental factors such as climate conditions,
topography, wind regime, and season, as well as anthropogenic activity (Metternicht and
Zinck 2003). Therefore, the calibration models developed and used in this study (as shown
in Figures 7 and 8) will not be geographically transferable because of the environmental
differences among farm fields. In this regard, there is a need to examine the relationship
between salt content and soil reflectance separately for different regions. PLS analysis of
spectral measurements can be easily developed and applied to both.

Finally, this type of analysis can be further implemented to assess vegetation salinity
ahead of planting, and could be developed as a generic tool for broader use worldwide.
In this regard, for each field/study region, we suggest the assessment of threshold levels
of salinity in tomato leaves and the taking of remedial action. An additional application is
determination of tomato quality by monitoring long-term changes in soil salinity.
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