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The rapid and efficient detection of illicit drug cultivation, such as that of Cannabis
sativa, is important in reducing consumption. The objective of this study was to iden-
tify potential sites of illicit C. sativa plantations located in the semi-arid, southern part
of Pernambuco State, Brazil. The study was conducted using an object-based image
analysis (OBIA) of Système Pour l’Observation de la Terre high-resolution geometric
(SPOT-5 HRG) images (overpass: 31 May, 2007). OBIA considers the target’s con-
textual and geometrical attributes to overcome the difficulties inherent in detecting
illicit crops associated with the grower’s strategies to conceal their fields and optimizes
the spectral information extracted to generate land-cover maps. The capabilities of the
SPOT-5 near-infrared and shortwave infrared bands to discriminate herbaceous vegeta-
tion with high water content, and employment of the support vector machine classifier,
contributed to accomplishing this task. Image classification included multiresolution
segmentation with an algorithm available in the eCognition Developer software pack-
age. In addition to a SPOT-5 HRG multispectral image with 10 m spatial resolution
and a panchromatic image with 2.5 m spatial resolution, first-order indices such as the
normalized difference vegetation index and ancillary data including land-cover classes,
anthropogenic areas, slope, and distance to water sources were also employed in the
OBIA. The classification of segments (objects) related to illegal cultivation employed
fuzzy logic and fixed-threshold membership functions to describe the following spec-
tral, geometrical, and contextual properties of targets: vegetation density, topography,
neighbourhood, and presence of water supplies for irrigation. The results of OBIA
were verified from a weight of evidence analysis. Among 15 previously known C.
sativa sites identified during police operations conducted on 5–17 June 2007, eight sites
were classified as maximum-alert areas (total area of 22.54 km2 within a total area
of object-oriented image classification of ∼1800 km2). The approach proposed in this
study is feasible for reducing the area to be searched for illicit cannabis cultivation in
semi-arid regions.

1. Introduction

Cannabis sativa is the most highly demanded illegal drug in the world, ahead of
amphetamines, cocaine, and opiates (UNODC 2011). Although cannabis is considered to
be a recreational drug in some countries (similar to alcohol and tobacco) (Murray et al.
2007), the consumption of this drug is prohibited in Brazil. One of the strategies employed
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to reduce its consumption is the identification and destruction of plantations. Although
C. sativa is produced in at least 172 different countries, there is little information about
the actual extent of its cultivation (Leggett and Pietschmann 2008), primarily because it
is often cultivated at small scales (Hammersvick, Sandberg, and Pedersen 2012), in unin-
habited regions (Lisita 2011), or even indoors (Carter 2009; Hurley, West, and Ehleringer
2010).

Traditionally, C. sativa fields in Brazil are identified by agents of the Brazilian Federal
Police using helicopters and local knowledge acquired from previous missions (Lisita
2011). For example, C. sativa fields are primarily found near water sources (e.g. peren-
nial or ephemeral rivers or ponds) and close to roads or trails. Identification of C. sativa
fields is an expensive and time-consuming task that depends directly on the expertise and
experience of police officers. At first glance, remotely sensed data would be efficient for
detecting such fields because they are essentially multispectral, synoptic, repetitive, and
cost effective. Such characteristics allow the discrimination of different targets on the
Earth’s surface (Jensen 2006). Daughtry and Walthall (1998) reported reflectance differ-
ences between C. sativa leaves and other representative leaves in the surrounding canopy
in the green (550 nm), red (670 nm), red edge (720 nm), near-infrared (800 nm), and nar-
row (<30 nm) spectral bands. Pesaresi (2008) proposed the use of high-spatial resolution
images (IKONOS) combined with textural analysis to detect terrains cultivated with coca
plants in the Andean region.

Conventional pixel-per-pixel-based digital classification techniques of satellite images,
primarily those using only single-date imagery, are generally of low efficiency in automatic
pattern recognition, mainly because of variations in crop phenology, different cropping sys-
tems and heterogeneous measurement conditions during satellite overpasses (e.g. distinct
atmospheric disturbances and solar illumination) (Vieira et al. 2012). In addition, most ille-
gal C. sativa fields are found in small areas (farmers are concerned about their fields being
found), there is no fixed crop calendar since producers use irrigation to plant throughout
the year, and phenology information on local species is difficult to find in the literature.
An alternative technique is the use of geographic, object-based image analyses (GEOBIA)
(Hay and Castilla 2008; Blaschke 2010). According to Cohen and Shoshany (2005), con-
ventional algorithms execute image processing guided only by statistical data variables,
whereas GEOBIA encompasses computational systems based on knowledge. GEOBIA is
based on image segmentation and construction of a hierarchical network of homogeneous
objects. After an image is segmented, GEOBIA uses several types of data simultaneously to
complete the image classification: pixel values, contextual information, object features, and
neighbourhoods and hierarchical relationships, among others (Blaschke and Lang 2006;
Peña-Barragán et al. 2011). In other words, GEOBIA considers not only the target’s spectral
information but also considers other features such as size and shape, or even surrounding
characteristics.

A number of authors have highlighted the potential of GEOBIA to optimize the iden-
tification of complex targets using remotely sensed data (e.g. Gao et al. 2006; Durieux,
Lagabrielle, and Nelson 2008; Nussbaum and Menz 2008; Whiteside, Boggs, and Maier
2011). As noted by Ratcliff (2010), C. sativa cultivation presents spatial characteristics that
allow computer modelling. This study aimed to identify potential sites of C. sativa located
in the semi-arid, southern part of Pernambuco State, Brazil, using object-based classifica-
tion of Système Pour l’Observation de la Terre high resolution geometric (SPOT-5 HRG)
images.
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2. Approach

2.1. Study area

The study area corresponds to an area comprising approximately 2300 km2 in the southern
part of Pernambuco State, northeast Brazil, covered by a SPOT-5 scene (Figure 1). Fluvial
islands found in the São Francisco River and hilly areas were excluded in the analysis
because the C. sativa plantations in these areas present quite distinct spatial patterns from
those observed in the predominantly flat landscape of the region. The test site includes the
following municipalities: Cabrobó, Orocó, Belém de São Francisco, Salgueiro, and Terra
Nova. The climate of this region is semi-arid. Vegetation is mainly represented by Caatinga
physiognomies.

Study area
São Francisco River
Caatinga (flat areas)
Hills
Islands

0 5 10 20 km

8° 30′ 0″ S

39° 0′ 0″ W39° 30′ 0″ W

Figure 1. Location of the study area in Pernambuco State, northeast Brazil. The study area corre-
sponds to the municipalities of Cabrobó, Orocó, Belém de São Francisco, Salgueiro, and Terra Nova
covered by the SPOT-5 HRG scene. Fluvial islands and hilly areas were excluded because the patterns
of Cannabis sativa plantations in such areas are quite different from the predominantly flat landscape
of the region.
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Figure 2. Typical temperature, precipitation, and potential evapotranspiration conditions in the
study area, obtained from a meteorological station located in the Cabrobó municipality, Pernambuco
State (latitude, 8.51◦ S; longitude, 39.33◦ W; elevation, 341.46 m; data set, 1 January 2000 to
31 December 2011). Potential evapotranspiration was estimated using the Thornthwaite approach.
Water deficiency is found throughout the year, since potential evapotranspiration is higher than
precipitation.

Typical temperature, precipitation, and potential evapotranspiration data of the study
site are shown in Figure 2. Annual average temperature is 27.2◦C, with a corresponding
standard deviation of 1.6◦C. Mean annual precipitation is ∼520 mm, concentrated from
February to April, while annual average potential evapotranspiration is ∼1845 mm. The
region faces water deficiency throughout the year, indicating the need for irrigation of C.
sativa, regardless of planting date. Thus, cannabis producers from this region do not fol-
low any crop calendar, making remote-sensing data interpretation more difficult because
we often find variation in growing conditions of irrigated croplands regardless of dates of
image acquisition.

C. sativa is an annual crop that can grow in most soil types, even in those of low
soil fertility (Raman 1998). Greenhouse experiments conducted by Souza et al. (2006)
showed a wide range of results in terms of shrub height (0.6–1.9 m). Ultimately, crop size
is determined by environmental and management factors such as soil depth, solar radiation,
and levels of fertilization and irrigation (Clarke 1981). In optimal conditions, C. sativa
shrubs can reach a height of ∼6 m during the 4–6 months of the growing season (Clarke
1981). However, the plant may face growth restriction if regrowth of native vegetation is
not controlled (Raman 1998).

2.2. Remote-sensing and ancillary data

The remote-sensing data used as the basis for object-based classification comprised a
SPOT-5 HRG multispectral image of 10 m spatial resolution and a panchromatic image of
2.5 m spatial resolution, acquired on 31 May 2007 (closest overpass in relation to the field
campaign conducted by the Federal Police on 5–17 June 2007, as detailed below). SPOT-
5 data were provided by the SEAS Guyane programme from the Institut de Recherche pour
le Développement (IRD) in Cayenne, French Guiana.

Multispectral images were converted to surface reflectance using the FLAASH
atmospheric correction package, which is a MODTRAN-4-based radiative transfer code

D
ow

nl
oa

de
d 

by
 [

G
eo

rg
e 

M
as

on
 U

ni
ve

rs
ity

] 
at

 0
4:

07
 1

0 
Ju

ne
 2

01
3 



International Journal of Remote Sensing 5413

available in the Exelis ENVITM image processing software (Exelis, Boulder, CO, USA)
(ITT 2009). The atmospheric model was set as tropical, the aerosol model was set as rural,
initial visibility was set at 40 km, and the water vapour column multiplier was set at 0.7.
The model was approximated by the equation V = 3.912/β, where V is visibility and β

is the extinction coefficient (horizontal optical depth per km), derived by aerosol opti-
cal depth (AOD) divided by the effective aerosol thickness layer, which typically has a
value of ∼2 km (ITT 2009). Parameters of AOD and water vapour were obtained from the
Petrolina website, Aerosol Robotic Network (AERONET), Level 2.0, Quality Assured Data
published by the National Aeronautics and Space Administration (NASA) Goddard Space
Flight Center (GSFC).

Surface reflectance images were then converted into the normalized difference vegeta-
tion index (NDVI; Tucker 1979):

NDVI = ρNIR − ρRED

ρNIR + ρRED
, (1)

where ρRED is reflectance in the red wavelength (SPOT-5 band 2) and ρNIR is reflectance in
the near-infrared wavelength (SPOT-5 band 3). Cloud cover-affected portions of the images
(∼26% of total area) were masked before image classification.

SPOT-5 HRG images from 1 July 2007 and 14 October 2007, which presented low
cloud-cover conditions, were also analysed to generate basic vector layers of waterbod-
ies (lakes and ponds) and land use (croplands, pasturelands, and urban areas). These two
images were not considered in the image classification approach because of lack of field
data close to the satellite overpasses to analyse classification performance.

Slope and stream networks were derived from Topodata (Valeriano and Rossetti 2012),
which are Shuttle Radar Topography Mission (SRTM) data interpolated into a 30 m grid.
To generate a basic streams map, we employed the hydrology tools available in the Spatial
Analyst package of Environmental Systems Research Institute (ESRI) ArcGIS/Info 9.3.1.
(Redlands, CA, USA) (ESRI 2010) adopting a minimum flow accumulation threshold
of 50 (Jenson and Domingue 1988). First- and second-order streams were classified as
ephemeral, and main streams were derived assuming a minimum flow accumulation thresh-
old of 2000. Water source distance maps to lakes/ponds, streams/rivers, and ephemeral
streams were derived from waterbodies, first- and second-order streams, and main streams
on reference maps using distance tools available in the Spatial Analyst package (ESRI
2010).

2.3. Field operation

C. sativa fields were detected by aerial spotters during field operations conducted by the
Brazilian Federal Police on 5–17 June 2007. According to records from the Cabrobó mete-
orological station, precipitation data were quite low over both time periods (5–17 June:
4.6 and 0.35 mm for total and average rainfall, respectively; 14–21 May: 0.6 and 0.08 mm,
respectively). Field operations involved the acquisition of portable GPS coordinates and
measurement of plant height and spacing. After the measurements had been completed, the
plantations were destroyed. More detailed information about the location of the C. sativa
sites was intentionally omitted due to the internal policies of the Brazilian Federal Police.

C. sativa size ranged from small seedlings to mature plants (Figure 3). Soil fertiliza-
tion and irrigation are mandatory and were found at all sites visited. Growers use water
from either natural or artificial water reservoirs (ponds, lakes, irrigation channels, perennial
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(a) (b)

(c)

Figure 3. Cannabis sativa plantations in the semi-arid region of Brazil at three different growing
stages: initial (a), intermediate (b), and advanced (c).

streams, and runoff water from ephemeral streams stored during the rainy season). Because
soils in this region are sandy (low water-holding capacity), a water supply in pits planted
with C. sativa is provided daily by producers even when plants are mature (information
based on field inspection).

2.4. Image processing and analysis

A vegetation density map of the study area was generated from the SPOT-5 HRG image
using the supervised support vector machine (SVM) classification technique. SVM classi-
fiers are based on machine learning and are considered to be a powerful method that often
produces a higher classification accuracy than conventional classifiers (Mantero, Moser,
and Serpico 2005; Pal and Mather 2005), even with limited training samples (Mountrakis,
Im, and Ogole 2011).

The following classes were defined: very high-greenness vegetation, high-greenness
vegetation, medium-greenness vegetation, low-greenness vegetation, very low-greenness
vegetation, irrigated cropland/hygrophytes, waterbody, and bare soil. According to Huete
et al. (2006), greenness of vegetation is a direct measurement of the photosynthetic poten-
tial of the canopy, and the intensity depends on total leaf chlorophyll, leaf area, canopy
cover, and structure. In this study, the rationale for using different levels of greenness
is that C. sativa crop management, including irrigation and nutrient supplies, results in
distinct levels of photosynthetic activity as compared with that of the surrounding native
vegetation. Training samples were collected in varying conditions of green cover and land
use (Table 1).

Spectral patterns of C. sativa fields and other targets related to the fields were investi-
gated through an analysis of the spectral profiles derived from a multi-temporal series of
NDVI.
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Table 1. Characteristics of training samples collected in varying conditions of green cover and
land-use cover used in the OBIA-based image classification.

Class Vegetation type Number of pixels
Feature in the RGB/321

colour composite

Very high-greenness
vegetation

Gallery forest 171

High-greenness vegetation Forested Caatinga 1712

Medium-greenness
vegetation

Arboreal Caatinga 1457

Low-greenness vegetation Shrub Caatinga 1280

Very low-greenness
vegetation

Caatinga grassland 1371

Irrigated
cropland/hygrophytes

Commercial
cropland/humid
natural grassland

1172

Waterbody − 5261

Bare soil − 359
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2.5. Object-based image classification

The object-based SPOT-5 HRG image classification was designed to detect alert features
based on spatial and spectral patterns of C. sativa plantations and their surroundings. Object
(segments) description employed fixed-threshold conditions and fuzzy logic membership
functions. Input data sets to support the employment of contextual decision rules included
thematic layers of vegetation greenness, waterbody, and bare soil classes generated using
SVM, anthropogenic areas, and distance from waterbodies/streams.

Expert knowledge about typical spatial patterns (size and surrounding vegetation)
related to C. sativa growing sites served as a basis for classification rule assignments. C.
sativa plantations are usually small and cultivated within natural vegetation in order to
make their identification more difficult from nearby roads. Thus, certain aspects in regard
to maximum area and neighbourhood were considered in the identification of potential
C. sativa cultivation. Spatial associations between C. sativa sites and different sources of
water, investigated by Lisita (2011) through a weight of evidence approach (Bonham-Carter
1994), were also considered in the image classification.

Object-based classification was conducted by defining seven hierarchical scale levels
resulting from segmentation/merging procedures. The first level comprised the segmen-
tation of input layers and corresponding weights (Table 2; Figure 4). Image segmentation
was based on a multiresolution segmentation algorithm available in the Trimble eCognition
Developer software package (Munich, Germany; Trimble 2011). This algorithm employs
the region-merging technique (Baatz 2000) to produce meaningful image objects as a first
step for further classification and other processing procedures. The segmentation was per-
formed by applying the standard parameters of scale, shape, and compact form (10, 0.1,
and 0.5, respectively). Vector layers of masks for clouds and shadows and anthropogenic
areas were also incorporated within the segmentation process.

In the segmentation process, the spatial resolution of the panchromatic image (2.5 m)
played an important role in defining the limits of targets, while the four bands of SPOT-
5 HRG multispectral images, NDVI, and SVM raster were integrated to distinguish between
different spectral classes. Although the raster layers of slope, distance from lakes and ponds,
distance from streams/rivers, and distance from ephemeral streams were not weighted in

Table 2. Segmentation weights of input layers used in OBIA.

Layer Description Weight/thematic layer usage

1 SPOT-5 HRG Band 1 1
2 SPOT-5 HRG Band 2 1
3 SPOT-5 HRG Band 3 1
4 SPOT-5 HRG Band 4 1
5 NDVI 2
6 SPOT-5 PAN 2
7 Slope 0
8 SVM classes 1
9 Distance from lakes/ponds 0
10 Distance from streams/rivers 0
11 Distance from ephemeral streams 0
T1 Anthropogenic areas Yes
T2 Masked clouds/shadows Yes

Notes: Layers with weight = 0 were used in the image classification but had no influence on image segmentation.
‘Yes’ signifies that the boundaries of polygons contributed to the segmentation. Layers T1 and T2 correspond
to binary vector maps, where value = 0 means unclassified and value = 1 means anthropogenic area and
clouds/shadows.
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Data set:
SPOT-5 data, SVM classes, NDVI, 
distance from water, slope, mask for 
clouds/shadows, anthropogenic areas

Segmentation Scale = 10
Shape factor = 0.1
Compactness = 0.5

Output
level 1

Segmentation
parameters

Unclassified objects

Figure 4. Flowchart of level 1 object-based image classification (segmentation).

Data set input for level 2
(copy of output level 1)

Thematic layer 2 = 1
(mask for cloud/shadow)

Yes
Output Level 3

Assign class
‘no data’

Threshold 

No

condition

Unclassified

Classifier Assign mean layer 8 (SVM classes)

6 levels of vegetation greenness, irrigated
cropland/hygrophytes, water body, bare

soil

Output
level 2

Figure 5. Flowchart of level 2 object-based image classification (discrimination of six classes of
vegetation greenness, irrigated cropland/hygrophytes, waterbody, bare soil, and clouds/shadows).

the segmentation, the thematic attributes provided by those layers were assigned to image
objects created in the segmentation to allow the use of that information during the following
steps of the classification process.

In the first step (Figure 5), we employed a threshold condition for vector thematic
layer 2, at level 2 (T2 value in Table 2 equal to 1) to flag clouds and shadows as no data.
Next, the vegetation greenness, irrigated cropland/hygrophytes, waterbody, and bare soil
classes resulting from previous SVM classification (layer 8) were assigned to correspond-
ing remaining image objects using a membership function. The objective of this component
was to incorporate the results from a powerful per-pixel-based classification to effectively
discriminate relevant spectral classes.
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Data set input for level 3
(copy of output level 2)

Thematic layer 1 = 1
No

Output level 3

Keep original
SVM classes

Yes

Assign ‘Anthropogenic’ to previous
SVM classes

Output
level 3

Figure 6. Flowchart of level 3 object-based image classification (assignment of anthropogenic
classes).

Data set input for level 4
(copy of output level 3)

Merge adjacent objects 
from same class

Data set input for level 5
(copy of output level 4)

Vegetation
No anthropogenic

area ≥ 10 ha

NoClass filter/
threshold 
condition

Output level 5

Keep original 
level 5 classes

Yes

Output
level 5

Assing Caatinga vegetation density
categories based on SVM classes

Figure 7. Flowchart of levels 4 and 5 object-based image classification (assignment of Caatinga
vegetation density categories).

Classification of anthropogenic areas (scale level 3) was the next step (Figure 6).
Here, we employed ancillary data to classify anthropogenic areas. Those objects from the
previous step that satisfied the threshold condition ‘thematic layer 1 = 1’ were assigned
to the class named anthropogenic. In order to generate a higher scale level (scale lev-
els 4 and 5), adjacent objects from the same class were merged. Then, considering
that, regionally, homogeneous vegetation occupying huge areas usually corresponds to

D
ow

nl
oa

de
d 

by
 [

G
eo

rg
e 

M
as

on
 U

ni
ve

rs
ity

] 
at

 0
4:

07
 1

0 
Ju

ne
 2

01
3 



International Journal of Remote Sensing 5419

Data set input for level 6
(copy of output level 5)

SVM classes Keep original
level 6 classes

No
Output level 6

Output level 6

Candidate 

Yes

classes

Border to anthropogenic areas Keep original
level 6 classes

YesFirst threshold
condition

Assign ‘Suspicious low greenness’ for medium greenness, 
low greenness, very low greenness, bare soil SVM classes

Assign ‘Suspicious high greenness’ for very high greenness, 
high greenness, irrigated cropland/hygrophytes SVM classes

No

Classifier

Border to natural areas
Area ≤10 ha

No

Yes

Output level 6

Keep previously
assigned classes

Second threshold
condition

Yes

Assign ‘Suspicious feature low greenness’ for
‘Suspicious low greenness’

Output
level 6

Assign ‘Suspicious feature high greenness’ for
‘Suspicious high greenness’

Figure 8. Flowchart of level 6 object-based image classification (assignment of suspicious feature
categories).

natural Caatinga physiognomies, we employed a class filter and a minimum size threshold
condition to classify image objects into Caatinga density categories (Figure 7).

For the classification of ‘suspicious features’ (scale level 6) (Figure 8), we classi-
fied contrasting small objects surrounded by natural vegetation as ‘suspicious features’,
assuming that they presented spectral, geometrical, and neighbourhood patterns coher-
ent with C. sativa fields. In the first step, we employed a border to anthropogenic areas
threshold condition to classify candidate image objects (non-anthropogenic, non-natural
cover) as ‘suspicious’. The image objects that satisfied the aforementioned threshold con-
dition were classified into either suspicious high greenness (assigned to image objects
derived from very high-greenness vegetation, high-greenness vegetation, or irrigated
croplands/hygrophytes classes) or suspicious low greenness (assigned to image objects
derived from medium-greenness vegetation, low-greenness vegetation, very low-greenness
vegetation, and bare soil objects). Next, we employed a threshold condition of border to
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natural areas and maximum size to assign the classes ‘suspicious features high greenness’
and ‘suspicious features low greenness’.

Maximum-alert classes (ponds, perennial streams/ephemeral streams) (scale level 7)
(Figure 9) were assigned to image objects classified as suspicious features (high green-
ness) that satisfied the specific criteria of maximum distance from waterbodies (value of
layers 9, 10, and 11). High-alert classes (ponds, perennial streams/ephemeral streams)
were assigned to image objects classified as suspicious features (low greenness) that sat-
isfied the specific criteria of maximum distance from waterbodies (value of layers 9, 10,
and 11). The last level included, besides all the classes from the lower level, high-alert
(possible cultivation at the beginning of the growing season), and maximum-alert (possible
cultivation during the peak of the growing season) classes.

The results of object-based image classification were verified using the weight of
evidence technique available in the ArcSDM (Spatial Data Modeller) algorithm (Spatial

Data set input for level 7
(copy of output level 6)

High greenness suspicious
feature or low greenness

suspicious feature

Keep original 
level 7 classes

Keep original 
level 7 classes

No

Output level 7

Output level 7

O
ut

pu
t l

ev
el

 7

Candidate 

Yes

classes

Membership values for 
distance to water sources 

≤0.1

YesMembership 
function

Highest membership 
value is for ponds  

Highest membership 
value is for perennial 

Highest membership value 
is for ephemeral streams  

No

Assign class 
maximum alert ponds 
for high greenness 
suspicious feature

streams  

Assign class maximum 
alert perennial streams for 
high greenness suspicious 
feature 

Assign class 
maximum alert 
ephemeral streams for 
high greenness 
suspicious feature 

Assign class high 
alert ponds for low 
greenness suspicious
feature

Assign class high alert 
perennial streams for low
greenness suspicious 
feature

Assign class high alert 
ephemeral streams for 
suspicious feature low
greenness

Figure 9. Flowchart of level 7 object-based image classification (assignment of maximum-alert and
high-alert categories).
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Analyst Package, ESRI ArcGIS 9.3.1 software) (Sawatzky et al. 2004). We used the
categorical method and T (studentized contrast) = 2 (approximately 98% of probability).
The training areas corresponded to 15 previously known C. sativa sites identified during
the police operation conducted on 5–17 June 2007. After the weights of evidence were
calculated, we analysed the values of weights, W+, W–, and contrast, CNT, for different
classes.

3. Results

The mean spectral profiles of greenness-related training samples selected for the SVM
classification are shown in Figure 10. More significant ‘green’ photosynthetic signals for
classes of higher greenness are represented in the figure by higher absorption in the vis-
ible, higher reflectance in near-infrared and decreasing reflectance in shortwave infrared.
Classes of lower greenness show increasing contribution of the soil signal through increased
reflectance in the visible and other wavebands. Very high greenness shows a subtle reduc-
tion in albedo when compared with high greenness, which could be attributed to canopy
effects in a woody-dominated physiognomy.

The OBIA results are summarized in Table 3. Features corresponding to the maximum-
alert features related to lake, perennial streams, and ephemeral streams (membership
value >0.9) are presented in Figures 11, 12, and 13, respectively. Regarding the last case,
it is important to point out that alerts should be considered only when streams present
sufficient water for irrigation.

Examples of C. sativa sites located following police field operations conducted on
5–17 June 2007 and classified as maximum-alert features are presented in Figures 14
and 15. Among the 15 C. sativa sites identified during the police operation during that
month (and located in the SPOT-5 HRG scene), eight were classified as maximum alert
(total area of maximum-alert class = 22.54 km2). The classification system detected more
than 50% of known C. sativa sites, showing a high predictive power for the classification.

0.54
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Figure 10. Spectral profiles of training sites (discriminated based on the intensity of greenness)
used in the supervised classification of SPOT-5 HRG scenes from 31 May 2007 by the support vector
machine (SVM) classifier.
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Figure 11. Maximum alerts yielded by object-based image classification and related to lakes
(coloured blue). Image corresponds to the SPOT-5 colour composite of 31 May 2007.

Figure 12. Maximum alerts yielded by object-based image classification and related to perennial
streams (coloured blue). Image corresponds to the SPOT-5 colour composite of 31 May 2007.
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Figure 13. Maximum alerts yielded by object-based image classification and related to ephemeral
streams (coloured blue). Image corresponds to the SPOT-5 colour composite of 31 May 2007.

Figure 14. Segmentation result (a) and object-oriented classification (b) of SPOT-5 HRG scene
(overpass: 31 May 2007), highlighting segments corresponding to plantations of Cannabis sativa
confirmed in the field campaign. Pink- and purple-dotted segments correspond to maximum alert
identification. Images (c) and (d) are panoramic views of C. sativa cultivation obtained by helicopter
in a field campaign conducted on 9 June 2007. Photographs: Brazilian Federal Police.
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(a) 

(b) (c) 
Legend

Maximum alert – lakes/ponds

Maximum alert – perennial streams

Maximum alert – ephemeral streams

High alert – lakes/ponds

High alert – perennial streams

High alert – ephemeral streams

Suspicious features –  high greenness

Suspicious features – low greenness

Suspicious – high greenness

Suspicious – low greenness

Forest 

Forested Caatinga

Arboreous Caatinga

Shrub Caatinga/Pasture

Caatinga Grassland/Pasture

Anthropogenic

Water

Generic

No data

Figure 15. Subset of object-based image (SPOT-5 HRG, overpass: 31 May 2007) classification
result (a); (b) detail of SPOT-5 HRG scene (overpass: 31 May 2007), highlighting GPS tracks (in
black) corresponding to plantations of Cannabis sativa confirmed in the field campaign conducted
during June 2007 and classified as having maximum alert features (c) through OBIA.
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Results of the classification selected an excessive number of features classified as alert
(commission error), demanding a subsequent step of visual editing to obtain more feasible
results. This was part of the strategy of the study since, for tactical purposes, it is preferable
to have more commission errors than omission errors.

4. Conclusions

(1) An object-oriented image classification allowed a semi-automatic detection of
features common to C. sativa plantations in the SPOT-5 images through the
combination of spatial and spectral patterns in the classification process.

(2) The proposed classification was based on logical arguments rather than a trial-and-
error process, which makes the methodology easier to replicate. The classification
rules can be employed in similar conditions for different data sets, requiring the
preparation of input layers.

(3) The results showed that the approach proposed in this study is feasible for identi-
fying potential areas of C. sativa cultivation in semi-arid regions and on a regional
scale. To some extent, the method can be adapted to other regions with similar
challenges.
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