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Karst rocky desertification is a process of land desertification associated with human
disturbance of the fragile karst ecosystems. The fractional cover of photosynthetic veg-
etation (PV) and exposed bedrock (Rock) are the main land-surface symptoms of karst
rocky desertification. In this study, we explored a new methodology for quantifying
PV and Rock by remote sensing. To reduce the effects of the high heterogeneity of
karst landscapes on vegetation information extraction, a whole image was segmented
into relatively homogeneous subsets and then the PV was estimated using a normal-
ized difference vegetation index spectral mixture analysis (NDVI-SMA) model. The
percentage of Rock was estimated using a karst rocky desertification synthesis index
(KRDSI) and lignin cellulose absorption index (LCA). The results showed that the het-
erogeneity of a complex landscape is a major factor in the uncertainty of PV retrievals.
The fractional cover of PV can be accurately estimated by the proposed method, but
might be underestimated using NDVI and overestimated using the SMA-NDVI model.
The bedrock fractions can be rapidly and objectively estimated with Hyperion or sim-
ulated Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
imagery. Compared with multispectral images, hyperspectral images could be used to
estimate PV and Rock more accurately. Our findings indicate that PV and Rock can be
directly and efficiently quantified using remote sensing techniques within heterogeneous
landscapes.

1. Introduction

Karst regions are typically ecologically fragile zones constrained by the local geology
(Wang, Liu, and Zhang 2004; Yuan and Zhang 2008; Parise, Wales, and Gutierrez 2009).
Southwest China is one of the largest karst regions in the world, covering about 540,000 km,
within which more than 220,000,000 people live. Over the past few decades, this area has
experienced an overwhelming rate of the so-called karst rocky desertification (KRD), a spe-
cial land degradation process involving high erosion rates, extensive exposure of bedrock,
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drastic decreases in soil productivity, and the appearance of a desert-like landscape (Wang,
Liu, and Zhang 2004). It is caused by unsustainable intensive land use on a fragile karst
geo-ecological environment (Cao, Yuan, and Pei 2005). The process is expanding rapidly,
and it is reducing the living space of residents. It is also the root cause of drought, water-
logging, and poverty in the karst regions of southwest China. Consequently, the carrying
capability of the land has declined significantly. KRD, along with sandy desertification
in northwest China and soil and water loss on the Loess Plateau, is one among the most
serious ecological and environmental problems in China (Chinese Academy of Sciences
2003).

Karst geomorphology developed on carbonate rocks. KRD is closely correlated to the
distribution of pure carbonate rocks, with a lower percentage of acid-insoluble residue
(Wang, Liu, and Zhang 2004). When KRD develops, the most obvious land-surface symp-
toms are the exposure of carbonate rocks and low vegetation cover. So, the fractional
cover of exposed carbonate rocks and vegetation are most commonly represented as the
land-surface symptoms of KRD. In addition, landscapes in karst environments include
discontinuously distributed soil and fragmented ecological spaces suitable for plants.
Therefore, the karst landscape has spatially high heterogeneity, rendering it difficult to
accurately extract the main land-surface symptoms of KRD.

At present, research on KRD mainly depends on ground survey of the vegetation and
exposed bedrock (Rock) fractions, soil erosion rates, vegetation type and structure, average
soil depth, and related statistical data to classify and qualitatively assess the degree and
extent of KRD. These methods are often time consuming, labour intensive, and limit multi-
temporal comparison and large-scale research on KRD (Wang and Li 2007). Because of
the inherent merits of remote sensing technology, some recent research has started using it
to monitor and assess KRD (Huang and Cai 2007, 2009; Yue et al. 2010; Yang et al. 2011).
These methods mostly first chose the appropriate indicators of KRD, then ascertain the
interpretation standards of images, and finally focus on visual interpretation and computer-
assisted digital processing of satellite images. Although this procedure to some extent is
accurate and comprehensive, it depends on the analysts’ level of experience and is of low
efficiency (Huang and Cai 2009).

Fractional ground cover extracted from satellite images has been widely used to esti-
mate land degradation and human disturbances (Hill, Megier, and Mehl 1995; Armston
et al. 2009; Kim and Daigle 2011). As key ecological indicators, the fractional cover of
photosynthetic vegetation (PV, green vegetation) and the percentage of Rock are widely
used to characterize the main land-surface symptoms of KRD (Wang, Liu, and Zhang
2004; Wang and Li 2005). In regions of KRD, the distributions of PV, limestone soils,
carbonate rocks, and non-PV (aboveground dead biomass, litter, and wood) are mixed –
distributed with vegetation fragmentation and soil discontinuity. Li et al. (2009) demon-
strated that the effects of grain of spatial variation on karst landscapes and the fractional
cover of shrub, Rock, and bare soil would increase at higher spatial resolution, whereas
the dry land and sparse woodland fractions would decrease and forest cover would fluctu-
ate. In addition, the implementation of ecological construction projects (e.g. Karst Rocky
Desertification Comprehensive Control and Restoration Project and the Grain to Green
Programme) and the damage and reclamation of forest and grassland coexist, resulting in
karst landscapes being in a fluctuating state of restoration and degradation (Li et al. 2005).
Therefore, karst landscapes are highly heterogeneous and even relatively fine-resolution
(e.g. SPOT 10 × 10 m) remote-sensing data do not record pure vegetation spectra, but
rather the mixed reflectance of green vegetation, non-PV, Rock, and bare soil. This makes
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5138 Y.M. Yue et al.

it difficult to estimate the surface area of PV and Rock accurately by remote sensing (Yue
et al. 2010; Zhang, Hu, and Xiao 2010).

To estimate the proportions of land cover at the sub-pixel scale, one commonly used
approach is spectral mixture analysis (Pu, Gong, and Michishita 2008). However, this
approach is problematic owing to spatial variation in endmember selection when used in
practice, especially for highly heterogeneous landscapes in karst regions (Yue et al. 2010).
Another widely used method is based on the regression of vegetation indices and fractional
cover. The performance and suitability of a particular index are generally determined by the
sensitivity of the index to characteristics of interest (Haboudane, Miller, and Pattey 2004).
However, vegetation indices are not easily applicable to all land-cover types, especially the
Rock widely distributed in karst regions. Many studies have focused on improving vegeta-
tion indices by proposing colour, form, enhanced, and intensity indices for mapping land
degradation (Huete, Miura, and Gao 2003). However, these indices have mainly been used
to estimate the fractional cover of PV and are not fit to extract the cover information of Rock
(Yue et al. 2010, 2011). In addition, the high spatial heterogeneity of karst landscapes will
also affect the accuracy of vegetation coverage estimation (Johnson and Xie 2011; Giner
and Rogan 2012).

Rapid and efficient acquisition of the proportion of Rock is critical for monitoring and
assessing of the degree and extent of KRD within a complex landscape (Cao, Yuan, and
Pei 2005). Currently, there are few direct, objective, and efficient remote sensing meth-
ods available to assess the fractional cover of Rock by remote sensing (Huang and Cai
2009; Dunhill 2011). Huang and Cai (2009) proposed the normalized difference rock index
(NDRI) to map karst rock rapidly. However, this method is limited by the differentiation of
the pixel values of karst rock in built-up areas. Zhang, Hu, and Xiao (2010) suggested
using the bare soil index (BI) to extract the proportion of Rock in karst regions directly.
However, they failed to consider the effects of changes in vegetation phenology on frac-
tional cover estimation. During the plant-senescent period, the fractional cover of non-PV
significantly influences the estimation of the Rock area (Asner et al. 2000; Chabrilat et al.
2004; Yue et al. 2011). Therefore, it is necessary to explore new methodological approaches
for estimating the fractional cover of PV and exposed bedrocks for KRD monitoring and
assessment.

Rather than a new mechanistic model, we propose a simple mathematical approach that
could be used to extract the land-surface symptoms of KRD directly and automatically
within complex landscapes. The remote sensing method proposed could be more accurate
for the mapping of green vegetation and Rock fractions in the highly heterogeneous karst
landscapes of southwest China. For the estimation of PV cover, we combined an improved
image segmentation step and normalized difference vegetation index (NDVI)-based model,
which took the effects of background heterogeneity into consideration. For the estimation
of bedrock fractions, we employed our previously proposed and available spectral indices,
which could differentiate the Rock and built-up areas and consider the effects of plant
phenological status.

In our previous study, we proposed a new spectral index, the KRD synthesis index
(KRDSI) for hyperspectral imagery, which was developed based on unique spectral fea-
tures observed in non-vegetation land-cover types (non-PV, bare soil, and Rock) and could
be used to extract the fractional cover of non-vegetation (Yue et al. 2010). However, this
spectral index was assessed using field-surveyed spectral data only. Further evaluation using
remote sensing images for extraction of key indicators of KRD is necessary. In addition, for
comparison of bedrock fractions with multispectral imagery, we tested whether the avail-
able lignin cellulose absorption index (LCA), which was specific to Advanced Spaceborne
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Thermal Emission and Reflection Radiometer (ASTER) and provided a measure of the rel-
ative depths of lignin and cellulose absorption features (Daughtry, Hunt, and Mcmurtrey
2005; Gill and Phinn 2008), could be used for extraction of bedrock fractions. Hence, in
the present study, we explored the methodology for estimation of key indicators of KRD
directly and objectively using satellite imagery, in particular by comparing hyperspectral
and multispectral imagery.

2. Data and methods

2.1. Image collection and processing

To explore a new methodology for estimating key indicators of KRD, Earth Observing 1
(EO-1) Hyperion and simulated Earth Observing System (EOS) Terra ASTER imagery
were used to further validate the extraction of PV and Rock. The EO-1 Hyperion imagery
was acquired on 3 March 2008, with a spatial resolution of 30 m across a swath 7.5 km
wide. It covered a typical KRD area near Qibainong in Dahua County, Guangxi Province,
China (Figure 1).

A total of 176 bands of Hyperion imagery were used, atmospherically corrected
with Atmospheric Correction Now (ACORN), and geometrically corrected based on a
1:50,000 digital elevation model (DEM) (Goodenough et al. 2003). In addition, ASTER
imagery was simulated to compare the performances of hyperspectral and multispectral
imagery for extracting indicators of KRD. High-quality ASTER imagery in parallel with
Hyperion acquisition was unavailable, due to the presence of more cloudy and rainy days in
rugged karst regions. Therefore, the Hyperion data were convolved to the nine visible, near-
infrared, and short-wave infrared (SWIR) ASTER bands using ASTER spectral response
functions and spatial resolution, which were 15 m for bands 1–3 and 30 m for bands 4–9.
ASTER data are the most frequently used and typical multispectral data currently avail-
able and have more bands in SWIR compared with those in other multispectral data. For

Figure 1. Landscape view of karst rocky desertification.
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5140 Y.M. Yue et al.

more direct comparison of the advantages and disadvantages of estimation of the fractional
cover of vegetation and Rock with hyperspectral Hyperion and multispectral images, the
simulated ASTER was used. Several studies have shown the feasibility and efficiency of
this method of data simulation (Hook et al. 2001; Hulley and Hook 2009; Serbin et al.
2009).

2.2. Image segmentation

In the natural world, objects in complex, highly heterogeneous environments show a char-
acteristically continuous spatial distribution. That is, the spatially heterogeneous landscape
is essentially a continuous surface (Wu 1999). Temperature, water content, soil, and vege-
tation have this characteristic continuity, rather than changing dramatically within a given
space. This phenomenon is called ‘spatial continuity’ or ‘spatial autocorrelation’ (Koenig
1999; Fried 2000). The hypothesis of spatial autocorrelation is that objects/measurements
separated by short distances are likely to be more alike than objects/measurements sepa-
rated by large distances. Consequently, although there is high heterogeneity in a large-scale
landscape, there may be relatively low heterogeneity in a local-scale landscape. Therefore,
if we segment the images into relatively homogeneous subsets, this may reduce the effects
of the high heterogeneity of the karst landscape on information extraction.

Image segmentation aims to segment the whole-scene image into spatially continuous,
disjunctive, and relatively homogeneous subsets (Pekkarinen 2002). It may be one of the
alternative means to suppress the effects of heterogeneity on remote sensing information
extraction. Therefore, to reduce the effects of heterogeneous landscapes on vegetation cov-
erage information extraction, the whole-scene image should be segmented into relatively
homogeneous subsets. Our improved image segmentation method aims at maximizing
intrasegment homogeneity and intersegment heterogeneity of the heterogeneous landscape
(Martha et al. 2011). It has two main components: intrasegment metrics and intersegment
disparity metrics.

For Hyperion hyperspectral imagery, intrasegment uniformity metrics were calculated
with the spectral similarity of pixels in each segment. Spectral similarity is defined by the
spectral angle θ . The general angle can be described by the arc cosine (Kruse, Lefkoff, and
Boardman 1993):

θ = arccos
T • R

|T ‖R | , (1)

namely,

θ = arccos

n∑
i=1

tiri√√√√ n∑
i=1

t2
i

√
n∑

i=1
r2

i

, (2)

where T and R are spectral vectors with reflectance components from two spectral bands
t and r of the adjacent pixels, n is the number of spectral bands, i is the number of pixels,
and θ is the general angle between T and R. The similarity of T and R increases as θ

decreases. Mixed pixels having spectral similarity can be classified into the same segments.
The spectral threshold is ascertained by intersegment disparity metrics.
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To assess intersegment disparity, Moran’s I autocorrelation index is used. Moran’s I is
a spatial autocorrelation metric that measures how similar a region is to its neighbours on
average (Fotheringham, Brunsdon, and Charlton 2000). We chose to use Moran’s I because
it is a reliable indicator of statistical separation between spatial objects and was found
to be a good indicator of segmentation quality in previous segmentation evaluation stud-
ies (Johnson and Xie 2011). For each segment, the algorithm calculates its mean spectral
reflectance value and determines all adjacent segments. Moran’s I is calculated as follows:

I =
n

n∑
i=1

n∑
j=1

wij(yi − ȳ)(yj − ȳ)

n∑
i=1

(yi − ȳ)2 (
∑
i�=j

∑
wij)

, (3)

where n is the total number of segments, wij is a measure of the spatial proximity, and
yi is the mean spectral reflectance value of the segment and is the mean spectral value
of the whole image. Each weight wij is a measure of the spatial adjacency of the seg-
ments. Low Moran’s I values indicate high intersegment heterogeneity, which is desirable
for image segmentation. Therefore, our improved image segmentation method combines
the low-intersegment Moran’s I index (adjacent segments are dissimilar) with low spectral
differences (each segment is relatively homogeneous).

For ASTER multispectral imagery, the spectral angle approach and Moran’s I is not
adopted for image segmentation because there are fewer bands available for ASTER
imagery and the spectral differences of segments are not significantly different. Thus, it is
difficult to segment ASTER based on spectral features. Instead, the whole ASTER imagery
was segmented into subsets with the same size of pixel window (3 × 3, 5 × 5, 7 × 7 . . . or
35 × 35) to obtain relatively homogeneous cells based on the concept of spatial autocorre-
lation. Fractional cover of PV derived from the NDVI model was then compared with the
real value based on fieldwork to confirm the optimal size of subsets, namely the scale of
relatively homogeneous cells.

Our experimental tests showed that the field survey fractional cover was closely related
to that predicted by image subsets, with pixel size 35 × 35, which is appropriate for ASTER
segmentation. Note that we identified relatively homogeneous areas of several to many pix-
els potentially containing several land-cover types. However, the characteristics of adjacent
35 × 35-pixel segments identified may be not highly heterogeneous, and their size could
be relatively similar to that of whole-image pixels due to spatial autocorrelation. This is not
in conflict with the difficulty involved in capturing land-surface type even with 10 × 10 m
SPOT imagery, which means that even at that resolution, there would be mixed ground
cover in karst regions. We thus segmented images into subsets of this size, which were con-
sidered as relatively homogeneous cells, and then all processes and models were applied to
these cells.

2.3. Estimation of PV with NDVI-SMA model

The fractional cover of PV of whole-scene Hyperion or ASTER images could be calcu-
lated from the per-abundance sum of each relatively homogeneous subset. The abundance
of each subset of image Ik(k = 1, . . . , n) was estimated using the normalized difference
vegetation index spectral mixture analysis (NDVI-SMA) model, which assumed that the
NDVI value of a given pixel is a linear combination of NDVI values of PV and non-PV,
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5142 Y.M. Yue et al.

weighted by their relative proportions (Qi et al. 2000; Liu et al. 2009). If the fractional
cover of green vegetation is fveg, the fractional cover of non-vegetation should be 1 − fveg.
Therefore, the resulting signal Sk(i, j) as observed by a remote sensor can be expressed as

Sk(i, j) = fveg(i, j) × Sk,veg + (1 − fveg(i, j)) × Sk,non-veg, (4)

where Sk(i, j) is the signal of each subset Ik , Sk,veg is the signal contribution from the
green vegetation component, and Sk,non-veg is the contribution from the non-vegetation
component. In addition, Equation (4) can also be applied to remotely-sensed images in
the spectral vegetation index domain (Leprieur, Verstraete, and Pinty 1994). When applied
with a spectral vegetation index, such as the NDVI, Equation (4) may be approximated as

NDVIk(i, j) = fveg(i, j) × NDVIk,veg + (1 − fveg(i, j)) × NDVIk,non-veg, (5)

which can be rewritten as

fveg(i, j) = NDVIk(i, j) − NDVIk,non-veg

NDVIk,veg − NDVIk,non-veg
, (6)

where NDVIk,veg is the NDVI value of a vegetation pixel and NDVIk,non-veg is the value of an
area of non-vegetation in Ik .

The main problem when applying Equation (6) is the correct identification of NDVIk,veg

and NDVIk,non-veg. There have been two main approaches proposed to retrieve NDVIk,veg

and NDVIk,non-veg values based on image statistics (Jimenez-Munoz et al. 2009). The first
retrieves them from the NDVI histogram, which requires sufficient bare non-vegetation and
fully vegetated pixels in the image. Hence, it is not suitable for highly heterogeneous karst
environments. The second approach chooses the maximum and minimum NDVI values
for the whole scene as the NDVIk,veg and NDVIk,non-veg values. This approach assumes that
pixels with fveg(i,j) = 0 and fveg(i,j) = 1 exist throughout the image. We used this approach,
choosing the maximum and minimum NDVI values for each subset of Ik as NDVIk,veg and
NDVIk,non-veg. The minimum and maximum NDVI values, and their variations within the
studied data subsets of Hyperion and simulated ASTER, are shown in Table 1. Compared
with the mean values of NDVImax and NDVImin suggested by Jiménez-Muñoz et al. (2009;
respectively 0.9 and 0.15), the NDVImin and NDVImax selected were relatively smaller. This
may due to the effects of terrain shadows on karst landscapes.

In addition, NDVI values obtained from ground spectral measurements of each compo-
nent (Rock, green vegetation, non-PV, and bare soil) and of their variations were conducted
simultaneously with the in situ measurements of fractional cover (Table 2). Compared with
the NDVI values obtained from ground measurements of each component, the selected
local minimum and maximum values at image subset level were reasonable for their similar
threshold values.

Table 1. Minimum and maximum NDVI values and their variations within the data subsets of
Hyperion and simulated ASTER studied.

NDVImax NDVImin

Hyperionsubsets 0.73 ± 0.26 0.25 ± 0.14
ASTERsubsets 0.67 ± 0.21 0.19 ± 0.11
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Table 2. Mean NDVI values obtained from ground measurements of each component and their
variations.

PV Non-PV Soil Rock

NDVIin-situ 0.84 ± 0.06 0.35 ± 0.11 0.17 ± 0.05 0.29 ± 0.13

To compare the estimation of the proportion of vegetation under highly heterogeneous
karst ecosystems to that of the proposed method, the NDVI and NDVI-SMA models were
also employed.

2.4. Strategies for extracting the proportion of Rock with Hyperion and ASTER

Two major methodological approaches for extracting the area of Rock in an image have
been proposed using hyperspectral and multispectral imagery. To extract key indicators
of KRD from hyperspectral images, our previously proposed KRDSI, which was used to
characterize and accentuate the spectral absorption features of bedrock using the short-
wave infrared (SWIR 2000–2400 nm) wavelengths, could directly be used to extract the
proportion of exposed rock from images (Yue et al. 2010):

KRDSI = ρ0 − ρc, (7)

where ρ is the pixel spectral reflectance in the SWIR; a, b, and c are the wavelengths of the
two shoulders and the peak absorption features of carbonate rocks in SWIR, which appear
as an absorption feature centred at 2350 nm; and ρ0 is the estimated reflectance at wave-
length c, assuming there were no absorption features present and therefore interpolating
linearly between reflectances at wavelengths a and b (Yue et al. 2010).

To extract Rock fractions with multispectral imagery, we employed LCA, which was
previously shown to be linearly related to the fractional cover of bare ground and crop
residue (Daughtry, Hunt, and Mcmurtrey 2005; Gill and Phinn 2008):

LCA = 100 × [(ASTER 6 − ASTER 5) + (ASTER 6 − ASTER 8)], (8)

where ASTER5, ASTER6, and ASTER8 are the spectral reflectance of ASTER bands 5
(2.145–2.185 µm), 6 (2.185–2.225 µm), and 8 (2.295–2.365 µm) in SWIR, respectively.
Our ground measurements of LCA and the proportion of non-PV and bare soil showed that
LCA was linearly related to the proportion of non-PV and bare soil (p < 0.05, Figure 2).
Consequently, the fractional cover of non-PV and soil could be assessed with LCA and
ASTER. As the main land-cover types of KRD are PV, non-PV, Rock, and bare soil, Rock
could be estimated by subtracting the fractional cover of PV, soil, and non-PV.

2.5. Validation of extraction of PV and Rock with Hyperion and ASTER

The validation experiment was carried out between 28 March and 7 April 2009. We used
field survey data to validate the accuracy of the extraction of indicators for evaluating KRD
with Hyperion and simulated ASTER. The ground points were selected using the strati-
fied random-sampling method. The fractional cover of vegetation was stratified as 0–20%,
20–40%, 40–60%, 60–80%, and more than 80%, while Rock was 0–15%, 15–30%, and

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a,

 L
in

co
ln

] 
at

 0
0:

03
 0

5 
A

pr
il 

20
15

 



5144 Y.M. Yue et al.

Non-PV

y = 0.1456x – 0.0252

r2
 = 0.54

0
0.2
0.4
0.6
0.8

1

LCA

Fi
el

d–
su

rv
ey

ed
 n

on
-P

V

–1 0 1 2 3 4 5 6 7 8

r2
 = 0.74

Bare soil

y = –0.1527x + 0.8575

0
0.2
0.4
0.6
0.8

1

–1 0 1 2 3 4 5 6 7 8

LCA

Fi
el

d–
su

rv
ey

ed
 s

oi
l

Figure 2. The linear relationship between field-surveyed proportion of non-PV, bare soil, and LCA.

30–50%. A total of 36 plots were selected, the sample size of each being 90 × 90 m.
Because mixed phenomena were severe for the highly heterogeneous karst environments
and poor accessibility in rugged karst regions, only 21 effective plots were ultimately used.
The main types of vegetation cover were shrub and open shrublands. Visual observations,
photography, and transect sampling methods were combined to estimate the fractional cover
of PV and Rock in each plot (Zhou, Robson, and Pilesjo 1998; Delameter et al. 2012).
For the transect sampling method, two 90 m measuring tapes are laid in a cross-shape
(Figure 3). The first is orientated north to south and the second at 90◦ to north. An obser-
vation of ground cover (green vegetation, non-PV, Rock, and bare soil) is made for every
1 m, starting at the 1 m point of each transect.

The remotely-sensed coverage of each pixel was averaged with its neighbourhood pixels
(3 × 3 pixel window) and extracted from the coverage images according to its location
determined by a global positioning system (GPS). The results of validation are repre-
sented by the coefficient of determination R2 and cross-validation RMSE of the linear
relationship between field survey fractional cover and that predicted by Hyperion and
ASTER.
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Figure 3. The two transects lying in each plot.
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3. Results

3.1. Reducing the effects of high heterogeneity of karst landscape on PV estimation

Hyperion hyperspectral imagery was segmented to reduce the effects of heterogeneity
with the combination of spectral similarity of pixels and Moran’s I index of adjacent seg-
ments. Figure 4(a) shows how Moran’s I index varies with varying spectral angle threshold.
In a comparison of spectral similarity threshold with spectral angles of 5◦, 7.5◦, and 10◦
(Figure 4(b)), segmentation with the spectral angle threshold of 7.5◦ achieved the lowest
value of Moran’s I (0.047), which indicates low spatial autocorrelation. Every segment
is internally homogeneous and is dissimilar to its adjacent segments. Due to highly het-
erogeneous environments, it is likely that spectral similarity will continue to decrease
as segmentation scale increases, and Moran’s I will continue to decrease until segments
become sufficiently large to contain a mixture of different types of land cover (Espindola
et al. 2006; Johnson and Xie 2011).

PV predicted by the NDVI-SMA model, with relatively homogeneous subsets of
Hyperion, was the closest to field-surveyed PV, while that predicted by either the NDVI or
NDVI-SMA models without pre-segmentation of the whole Hyperion image was inferior
(Figure 5), being underestimated by NDVI and overestimated by NDVI-SMA.

For ASTER multispectral imagery, we segmented the whole image into relatively
homogeneous subsets at a size of 35 × 35 pixels, to reduce the high heterogeneity within
the whole image. Estimation of PV with the pre-segmented ASTER image was less accu-
rate than that using Hyperion. However, results derived from the pre-segmented image
were far superior to those derived from the image without pre-segmentation (Figure 6).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20 25
Spectral angle (°)

M
or

an
's

 I

(a)

Spectral angle = 5° Spectral angle = 7.5° Spectral angle = 10°

Moran’s I = 0.186 Moran’s I = 0.047 Moran’s I = 0.093

(b)

Figure 4. (a) Moran’s I index varies with different spectral angle threshold. (b) Image segmentation
with different spectral similarity threshold.
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Figure 5. Scatter diagram with a 1:1 straight line (dashed line) and fitting line (solid line) of PV pre-
dicted by Hyperion using field-surveyed, NDVI, NDVI-SMA model, and NDVI-SMA with segmented
Hyperion.
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Figure 6. Scatter diagram with a 1:1 straight line (dashed line) and fitting line (solid line) of PV pre-
dicted by ASTER using field-surveyed, NDVI, NDVI-SMA model, and NDVI-SMA with segmented
ASTER.

It also underestimated PV when using NDVI and overestimated it when using NDVI-
SMA. When comparing the NDVI and NDVI-SMA models, the proposed method with
Hyperion hyperspectral imagery and ASTER multispectral imagery supported our hypoth-
esis that segmentation of the whole image into relatively homogeneous subsets will reduce
the effects of high landscape heterogeneity on the extraction of vegetation information.

3.2. Estimation of PV and ock with EO-1 Hyperion

The linear regression of predicted fractional cover of PV and Rock is shown in Figure 7. The
PV estimated with Hyperion after pre-segmentation, as described above, closely correlated
with field-surveyed PV, and the coefficient of determination R2 was 0.95. The results of
using KRDSI to assess Rock were less accurate, with R2 of 0.53. This might have been due
to the fact that the proposed KRDSI did not consider the effects of weathering processes on
exposed bedrocks, which would result in variability in the absorption features of carbonate
rocks, thus affecting the absorption features captured and characterized by KRDSI (Younis
et al. 1997; Yue et al. 2010).

3.3. Estimation of PV and Rock with ASTER

As the LCA was linearly related to the fractional cover of soil and non-PV, it was employed
to extract the fractional cover of Rock. Accordingly, this was estimated by subtracting the
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Figure 7. PV and Rock predicted by EO-1 Hyperion.
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Figure 8. PV and Rock predicted by simulated ASTER.

fractional cover of vegetation, soil, and non-PV. There was a significantly positive cor-
relation between field-surveyed PV and that predicted by ASTER imagery (Spearman:
R2 = 0.79, p = 0.00006), as well as between field-surveyed Rock and that predicted
by ASTER imagery (Spearman: R2 = 0.69, p = 0.001). The linear regressions of field-
surveyed cover and those predicated by ASTER showed that PV and Rock could be directly
estimated with multispectral imagery (Figure 8). However, the results were not as accu-
rate as those of Hyperion, mainly due to the limits of multispectral bands, which cannot
identify spectral differences between ground objects in the highly heterogeneous karst
ecosystems.

3.4. Comparison of hyperspectral and multispectral imagery for estimating the
land-surface symptoms of KRD

The spatial distributions of PV and Rock as estimated by Hyperion and ASTER are shown
in Figure 9. As indicated in the figure, higher PV leads to lower Rock. Note that we did
not take the vegetation cover types and structure into consideration here. Thus, the frac-
tional cover of green vegetation and Rock reveals the main land-surface symptoms of KRD
clearly. Compared with ASTER multispectral imagery, Hyperion hyperspectral imagery
estimated the fractional cover of PV and Rock more efficiently.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
N

eb
ra

sk
a,

 L
in

co
ln

] 
at

 0
0:

03
 0

5 
A

pr
il 

20
15

 



5148 Y.M. Yue et al.

0–20%

107° 42′ E 107° 44′ E 107° 46′ E 107° 48′ E

107° 42′ E

24
° 

2′
 N

24
° 

4′
 N

24
° 

6′
 N

24
° 

8′
 N

24
° 

10
′ N

24° 2′ N
24° 4′ N

24° 6′ N
24° 8′ N

24° 10′ N

24° 2′ N
24° 4′ N

24° 6′ N
24° 8′ N

24° 10′ N
24° 2′ N

24° 4′ N
24° 6′ N

24° 8′ N
24° 10′ N

24° 2′ N
24° 4′ N

24° 6′ N
24° 8′ N

24° 10′ N
24

° 
2′

 N
24

° 
4′

 N
24

° 
6′

 N
24

° 
8′

 N
24

° 
10

′ N
24

° 
2′

 N
24

° 
4′

 N
24

° 
6′

 N
24

° 
8′

 N
24

° 
10

′ N

24
° 

2′
 N

24
° 

4′
 N

24
° 

6′
 N

24
° 

8′
 N

24
° 

10
′ N

107° 44′ E 107° 46′ E 107° 48′ E

107° 42′ E 107° 44′ E 107° 46′ E 107° 48′ E 107° 42′ E 107° 44′ E 107° 46′ E 107° 48′ E

107° 42′ E 107° 44′ E 107° 46′ E 107° 48′ E107° 42′ E 107° 44′ E 107° 46′ E 107° 48′ E

107° 42′ E 107° 44′ E 107° 46′ E 107° 48′ E

107° 42′ E 107° 44′ E 107° 46′ E 107° 48′ E

20–40%

40–60%

60–80%

>80%

0–20%

20–40%

40–60%

60–80%

>80%

0–15%

15–30%

30–50%

0–15%

15–30%

30–50%

0 1.5 3
km

0 1.5 3
km

0 1.5 3
km

0 1.5 3
km

Hyperion Hyperion

ASTER ASTER

PV

PV

Rock

Rock

276000

N

EW

S

N

EW

S

N

EW

S

N

EW

S

280000 284000 276000 280000 284000

276000 280000 284000276000

25
12

00
0

2512
000

2516
000

2520
000

2524
000

2512
000

2516
000

2520
000

2524
000

2512
000

2516
000

2520
000

2524
000

2512
000

2516
000

2520
000

2524
000

25
16

00
0

25
20

00
0

25
24

00
0

25
12

00
0

25
16

00
0

25
20

00
0

25
24

00
0

25
12

00
0

25
16

00
0

25
20

00
0

25
24

00
0

25
12

00
0

25
16

00
0

25
20

00
0

25
24

00
0

280000 284000

276000 280000 284000 276000 280000 284000

276000 280000 284000276000 280000 284000

Figure 9. Mapping of PV and Rock with Hyperion and simulated ASTER imagery.

4. Discussion

The literature on remote sensing of KRD has paid scant attention to the mixed distribution
of ground objects in karst landscapes and has not taken into consideration the effects of high
heterogeneity on remote sensing information extraction (Huang and Cai 2009; Zhang, Hu,
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and Xiao 2010). Our study examined the potential of using remote sensing technology for
direct and objective estimation and mapping of PV and Rock in heterogeneous landscapes.
This will be of potential use in quantifying the main land-surface symptoms of KRD.

Compared with traditional remote sensing methods, our suggested method can be used
to estimate vegetation fractional cover more accurately and demonstrates that consider-
able spatial heterogeneity may underlie accurate PV measurements. Jiang, Zhang, and Sun
(2011) showed that the heterogeneity within a pixel might lead to scale effects for water–
land boundaries in the retrieval of PV. Johnson and Xie (2011) also suggested taking into
account the heterogeneity traits when identifying optimal image segmentation. Giner and
Rogan (2012) indicated that Landsat ETM+ imagery was adequate for mapping the frac-
tional cover of larger, contiguous patches of forest, but its spatial resolution was too coarse
for accurate mapping of highly fragmented, spatially complex landscapes. Therefore, the
heterogeneity of a complex landscape is a major reason for uncertainty in the retrieval of
vegetation coverage. It is possible and necessary to segment images of considerable spa-
tial heterogeneity into relatively homogeneous subsets. Although the non-linear sub-pixel
method might be effective in estimating the fractional cover of vegetation under complex
landscapes, calculations are complex (Liu and Wu 2005; Jiapaer, Chen, and Bao 2011).
Use of this method is also likely to be problematic for other areas similar to karst regions
with a mixed distribution of ground objects and high heterogeneity.

Although our proposed method for bedrock fractions was not as accurate as the predic-
tion of PV, it makes the task of rapidly and automatically quantifying bedrock fractions less
laborious and more accurate with remote sensing images on the larger scale. The main lim-
itation of the estimation of bedrock fractions with Hyperion hyperspectral imagery is the
fact that KRDSI does not consider the effects of weathering processes on carbonate rocks
and the spectral differences between dolomite and limestone, whose absorption features
were centred at 2300 and 2340 nm, respectively (Fu 1996; Yue et al. 2010). The outcome
of using simulated ASTER multispectral imagery was influenced by the error accumu-
lation of the fractional cover of bare soil and non-PV estimation with LCA, which was
designed to estimate crop residue cover (Daughtry, Hunt, and Mcmurtrey 2005; Serbin
et al. 2009). In addition, the shadow effects of terrain-related problems, which would
induce variation in slope/aspect, illumination, and shading, may also cause uncertainty
in the estimation of bedrock fractions. In future studies, the spectral features of Rock and
improvements in LCA would be needed to obtain a more accurate estimation of bedrock
fractions.

Compared with simulated ASTER multispectral imagery, Hyperion hyperspectral
imagery more accurately estimated PV and Rock. The fractions predicted by Hyperion
were closely correlated with field-surveyed fractional cover, with a higher R2, and lower
RMSE. In addition, those areas with a PV cover of more than 60% were accurately
extracted by Hyperion but were underestimated by ASTER (Figures 6, 9). It was due to the
fact that Hyperion had more bands and higher spectral resolution than ASTER in SWIR
that it was possible to distinguish spectral features among non-PV, bare soil, and Rock.
Hyperspectral imagery is suitable for regional KRD surveys, but may be inappropriate on
a larger scale due to limitations of coverage width and the availability of hyperspectral
imagery. Our method may not have fully utilized Hyperion data (Goetz 2009), but still
achieved good performance in estimating the fractional cover of vegetation and exposed
bedrocks. In future, our method needs further improvement before imaging spectroscopy
can be recommended for KRD research.

The validation method in this study was mainly focused on the statistical scatter
plots of field-surveyed and remotely-sensed coverage data. Because of the low number
of ground-truth plots, we should be cautious about directly applying a statistical model
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built from field-surveyed data. In addition, fractional coverage can be measured by the
optical imaging method for relatively homogeneous regions using high-resolution spatial
images. However, in rugged karst areas, examining remotely-sensed images based on field-
surveyed methods may increase uncertainty due to severe mixed-pixel problems and sample
size (Curran and Williamson 1986; Stehman et al. 2003). Therefore, our proposed method
appears to be reasonably reliable for quantifying green vegetation and Rock fractions in
karst regions.

Note that due to the complexity of the development and driving forces of KRD (Cao,
Yuan, and Pei 2005), the mapping of green vegetation and Rock fractions should not trans-
late directly to mapping of the degree and classification of KRD, which should consider
additional information such as soil erosion rates, vegetation types and structure, average
soil depth, and driving forces (Wang and Li 2005). The main drawback of this study is that
simultaneous acquisition of high-quality ASTER and Hyperion images was not possible
due to the number of cloudy and rainy days in rugged karst regions. When this hurdle is
overcome, our methods for extraction of land-surface symptoms of KRD can be applied
more effectively and accurately.

5. Conclusions

This study suggests that fractional cover of vegetation and Rock can be quantified directly
and objectively with Hyperion hyperspectral and simulated ASTER multispectral imagery
within a complex landscape. The high heterogeneity of karst ecosystems is a major rea-
son for uncertainty in the retrieval of vegetation coverage. However, segmentation of the
whole image into relatively homogeneous subsets can reduce its effects. The fractional
cover of vegetation can be accurately estimated by combining pre-segment processing
and an NDVI-SMA model, but may be underestimated with NDVI and overestimated
with the NDVI-SMA model. Rock fractions can be rapidly and efficiently estimated with
Hyperion hyperspectral imagery and KRDSI, or with ASTER multispectral imagery and
LCA. Compared with a multispectral image, a hyperspectral image can be used to estimate
the fractional cover of vegetation and Rock more accurately across a complex landscape.
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