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Abstract: The primary pollutants may contribute to the increase of ozone 
levels in the arid regions. Complex interactions between the pollutants and the 
meteorological variables make the study of this phenomenon more exigent. The 
dynamically evolving neural fuzzy inference system (DENFIS), as an example 
of soft computing models, allows the online evolution of both the knowledge 
and the inference mechanism. It is suitable for real-time applications in 
producing fairly reliable forecasts. The proposed DENFIS model for two sites 
in the Empty Quarter (Rub Al-Khali Desert) of Saudi Arabia was developed 
using the meteorological data collected during the winter and the summer 
seasons, and the transformed meteorological data. The concentrations of 
nitrogen oxide (NOx) and their transformations were incorporated as additional 
inputs for model performance analyses. The mean absolute percentage errors of 
the model vary from 9.52% to 11.84% with discretion and appreciation of the 
limitations of the overall model predictions and its performance analyses 
indicate the viability of application of the adopted online DENFIS modelling 
approach in short-term modelling of zone levels in arid regions. 

Keywords: ozone modelling; DENFIS; Empty Quarter of Saudi Arabia; soft 
computing. 
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1 Introduction 

Air quality models play an important role in assessing atmospheric quality, simulating the 
atmospheric environmental system, increasing the domain knowledge of environmental 
phenomena, and producing reliable forecasts (Karatzas and Kaltsatos, 2007). The real-life 
implementation of such models can also provide early warnings to the population and 
reduce the number of required measuring stations. However, modelling ozone levels in 
particular is considered a very difficult task due to the complex interactions between the 
pollutants and the meteorological variables (Borrego et al., 2003). In an arid region, 
nitrogen oxides and non-methane hydrocarbons participate in photochemical reactions 
due to high temperature and solar radiation, and contribute to the increase of ozone 
levels, which has negative effects on biotic health. 

A soft computing model provides a flexible and adaptive modelling approach. 
Typically, it does not require making many assumptions on the modelled phenomenon. 
The artificial neural network (ANN) model is an example of a soft computing model, 
which is widely used to predict the concentrations of air pollutants including ozone 
(Abdul-Wahab and Al-Alawi, 2002; Sousa et al., 2007). The typical ANN models are 
modified to the wavelet neural network (Zhang and Benveniste, 1992), the multi-tasking 
neural network (Caruana, 1997), and the evolutionary neural network (Hassoun, 1995; 
Braun and Weisbrod, 1991) to improve the performance of model prediction. Pires et al. 
(2012) used genetic algorithms to define the activation function in hidden layer and the 
number of the hidden neurons of the ANN for ozone prediction. 
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The main advantages of ANN over typical statistical models include self-learning, 
self-adaptation, faster computation, and noise rejection (Kao and Huang, 2000; Dunea  
et al., 2008). But the performance of ANN is affected by the network training, the amount 
and quality of training data, and the network parameters such as the number of hidden 
layers, the number of neurons in the hidden layers, the neuron transfer function, the initial 
weights of connections between neurons, the learning rate, and the number of training 
epochs. A conventional ANN may experience difficulties in approximating functions if 
the input features are not linearly separable, which implies that the approximated function 
has a higher complexity (Park et al., 1999). It is not suitable for dealing with linguistic 
data. 

The fuzzy logic model is not suitable to handle knowledge stored in the form of 
numerical data. But it allows the accurate representation of a given system behaviour 
using a set of simple ‘if-then’ rules. Heo and Kim (2004) adopted fuzzy logic and the 
ANN model consecutively to forecast daily maximum ozone concentrations. Inspired by 
the combined strength of the ANN and fuzzy logic model, Kasabov (1998) introduced 
dynamically evolving neural fuzzy inference system (DENFIS), which is a  
Takagi-Sugeno type fuzzy inference system with a back propagation algorithm. It can 
also be considered as an ANN in which the processing units are added to their structures, 
and the connection weights are modified as the system evolves based on input data 
stream in an adaptive, life-long, and modular manner (Kasabov and Song, 2002). It 
allows the evolution of both the knowledge and the inference mechanism with more 
examples presented to the systems. The fuzzy inference system is developed using the 
clustering algorithm, which identifies similar characteristics of data points and develop a 
rule for each group. There are two types of DENFIS modelling approaches with an 
offline or an online learning algorithm using the Takagi-Sugeno type fuzzy inference 
system. A few hybrids of ANN and fuzzy logic models are already available for carbon 
monoxide (CO) prediction (Jain and Khare, 2010) and sulphur dioxide (SO2) prediction 
(Yildirim and Bayramoglu, 2006). The neuro-fuzzy logic-based solutions for ozone 
concentration prediction, more specifically the online models have not yet been 
investigated adequately (Johanyák and Kovács, 2011). 

This study adopted the online DENFIS model for prediction of ozone concentrations 
with a focus on the real-time application. Online algorithms focus on fast processing 
speed and minimal memory usage and typically process the input data piece by piece 
(Kasabov, 2001). It minimises the complexity of the algorithm as the input data are 
discarded after they are processed (Hwang and Song, 2009). This study attempted to use 
the clustering algorithm-based DENFIS for modelling ozone levels in the Empty Quarter 
(also known as the Rub Al-Khali Desert) of Saudi Arabia. The Empty Quarter is 
considered a source of huge potential for oil and gas field development where a number 
of oil and gas exploration projects are active. 

2 Fundamentals of DENFIS 

2.1 Basic principles of DENFIS 

The inference system used in DENFIS is a Takagi-Sugeno type of fuzzy inference system 
and composed of n fuzzy rules which follow: 

If x1 is Rn1 and x2 is Rn2…. and xp is Rnp, then 
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( )1 2, , ,n ny f x x x= …  

where ‘xi is Rik’, i = 1,2,…, n; k = 1,2,…, p, are n × p fuzzy propositions; xi, i = 1,2,…,n, 
are antecedent variables defined over universes of discourse Xi, i = 1,2,…,n, and Rij, 
j = 1,2,…,p, are fuzzy sets represented by corresponding membership functions  
µRji: Xi → [0,1], i = 1,2,…,n; j = 1,2,…,p. The consequent parts consists of the consequent 
variable y and crisp linear functions fi, i = 1,2,…, n. 

In the DENFIS modelling approach, the considered fuzzy membership functions are 
triangular type functions defined as follows (Kasabov and Song, 2002): 

( ) ( , , , ) max min , ,0x p r xμ x mf x p q r
p q r q

⎛ ⎞⎛ ⎞− −⎛ ⎞ ⎛ ⎞= = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
 (1) 

where q = the value of the cluster centre on the x dimension, p = q-d × Dthr and  
r = q + d × Dthr, d = 1.2 ~ 2.0. The predefined threshold value, Dthr is a clustering 
parameter. 

The result of inference y1 for an input vector x1 = [x1
1 x2

1… xp
1] is the weighted 

average of each rule’s output (Takagi and Sugeno, 1985): 

( )1 1 1
1 211

, ,
n

i i pi
n

ii

w f x x x
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=

=

=
∑

∑
…

 (2) 

where 

( )1
1

; 1, 2, , ; 1, 2, , .
p

i ik kk
w μ x i n k p

=
= = =∏ … …  

2.2 Learning algorithm of DENFIS 

The online model of DENFIS uses first-order Takagi-Sugeno fuzzy rules. It generates 
and updates the linear functions in the consequence parts by adopting a linear least-
square estimator using training data (Hsia, 1977). The linear function can be expressed as 
follows (Goodwin and Sin, 1984): 

0 1 1 2 2 .p py x x x= + + + +…α α α α  

A training dataset includes q samples of input and output: 

( ){ }1 2, , , , , 1,2, , .i i i i ipX y Xi x x x i p= =⎡ ⎤⎣ ⎦… …  

The least-square estimators are calculated as the coefficient a = [a0 a1 a2…ap]T, by using 
the following relationship (Kasabov and Song, 2002): 

( ) 1T Ta B WB B Wy
−

=  (3) 

where 
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di = distance between the ith sample and the corresponding cluster centre, i = 1,2,…,q. 
The equation (3) can be rewritten as follows using a recursive least square estimator 

formula (Kasabov and Song, 2002). 

( ) 1
,T TQ B WB a QB Wy

−
= =  (4) 

Let the jth row vector of matrix B is represented by bj
T and the jth element of y be yj, then a 

can be iteratively calculated using the following relationship (Goodwin and Sin, 1984): 

( ) 1 1
1 1 1 1 1 1 1

1 1

1, ;
T

j j j j j jT
j j j j j j j j j j T

j j j

w Q b b Q
a a w Q b y b a Q Q

γ γ b Q b
+ + +

+ + + + + + +
+ +

⎛ ⎞
= + − = −⎜ ⎟+⎝ ⎠

 (5) 

where j = n, n + 1, …,q–1; wj+1 = 1 – dj+1; γ(forgetting factor) = 0.8 to 1(typical range of 
values). 

Generally, the forgetting factor gives less weight to older error samples. The initial 
values of Qn and an are determined with the help of equation 4 using first n samples from 
the training dataset. 

3 Study site and dataset description 

This study uses primary sources of air quality and meteorological data of a remote site in 
the Empty Quarter, Saudi Arabia. The Empty Quarter is considered as one of the largest 
sand deserts in the world (Vincent, 2008). It encompasses most of the southern third of 
the Arabian Peninsula and covers the area between longitude 44°30′ to 56°30′ and 
latitude 16°30′−23°00′N (Clark, 1989). It is an arid region with only about 35 mm of 
annual rainfall. The temperature during summer may reach 55°C at noon. The selected 
sites Mulayhah (Site 1) and Murayt (Site 2) are located in remote areas inside two drilling 
sites. A location map of the selected sites is provided in Figure 1. 

The meteorology and air quality monitoring equipment were used to collect minute 
specific data for seven days (starting from 00:45:00 on December 06, 2007 to 24:00:00 
on December 12, 2007) for Site 1. The data included NO, NO2 and O3, and wind speed, 
wind direction, relative humidity, temperature, and barometric pressure. The same 
parameters were measured for Site 2 starting from 00:30:00 on June 13, 2008 to 23:50:00 
on June 19, 2008. 
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Figure 1 The location of the study area (22ο52’12”N, 49ο49’12”E) (see online version for 
colours) 

 

Table 1 Statistical summary of the data used in the proposed model 

 
Sites 

Wind 
speed 
(m/s) 

Temperature 
(oC) 

Relative 
humidity 

(%) 

Barometric 
pressure 
(mbar) 

NO 
(ppbv) 

NO2 
(ppbv) 

O3 
(ppbv) 

Site 1 20.9 28.9 100 989 338.5 98.0 51 Maximum 

Site 2 28.8 44.0 51 992 157.3 52.2 64 

Site 1 0 9 29 980 0.5 0.5 7 Minimum 

Site 2 0 26 7 984 0.5 2.8 5 

Site 1 6 19 63.4 983.7 14.5 9.2 31.2 Mean 

Site 2 14 38 16 987 6.9 4.8 32 

Site 1 3 5.2 16.3 1.8 26.2 10.4 7.5 Standard 
deviation 

Site 2 8 4.2 8.1 1.9 6.3 2.9 13.0 

Site 1 1.5 –1 –0.7 –0.3 35.6 12.8 0.4 Kurtosis 

Site 2 –1.2 0.2 5.3 0.3 387 104 –0.9 

Site 1 0.9 0.1 0.2 0.3 5.4 3.3 –0.4 Skewness 

Site 2 –0.02 –0.8 2.4 0.8 18.5 8.4 –0.3 
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A mobile air quality monitoring system was used in this study. It is designed to measure 
real-time concentrations of above mentioned pollutants in ambient air. The monitoring 
equipment mainly includes the Monitors Labs (ML) 9800 Series ambient air analysers. 
The Model 9810 Ozone Analyser is a UV photometer. It measures low concentrations of 
O3 using the absorption of UV radiation at 254 nm by the O3 molecule. In order to 
calculate the O3 concentration the analyser’s microprocessor uses the Beer Lambert 
relationship. The lowest detectable limit is 1 ppbv. The ML 9841A Nitrogen Oxides 
Analyser measures the chemiluminescent reaction between NO and O3. All readings were 
corrected for changes in sample flow rate. The lowest detectable limit of NO and NO2 is 
0.5 ppbv. The wind direction, wind speed, temperature, humidity, and barometric 
pressure were measured using a rotating vane, a three cup anemometer, a thermistor 
network, a thin-film capacitor, and a piezo resistive sensor, respectively. 

The field monitoring data were collected during the winter and the summer seasons. 
The missing data (less than 0.02 %) were estimated through linear interpolation. In this 
study, ten-minute average data were used and the total number of samples were 1002 and 
999 for Site 1 and Site 2, respectively. A statistical summary of the collected data is 
provided in Table 1. The standard deviations of wind speed, temperature, and relative 
humidity indicate low variability of the data. The barometric pressure rarely varies 
significantly from the mean value. The concentrations of NO and NO2 show higher 
variability compared to O3 for Site 1. The concentrations of O3 for Site 2 indicate higher 
variability compared to NOx. The skewness values of the data used revealed that the 
meteorological and air quality data except O3 for Site 1 and wind speed, O3, and 
temperature for Site 2 are spread out more above the mean. There is no clear indication 
that the data are generated from any perfectly symmetric distribution process except the 
wind speed of Site 2. The kurtosis values of the data indicate that all the data are less 
outlier-prone than the normal distribution except NOx for Site 1, and relative humidity 
and NOx for Site 2. 
Table 2 Description of the considered input and output data 

Input label Description Input label Description 

WS Wind speed in m/s NO NO concentration 
WD Wind direction in degrees (0 to 360) NO2 NO2 concentration 
BP Barometric pressure in mbar O3 O3 concentration 
RH Relative humidity in percentage XX_WA The window average (WA) of 

the parameter XX considering 
the values of it at time t-60 min, 
t-50 min, t-40 min, t-30 min,  
t-20 min, t-10 min, and t. 

TEMP Temperature in degree Celsius XX_T-YY The value of the parameter, XX 
(WS, WD, BP, RH, TEMP, 
NO, or NO2) at time t-YY min 
(YY can be 60, 50, 40, 30, 20, 
or 10 min) expressed in 
corresponding units 

TIME Sine value of the time of day 
(normalised) expressed as a cyclic 
parameter 

XX_WSD The standard deviation of the 
parameter XX considering the 
values of it at time t-60 min,  
t-50 min, t-40 min, t-30 min,  
t-20 min, t-10 min, and t. 
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The model is developed using 80% of the available data and the remainder of the data 
was used for testing. The learning dataset was selected randomly. The list of the 
considered input data is available in Table 2. Different operations were performed to 
transform the inputs, including moving averages and standard deviations of a few 
previous values of each input, and time-lagged data. It is assumed that the transformed 
inputs will provide more knowledge regarding the input and improve the model 
performance. As the solar radiation data were not available, the time is expressed as the 
sine value of the time of the day (normalised). The transformed time input is considered 
as a surrogate of solar radiation. The considered inputs for the model are provided in 
Table 3. 

Tropospheric ozone is the result of complex photochemical processes driven by two 
major classes of directly emitted precursors including nitrogen oxides (NOx) and volatile 
organic compounds (VOC) (Castellano et al., 2009). Typically, there are two regimes 
with different O3-NOx-VOC sensitivity in the relationship among O3, NOx and VOC. The 
NOx-sensitive and VOC-sensitive regimes are characterised by relatively low NOx and 
high VOC, and relatively low VOC and high NOx, respectively. In the NOx sensitive 
regime, O3 increases with increasing NOx and the change in O3 in response to increase in 
VOC is insignificant. In the VOC-sensitive regime, O3 decreases with increasing NOx 
and increases with increasing VOC (Sillman, 2003). The ozone formation is dependent 
on the precursor concentrations and the characteristics of their emission sources 
(Castellano et al., 2009). However, the ozone distribution is mainly influenced by the 
meteorological conditions and the topography of the study area (Jimenez et al., 2006). 

As the meteorological parameters strongly influence the ozone levels (Bloomfield  
et al., 1996; Gardner and Dorling, 2000; Monteiro et al., 2005), one modelling scenario 
was selected considering only the meteorological data as input for each site (Case 1 and 
Case 3). Typically, the meteorological data are available and can be collected at a 
relatively low cost. In order to enhance the performance of the model some other 
precursors such as nitrogen oxides were considered as additional inputs in the other 
modelling scenarios (Case 2 and Case 4). 
Table 3 The considered input and output of the developed model in four cases (case 1, 2, 3 

and 4) 

Modeling exercise  Inputs Output 

Case 1 and 3 
(Meteorological  
data-based model) 

TIME, WS, TEMP, RH, BP, COS(WD), SIN(WD), 
WS_T-10, TEMP_T-10, RH_T-10, COS(WD)_T-10, 

SIN(WD)_T-10, WS_WA, TEMP_WA, RH_WA 

O3 

Case 2 and 4 
(Meteorological data 
and NOx-based 
model) 

TIME, WS, TEMP, RH, BP, NO, NO2, COS(WD), 
SIN(WD), WS_T-10, TEMP_T-10, RH_T-10,  

COS(WD)_T-10, SIN(WD)_T-10, WS_WA, TEMP_WA, 
RH_WA, NO_T-10, NO_T-20, NO_T-30, NO_T-40, 

NO_WA, NO_WSD, NO2_T-10, NO2_T-20, NO2_T-30, 
NO2_T-40, NO2_WA, and NO2_WSD 

O3 

4 Model development 

The online DENFIS model generates and updates the fuzzy rules at the same time with 
appropriate partitioning of the input space. The DENFIS online model uses the online 
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evolving clustering method (ECM) for clustering the data in the input space. It is 
considered as a distance-based connectionist clustering method. Also, it is a one-pass 
algorithm for dynamically estimating the number of clusters in a dataset and for 
determining the centres in the input data space (Kasabov and Song, 2002). The number of 
clusters would depend on a predefined threshold value (Dthr). The steps of the ECM 
algorithm are provided below. 

Step 1 Consider the first sample data point from the input data stream as the first cluster 
C1,0 and the position of it as the first cluster centre, Cc1,0. Set a value 0 as the 
cluster radius Ru1. 

Step 2 The algorithm ends, if all the sample data points are already processed. 
Otherwise, the distance Di between the current sample data xj and the centres of 
all cluster centres CCi are calculated, where: 

, 1,2,3, ,jj j CiD x C i n= − = …  

Step 3 Select the cluster Cp and the corresponding cluster centre CCp with the minimum 
distance: 

( )min , when , 1,2,3, , .jp ji ji uiD D D R i n= ≤ = …  

If the constraint is satisfied, the algorithm returns to Step 2, otherwise to Step 4. 

Step 4 Calculate the values of Sji = Dji + Rui, i = 1,2,3,…,n, and select the cluster Cb and 
the corresponding cluster centre CCb with the minimum value of Sji: 

( )min , 1,2,3, ,jb jb ub jjS D R S i n= + = = …  

Step 5 If the minimum distance (Sjb) obtained in the previous step is greater than  
2 × Dthr then the sample data xj is not a member of any existing cluster. The 
algorithm returns to Step 1. 

Step 6 If Sjb ≤ 2 × Dthr, the position of the cluster centre CCb is updated and its radius 
Rub is increased as follows: 

2
jbnew

ub
S

R =  and the new cluster centre CCb
new is located on the line connecting 

xj and CCb. 

As a result, Rub
new is the distance from xj to CCb

new. The algorithm returns to Step 2. This 
algorithm does not keep any information of previously processed samples, but it ensures 
that the maximum distance between any cluster centre and its member data is not greater 
than Dthr. 

The typical steps required for the development of online DENFIS model follow. 

Step 1 Select n samples from the training dataset. 

Step 2 Use ECM to determine c cluster centres for the selected samples. 

Step 3 Find si samples which are closest to the centre in the input space, where  
i = 1,2,…,m. 
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Step 4 Generate the antecedent parts of the fuzzy rule using the location of the cluster 
centre and equation (1). The consequents are calculated using the values of Q 
and b. These values of the consequent function are obtained using equation (4) 
on si samples. 

The proposed model was developed automatically from the numerical training data 
through generating the fuzzy rules using the meteorological and NOx data as inputs and 
the ozone concentration as the output. It is fairly established that the selected precursors 
(NOx) and the meteorological parameters influence ozone formation and distribution, 
respectively (Castellano et al., 2009; Jimenez et al., 2006; Monteiro et al., 2005). 
Therefore, it is assumed that a fuzzy logic model can be developed to predict the ozone 
concentration using the meteorological and NOx data. The main aspects of the proposed 
model are structure identification of fuzzy inference system and its parameter estimation. 
A clustering technique (such as ECM) was used to find the appropriate fuzzy rules, 
determine the overall number of rules and tune the parameters on the consequent and/or 
antecedent parts of the fuzzy rules. The antecedents of a fuzzy rule corresponding to a 
cluster centre were created through using the position of the cluster centre and  
equation (1). The values of Q and a of the consequent function were calculated using 
equation (4) for qi data points. New fuzzy rules may be created and some existing rules 
will be updated depending on new data points (Kasabov and Song, 2002). If the ECM 
finds a new cluster centre, then a new fuzzy rule will be created. The output of an input 
vector is calculated using equation 2. 

In this study, different values of Dthr within the range between 0.01 and 0.2 are 
investigated during the model building process. The model is mainly sensitive to Dthr. 
The value of Dthr was fixed at 0.07 and 0.01 for Case 1 and Case 2, and Case 3 and  
Case 4, respectively based on the results of the numerical experiments. The required 
experiments were conducted in the MATLAB numeric computing environment. 

5 Results and discussion 

The output of the developed model for the validation data is shown along with the 
measured ozone concentrations in Figure 2. It appears that the outputs are in good 
agreement with the measured values of ozone concentrations. The model performs 
adequately in predicting the peak values except for a few cases. 

The performance of the proposed model was evaluated with respect to a number of 
error measures including mean absolute percentage error (MAPE), mean absolute error 
(MAE), root mean square error (RMSE), Willmott’s index of agreement (IA), and the 
coefficient of correlation (CC). The differences between the measured values and the 
model predictions are calculated to determine the mean difference (D) and the standard 
deviation (S) of the differences. A value of 1 for IA indicates a perfect match, whereas a 
value of 0 indicates complete disagreement (Willmott, 1981). The value of ‘S’ indicates 
the width of the confidence interval. The CC indicates the strength of statistical 
correlation between the predicted outputs and the measured values. The values of the 
selected performance measures are reported in Table 4. The Model in Case 2 performed 
better than that in Case 1 with respect to all the considered performance measures. The 
performance measures of the Model for Case 3 and Case 4 are almost same except for D, 
S and MAPE. It indicates that the consideration of NO and NO2 as additional inputs 
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(other than the meteorological data) do not improve the performance of the Model 
significantly for Site 2 during the summer season. It could be attributed to the prevailing 
relationships of O3 with NOx and VOC. 

The scatter plot of the measured data and the model output shows the relationship 
between them. An identity line is often drawn as a reference. The more the datasets agree, 
the more the data points tend to concentrate in the vicinity of the identity line. The data 
points fall on the identity line exactly, if the measured data and the model output are 
numerically identical. The scatter plots of the measured evaluation data and the predicted 
outputs of the model for the four cases are shown in Figure 3. The scatter plots appear 
almost similar for the model in all cases. 

Figure 2 (a) Measured ozone concentrations and the corresponding model predictions for case 1 
and case 2 (b) Measured ozone concentrations and the corresponding model predictions 
for case 3 and case 4 
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Figure 3 (a) The scatter plot of the measured ozone concentrations and the output for case 1 and 
case 2 (b) The scatter plot of the measured ozone concentrations and the output for  
case 3 and case 4 
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Table 4 Performance measures for the developed model 

Modelling 
exercise 

MAE 
(ppbv) 

MAPE 
(%) 

RMSE 
(ppbv) IA CC D 

(ppbv) S (ppbv) AOC 
(ppbv) 

Case 1 3.14 11.84 4.9 0.98 0.76 0.39-  4.96 3.08 

Case 2 2.81 9.82 4.3 0.99 0.83 0.32 4.28 2.76 

Case 3 2.66 11.51 3.9 0.98 0.95 0.15 3.88 2.62 

Case 4 2.66 11.39 3.8 0.98 0.96 0.40 3.76 2.62 

Figure 4 (a) The RECs curve for case 1 and case 2 (b) The RECs curve for case 3 and case 4 
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The regression error characteristic (REC) curve is used in this study for further analysis 
of the proposed model. It provides an approach to visualise and evaluate different 
regression models (Fawcett, 2003) by plotting error measures versus the percentage of 
points predicted within the tolerance. Accuracy indicates the percentage of points which 
are within the tolerance limit (Bi and Bennett, 2003). It also provides an estimation of the 
cumulative distribution function of the error. The area-over-curve (AOC) is a biased 
estimate of the expected error for a prediction. The details of REC can be found in Bi and 
Bennett (2003), De Pina and Zaverucha (2006), and Torgo (2005). The REC curve of the 
Model in Case 1 shows that the absolute deviation of around 90% of the evaluation data 
is less than or equal to 8 ppbv, which is around 25% of the median [Figure 4(a)]. On the 
other hand, in Case 2, the absolute deviation of around 90% of the evaluation data is less 
than or equal to 6 ppbv, which is around 18.5% of the median [Figure 4(a)]. In Case 3 
and Case 4, the absolute deviation of around 90% of the evaluation data is less than or 
equal to 5.4 ppbv (16% of the median) and 6.0 ppbv (18% of the median), respectively 
[Figure 4(b)]. The values of AOC are 3.08 ppbv, 2.76 ppbv, 2.62 ppbv, and 2.62 ppbv for 
the Model in Cases 1, 2, 3 and 4, respectively. These values are within 7% and 10% of 
the median. Based on the analysis of REC curves and AOC values, it appears that the 
performance of the Model in Case 2 is superior compared to Case 1. But the performance 
of the Model for Case 3 and Case 4 is almost the same with respect to REC curves and 
AOC values. 

In order to evaluate the sensitivity of the Model with respect to training data, 50%, 
60%, 70% and 80% of the total data were randomly selected for training and the 
remaining data were used for evaluating the model for each case. The changes in MAPE 
for different percentages of training data are shown in Figure 5. It shows that the MAPE 
values for the evaluation data are within 9.8% to 15.1% for different percentages of 
training data. 

Figure 5 The effect of the training data on the performance of the evaluation data for different 
modelling exercises 
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The proposed model performed adequately in modelling and predicting the ozone levels 
in the Empty Quarter in four cases investigated. Based on the estimated performance 
indicators and prediction analysis, the proposed modelling approach can be considered as 
a fairly viable approach for ozone modelling as a function approximation with the help of 
the meteorological data and the concentrations of NO and NO2 in an arid region. 

6 Conclusions 

In order to provide flexible, adaptive, and less assumption-dependent real-time modelling 
tools, this study used an online DENFIS-based modelling approach, which is based on 
Takagi-Sugeno fuzzy inference system. The developed model is capable of predicting 
ozone concentrations using the meteorological data, the NO and NO2 concentrations, and 
their statistical transformations. It changes in time with new examples presented to the 
system while both the knowledge and the inference mechanism evolve. In order to 
provide deep insights on the performance of the model, the RECs curves were used along 
with other performance indicators. The results and the performance analysis of the model 
indicate the viability of application of the adopted online DENFIS modelling approach in 
short-term modelling of ozone levels in the Rub Al Khali Desert during both the winter 
and the summer seasons. The proposed model performs well with the NOx precursors and 
meteorological data as input. Future work would investigate the use of the adopted 
approach for other sites of the area for different seasons and compare them with 
traditional machine learning models. Future endeavours may also focus on improving the 
online learning algorithm by incorporating advanced parameter optimisation techniques. 
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