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Abstract In arid regions, primary pollutants may contribute
to the increase of ozone levels and cause negative effects on
biotic health. This study investigates the use of adaptive
neuro-fuzzy inference system (ANFIS) for ozone prediction.
The initial fuzzy inference system is developed by using fuzzy
C-means (FCM) and subtractive clustering (SC) algorithms,
which determines the important rules, increases generalization
capability of the fuzzy inference system, reduces computa-
tional needs, and ensures speedy model development. The
study area is located in the Empty Quarter of Saudi Arabia,
which is considered as a source of huge potential for oil and
gas field development. The developed clustering algorithm-
based ANFIS model used meteorological data and derived
meteorological data, along with NO and NO2 concentrations
and their transformations, as inputs. The root mean square
error and Willmott’s index of agreement of the FCM- and SC-
based ANFIS models are 3.5 ppbv and 0.99, and 8.9 ppbv and
0.95, respectively. Based on the analysis of the performance
measures and regression error characteristic curves, it is con-
cluded that the FCM-based ANFIS model outperforms the
SC-based ANFIS model.

Keywords Fuzzy C-means . Subtractive clustering . Ozone
modeling

Introduction

The Empty Quarter is considered as a source of huge potential
for oil and gas field development, and recently, a number of
gas exploration activities are going on in that area by different
international and local companies. It is an arid region with
only about 35 mm of annual rain and the temperatures during
summer may reach 55 °C at noon. Nitrogen oxides and non-
methane hydrocarbons participate in photochemical reactions
due to high temperature and solar radiation and contribute to
the increase of ozone levels, which causes negative effects on
biotic health. Air quality models can play a significant role in
assessing atmospheric quality, simulating the atmospheric
environment system, increasing the domain knowledge on
the environmental phenomenon, and producing reliable fore-
casts (Karatzas and Kaltsatos 2007). These can also provide
early warnings to the population and reduce the number of
required measuring stations. Unfortunately, the task of mod-
eling ozone levels is considered very difficult due to the
complex interactions between pollutants and meteorological
variables (Borrego et al. 2003).

The machine learning model provides a flexible and adap-
tive modeling approach for air pollutants including ozone. It
does not require making many assumptions on the modeled
phenomenon. Artificial neural network (ANN) models are
already widely investigated to model the concentrations of
air pollutants (Prakash et al. 2011; Karatzas and Kaltsatos
2007). The capability of ANN models was demonstrated for
many air pollutants including ozone (Abdul-Wahab and
Al-Alawi 2002; Sousa et al. 2007). In order to ensure better
performance, many approaches are adopted in developing
ANN models such as wavelet neural network (Zhang and
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Benveniste 1992), multitasking neural network (Caruana
1997), and evolutionary neural network (Hassoun 1995;
Braun and Weisbrod 1991). Pires et al. (2012) proposed
genetic algorithm-based ANN model for ozone prediction.
They used genetic algorithms to define the activation function
in hidden layer and the number of hidden neurons of the ANN.

The major advantages of ANN over traditional statistical
models include self-learning, self-adaptation, faster computa-
tion (due to parallel processing), and noise rejection (Kao and
Huang 2000; Dunea et al. 2008). The performance of ANN is
influenced by the network training, the amount and quality of
training data, and network parameters. The network parame-
ters such as the number of hidden layers, the number of
neurons in the hidden layers, the neuron transfer function,
the initial weights of connections between neurons, the learn-
ing rate, and the number of training epochs have to be appro-
priately selected. A conventional ANN may work efficiently
when the modeled function is relatively monotonic with only
a few dimensions of the input features (Haykin 1994; Musavi
et al. 1994). The ANN may experience difficulties in approx-
imating functions when the input features are not linearly
separable, which implies that the approximated function has
a higher complexity (Park et al. 1999).

The ANN is not suitable for the system in which the
knowledge is represented in the form of linguistic data. On
the other hand, the fuzzy logic theory allows the accurate
representation of a given system behavior using a set of simple
“if–then” rules but it is unable to tackle knowledge stored in
the form of numerical data (Fakhreddine and de Silva 2004).
Due to the linguistic variable handling capability, the fuzzy
logic model is investigated for ozone prediction (Nebot et al.
2008). Jorquera et al. (1998) developed fuzzy models for
forecasting the maximum daily levels of ozone. Heo and
Kim (2004) used fuzzy logic and ANN model consecutively
to forecast daily maximum ozone concentrations. Inspired by
the combined strength of ANN and fuzzy logic model, a
hybrid neuro-fuzzy system known as adaptive neuro-fuzzy
inference system (ANFIS) is proposed by Jang (1993). A

few ANFIS-based attempts are already made for CO predic-
tion (Jain and Khare 2010) and SO2 prediction (Yildirim and
Bayramoglu 2006). Despite their advantages and wide appli-
cability area, the neuro-fuzzy logic-based solutions for ozone
concentration prediction have not been investigated in the
literature adequately (Johanyák and Kovács 2011).

This study attempted to use clustering algorithm-based
ANFIS for modeling ozone levels in the arid region. The initial
fuzzy inference system which is obtained by using the cluster-
ing algorithm determines the important rules, increases gener-
alization capability of the fuzzy inference system, reduces
computational needs, and ensures speedy model development.

Fundamentals of ANFIS

ANFIS is developed to serve as a basis for constructing fuzzy
inference system (FIS) with suitable membership functions,
and its architecture is obtained by embedding the FIS into a
framework of ANN (Jang 1993). A simple Takagi–Sugeno-
type ANFIS model developed by Takagi and Sugeno (1985)
for two inputs (x and y) and one output is given in Fig. 1. The
architecture and functions of each layer are described below.

First layer All nodes of this layer generate membership
grades of input variables, which vary between 0 and 1. The
node stores the parameters to define a bell-shaped member-
ship function (μ). Its function can be written as follows:

O1
i ¼ μQi

ðxÞ ð1Þ

O1
iþ2 ¼ μRi

ðyÞ ð2Þ

μðxÞ ¼ exp � 1
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Fig. 1 ANFIS architecture
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Qi and Rj are the linguistic label, and
c and σ are the mean and variance of the membership
function, respectively, which are also known as premise
parameters.

Second layer The node of this layer performs connective
operation “AND” and any other T-norm within the rule
antecedent to determine the corresponding firing strength.
The node function follows.

O2
1;i ¼ μQi

ðxÞ � μRi
ðyÞ ¼ w1;i ð4Þ

and

O2
2;i ¼ μQi

ðxÞ � μRi
ðyÞ ¼ w2;i for i ¼ 1; 2: ð5Þ

Third layer The node of this layer performs normalization to
determine relative strength of each rule. The output follows.

O3
i ¼ wiP

wi
¼ wi for i ¼ 1; 2: ð6Þ

Fourth layer In this layer, the output is obtained by mul-
tiplying the normalized firing strength of the rule with the
rule output of Takagi–Sugeno type. The output of the
node follows.

O4
i ¼ wizi for i ¼ 1; 2 ð7Þ

where zm ¼ ak þ bkxþ cky and a, b, and c are constants.

Fifth layer The final node represents an addition node and
the output (8 ) is calculated as follows:

O5 ¼
X

2
i¼1wi ai þ bixþ ciyð Þ ¼ 8 : ð8Þ

If there are n entries in a given dataset, the overall error
measure can be defined by

E ¼P n
i¼1Ei ¼

P
n
i¼1 Ti � 8 ið Þ2 ð9Þ

where Ti and 8 i are the target and model output of the
ANFIS, respectively, for the ith entry.

In ANFIS architecture, if the premise parameters are
fixed, then the output of the whole system is a linear com-
bination of the consequent parameters (Ying and Pan 2008).
Finally, the output can be expressed as the following matrix
format for n number of training samples.

8 ¼ AP ð10Þ
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The unknown matrix P can be estimated with the help
of least-squares method. The gradient descent technique is
usually considered for tuning the architecture (Jang 1993).
It indicates that the premise and consequent parameters
are learnt with the help of gradient descent and least-
squares method, respectively. The formula for the premise
parameter δ by the gradient descent method can be
expressed by

rd ¼ �η
@E

@d
ð11Þ

in which η is the learning rate.

Study site and dataset description

This study uses primary sources of air quality and mete-
orological data of a site at the Empty Quarter, Saudi
Arabia, which is also known as Rub' Al Khali. It is one
of the largest sand deserts in the world (Vincent 2008),
which encompasses most of the southern third of the
Arabian Peninsula. The desert covers the area between
longitude 44°30′–56°30′ E and latitude 16°30′–23°00′ N
(Clark 1989). The site is selected due to the huge potential
for oil and gas field development at and around the site in
the near future. The site is located in a remote area having
very limited access. A location map of the site is provided
in Fig. 2.

The weather and air quality stations were used to collect
minute specific data for 7 days (starting from 00:45:00 on
December 6, 2007 to 24:00:00 on December 12, 2007). The
air quality and meteorological data included NO, NO2, and
O3 and wind speed, wind direction, relative humidity, tem-
perature, and barometric pressure.

A mobile air quality monitoring system was used in
this short-term study which is designed to measure real-
time concentrations of mentioned pollutants in the ambi-
ent air. It is housed in an environmentally controlled
shelter mounted on a trailer, which contains storage and
working space as well as the monitoring equipment,
mainly the Monitors Labs (ML) 9800 Series ambient
air analyzers. All analyzers have been designated as
reference or equivalent methods for measuring ambient
concentrations of the specified air pollutants by the US
EPA. The Model 9810 Ozone Analyzer is a UV photom-
eter which measures low concentrations of O3 by mea-
suring the absorption of UV radiation at 254 nm by the
O3 molecule. The analyzer’s microprocessor uses the
Beer–Lambert relationship to calculate the O3 concentra-
tion. The lowest detectable limit of this analyzer is 1
ppbv. The ML 9841A Nitrogen Oxides Analyzer meas-
ures the chemiluminescent reaction between NO and O3.
Special software and pneumatic system ensures that accurate
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NO2 measurements are made, even in areas with rapidly
changing NO. All readings were corrected for changes
in sample flow rate, measuring cell vacuum, tempera-
ture, and atmospheric pressure, removing the major
sources of calibration variations. The lowest detectable
limit of NO and NO2 is 0.5 ppbv. The wind direction,
wind speed, temperature, humidity, and barometric pressure
were measured using rotating vane, three-cup anemometer,
thermistor network, thin-film capacitor, and piezo-resistive
sensor, respectively.

The data were collected during the winter season. The
missing data (less than 0.02 %) were estimated using linear

interpolation. In order to build model, 10-min average data
were used and the total number of samples was 1,002. A
description of the data collected is provided in Table 1. The
standard deviations of wind speed, temperature, and relative
humidity are not high compared to the mean value which
indicates low variability of the data. It also appears that the
barometric pressure rarely varies significantly from the
mean value. Concentrations of NO and NO2 show higher
variability compared to O3. The skewness values of the data
used revealed that the meteorological and air quality data
except O3 are spread out more above the mean and there is
no clear indication that the data are generated from any

Fig. 2 The location of the study site (22°52′12″ N, 49°49′12″ E)

Table 1 Description of the data
used in the proposed model Wind speed

(m/s)
Temperature
(°C)

Relative
humidity (%)

Barometric
pressure
(mbar)

NO
(ppbv)

NO2

(ppbv)
O3

(ppbv)

Maximum 20.9 28.9 100 989 338.5 98.0 51

Minimum 0 9 29 980 0.5 0.5 7

Mean 6 19 63.4 983.7 14.5 9.2 31.2

Standard
Deviation

3 5.2 16.3 1.8 26.2 10.4 7.5

Kurtosis 1.5 −1 −0.7 −0.3 35.6 12.8 0.4

Skewness 0.9 0.1 0.2 0.3 5.4 3.3 −0.4
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perfectly symmetric distribution process. The kurtosis values
of the data indicate that all the data are less outlier prone than
the normal distribution.

Randomly selected 80 % of the data were used for training
the model and the rest were used for testing. The descriptions
of the input and output data are provided in Table 2. In order to
gain more knowledge about the input and improve the model
performance, different operations were performed to trans-
form the inputs including moving averages and standard devi-
ations of few previous values of each input, time-lagged data.
The inputs for the model are provided in Table 3.

Development of ANFIS model

In ANFIS, the least-squares method leads to fast training
and the gradient descent method slowly changes the under-
lying membership function that generates the basis func-
tions for the least-squares methods (Jang et al. 1996).
Therefore, it can be expected that ANFIS is likely to pro-
duce satisfactory results even after a few epochs of training.
The ANFIS model shows good performance but sometimes
produces spurious rules, which makes little sense (Jantzen
1998). A fuzzy model with a large number of rules can
reduce generalization capability (Yen and Wang 1999). This
problem can be solved by using an initial FIS generated by
clustering techniques such as fuzzy C-means (FCM) which
was developed and improved by Dunn (1973) and Bezdek
(1981), respectively. The clustering algorithm determines

the important rules, increases generalization capability
of FIS, reduces computational needs, and ensures speedy
model development.

FCM clustering algorithm considers each cluster as a
fuzzy set, while a membership function measures the degree
to which each training vector belongs to a certain cluster
(Tsao et al. 1994). Each training vector may be assigned to
multiple clusters. In this algorithm, the following objective
function is minimized:

Jm ¼
X

n
i¼1

X
K
j¼1U

p
ij xi � kj for 1 � pk�� < 1 ð12Þ

where p is a fuzzy exponent having the value of real num-
ber, Uij is the degree of membership of xi in the cluster j, xi is
the ith measured data, kj is the center of the cluster, and ||*||
is any norm expressing the similarity between any measured
data and the center such as Euclidian, Manhattan, and
Mahalanobis distance.

The clustering is carried out through an iterative optimi-
zation of the mentioned objective function along with the
update of membership Uij and the cluster centers kj by

Uij ¼ 1

P
K
c¼1

xi�kjk k
xi�kck k

� � 2
p�1

and kj ¼
P

n
i¼1U

p
ij xiP

n
i¼1U

p
ij

: ð13Þ

Whenmaxij U mþ1ð Þ
ij � UðmÞ

ij

			 			n o
is less than the predefined

termination value, then the iteration will stop. Here, m is the
number of iteration steps.

Table 2 Description of the input and output data

Input label Description Input label Description

WS Wind speed in m/s XX_T-10 The value of the parameter, XX (WS, WD, BP, RH, TEMP,
NO, or NO2) at time t−10 min expressed in corresponding
units

WD Wind direction in deg (0 to 360) O3_T+60 O3 concentration at time t+60 min

BP Barometric pressure in mbar NO NO concentration

RH Relative humidity in % NO2 NO2 concentration

TEMP Temperature in °C O3 O3 concentration

TIME Cosine value of the time of day (normalized) expressed
as a cyclic parameter

XX_WA The window average (WA) of the parameter XX considering
the values of it at time t−60 min, t−50 min, t−40 min,
t−30 min, t−20 min, t−10 min, and t

XX_WSD The standard deviation of the parameter XX considering
the values of it at time t−60 min, t−50 min, t−40 min,
t−30 min, t−20 min, t−10 min, and t

XX_T-YY The value of the parameter, XX (WS, WD, BP, RH, TEMP,
NO, or NO2) at time t−YY (YY can be 60, 50, 40, 30, or
20 min) expressed in corresponding units

Table 3 The input and output of the developed models

Inputs Output

TIME, WS, TEMP, RH, BP, NO, COS(WD), SIN(WD), WS_T-10, TEMP_T-10, RH_T-10, COS(WD)_T-10, SIN(WD)_T-10,
WS_WA, TEMP_WA, RH_WA, NO_T-10, NO_T-20, NO_T-30, NO_T-40, NO_WA, NO_WSD, NO2_T-10, NO2_T-20,
NO2_T-30, NO2_T-40, NO2_WA, and NO2_WSD

O3 at time t

Environ Sci Pollut Res (2013) 20:3395–3404 3399



FCM is used to develop the initial fuzzy inference system.
The considered fuzzy exponent, iterations, and minimum
amount of improvement were 2, 300, and 1e−05, respectively.
The obtained FIS of nine clusters is then fine-tuned using
ANFIS modeling approach. After systematic investigation,
the number of epochs and learning rate were set to 187 and
0.00001, respectively. In the ANFIS structure, there are nine
Gaussian membership functions for each input. As an exam-
ple, the membership functions of temperature are shown in
Fig. 3. The rule base contains nine rules. This model is named
as model 1. All the above computation of the ANFIS model
and FCMwas performed in Matlab environment. The gradient
descent- and least-squares method-based training algorithms
are readily incorporated in the software.

As an alternative approach, the subtractive clustering (SC)
algorithm is used to determine the initial fuzzy inference sys-
tem. Chiu (1994) developed the SC method, which is a mod-
ified form of themountainmethod. In this method, the potential
of each data point to become a cluster center is calculated using
the density of the surrounding data points. A set of m data
points (X1, X2, X3,…, Xm) with n dimensions are considered,
which are assumed to have fallen inside a hyper box. The
density (ρi) of data point Xi can be expressed as follows:

ρi ¼
Xm
k¼1

exp � jj Xi � Xk jj2
rp
2


 �2
 !

ð14Þ

where rp is a positive number, which defines the influence area
of a data point. The data points beyond the radius are consid-
ered not to have any influence on the density of Xi. The data
point with the highest density value is selected as the first
cluster center. After this selection, the density of a data point
is modified by the following formula:

ρi ¼ ρi � ρt exp � jj Xi � Xtjj2
rq
2


 �2
 !

ð15Þ

where rq is a positive number which defines the influence area
within which the function of the density of data point will
reduce and ρt is the density of the first selected cluster center
(Xt) among the data points. After modifying the density of data
point, the new cluster center will be selected and the density of
all data points will be changed accordingly. This process will
continue until all of the data points are within the radius of a
cluster.

In the proposed model, SC algorithm is used to
determine the FIS. The considered cluster center’s range
of influence, acceptance ratio, and rejection ratio were
0.1, 0.5, and 0.15, respectively. The considered radius
for the data space was 0.85 times the width of the data
space, and it indicates that each cluster center has a
spherical neighborhood of influence with the given ra-
dius. The quash factor, acceptance ratio, and rejection
ratio were 1.25, 0.5, and 0.15, respectively. The quash
factor is used to multiply the radii values that determine
the neighborhood of a cluster center, so as to quash the
potential for outlying points to be considered as part of
that cluster. The acceptance ratio sets the minimum
threshold potential as a fraction of that of the first
cluster. Another data point is accepted as a cluster
center if the potential is higher than the minimum
threshold potential. The rejection ratio sets the maxi-
mum threshold potential, as a fraction of the potential
of the first cluster center. A data point is rejected as a
cluster center when the potential is less than the threshold
potential. The considered configurations produced 23 rules.
The obtained FIS is then fine-tuned using ANFIS modeling
approach. After systematic investigation, the number of
epochs was set to ten. Each input contains Gaussian member-
ship functions. This model is named as model 2. All the above
computation of the ANFIS model and SC was performed in
Matlab environment.

Fig. 3 Membership functions
of temperature considered in
model 1
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Model evaluation and discussion

The predicted outputs of the developed models for the evalu-
ation data are shown along with the measured ozone concen-
trations in Fig. 4. It seems that the outputs of both models are
in good agreement with the measured values of ozone con-
centrations. Generally, the deviations of the output of model 1
are smaller compared to that of model 2. Model 1 performs
adequately in predicting the peak values but model 2 fails to
predict the peak values closely at least for a few cases.

In order to investigate the performance of the proposed
models, mean absolute percentage error (MAPE), mean abso-
lute error (MAE), root mean square error (RMSE), Willmott’s
index of agreement (IA), and coefficient of correlation (CC)
were determined. The mean difference (D) and standard de-
viation (S) of the differences were also determined. If the
value of IA is 1, it indicates a perfect match. A value of 0
indicates complete disagreement (Willmott 1981).The small
value of S indicates narrow width of confidence interval. The
CC indicates the strength of statistical correlation between the
predicted and actual outputs. A value of “1” indicates perfect

statistical correlation and the value of “0” indicates no corre-
lation at all. The MAPE, RMSE, MAE, IA, S, and D are
commonly used performance measure for numeric prediction.
The mentioned performance measures are reported in Table 4
for both models. The MAE and MAPE values of model 2 are
quite high compared to that of model 1. It seems that model 1
performs better than model 2 with respect to all the considered
performance measures.

The scatter plot shows the relationship between the mea-
sured data and the model output. In this case, an identity line,
i.e., a y0x line is often drawn as a reference and the more the
datasets agree, the more the data points tend to concentrate in
the vicinity of the identity line. If the measured data and the
model output are numerically identical, the data points fall on
the identity line exactly. The scatter plots of the measured
evaluation data and the output of the models are shown in
Fig. 5. In the case of model 1, the CC value is high and the
data points are generally very close to the identity line. It
seems that the model output of model 1 has a very strong
linear relationship with the measured evaluation data, which
indicates the soundness of the proposed model. But the CC
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Fig. 4 a Measured evaluation
data and the corresponding
outputs of model 1. b Measured
evaluation data and the
corresponding outputs of model 2
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value of model 2 is small and many data points are away from
the vicinity of the identity line. The CC value and the scatter
plot reveal that model 1 outperforms model 2.

In order to get more insights about the performance of the
models, the regression error characteristic (REC) is used for

further analysis. The REC curve provides an approach to
visualize and evaluate different regression models (Fawcett
2003) by plotting error measures such as absolute deviation or
squared residual versus the percentage of points predicted
within the tolerance, and it provides an estimation of the
cumulative distribution function of the error. The area-over-
curve (AOC) provides a biased estimation of the expected
error for a prediction. The details can be found at Bi and
Bennett (2003), De Pina and Zaverucha (2006), and Torgo
(2005). The REC curve of model 1 shows that the absolute
deviation of around 85 % of the evaluation data is less than or
equal to 5 ppbv (Fig. 6a). On the other hand, in the case of
model 2, the absolute deviation of around 90 % of the evalu-
ation data is less than or equal to 10 ppbv (Fig. 6b). The values
of AOC are 2 and 4 ppbv for model 1 and model 2,

Table 4 Performance measures for the developed model

Model MAE (ppbv) MAPE (%) RMSE (ppbv) IA CC D (ppbv) S (ppbv)

Model 1 (FCM-based ANFIS) 2.5 9.18 3.5 0.99 0.89 0.2 3.5

Model 2 (SC-based ANFIS) 4.3 16.57 8.9 0.95 0.58 −0.6 8.8
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Fig. 5 a The scatter plot of the measured data and the output of model
1. b The scatter plot of the measured data and the output of model 2
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respectively. Based on the analysis of REC curves and AOC
values, it seems that the performance of model 1 is superior
compared to model 2.

Generally, both the proposed models performed ade-
quately in modeling and predicting the ozone levels in the
Empty Quarter. Based on the reported performance meas-
ures and prediction analysis, it can be summarized that the
proposed modeling approach can be considered as a viable
approach for ozone modeling in arid region as a function
approximation with the help of weather data and the con-
centrations of NO and NO2.

The developed models perform adequately considering the
NOx precursors along with meteorological data and without
considering volatile organic compounds (VOCs) as input,
which probably indicate that the ozone level in the study area
is more sensitive to NOx compared to VOCs. In this study, the
solar radiation data were not available to use as input. In order
to address this limitation, the time is expressed as the cosine
value of the time of day (normalized), which exhibits cyclic
characteristics. The transformed time input is considered as a
surrogate of solar radiation.

Conclusions

In order to provide flexible, adaptive, and less assumption-
dependent models, this study proposed an ANFIS-based
modeling approach, which exploits the capability of both
ANN and fuzzy logic models. The developed models are
used to predict ozone concentrations based on meteorolog-
ical data, NO and NO2 concentrations, and their statistical
transformations. As a fuzzy logic model with a large number
of rules can reduce generalization capability, this study
determined the initial fuzzy inference system with the help
of FCM and SC. The adopted clustering algorithm-based
approach reduces the size of the rule base significantly, i.e.,
contributed to increase the generalization capability of the
model. The developed models perform adequately consid-
ering only the NOx precursors (without VOCs) along with
meteorological data, which probably indicate that the ozone
level in the study area is more sensitive to NOx compared to
VOCs. In order to provide better insights about the perfor-
mance of the developed models, regression error character-
istic curves were used along with traditional performance
measures. It is observed that the FCM-based ANFIS model
outperformed the SC-based ANFIS model depending on the
considered performance measures. The obtained results and
the performance analysis of the models indicate the appli-
cability of the adopted neuro-fuzzy approach in short-term
modeling of ozone levels in the Rub Al Khali Desert,
specifically during winter season. The future research
should focus on the use of the adopted approach for other

sites of the area for different seasons and compare them with
traditional machine learning models.
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