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Abstract The Three-North Shelter Forest Program is
the largest afforestation reconstruction project in the
world. Remote sensing is a crucial tool to map land
use and land cover change, but it is still challenging to
accurately quantify the change in forest extent from
time-series satellite images. In this paper, 30 Landsat
MSS/TM/ETM+ epochs from 1974 to 2012 were col-
lected, and the high-quality ground surface reflectance
(GSR) time-series images were processed by integrat-
ing the 6S atmosphere transfer model and a relative
reflectance normalization algorithm. Subsequently, we
developed a vegetation change tracking method to
reconstruct the forest change history (afforestation
and deforestation) from the time-series Landsat GSR
images based on the integrated forest z-score (IFZ)
model by Huang et al. (2009a), which was improved
by multi-phenological IFZ models and the smoothing
processing of IFZ data for afforestation mapping. The
mapping result showed a large increase in the extent of

forest, from 380,394 ha (14.8 % of total district area)
in 1974 to 1,128,380 ha (43.9 %) in 2010. Finally, the
land cover and forest change map was validated with
an overall accuracy of 89.1 % and a kappa coefficient
of 0.858. The forest change time was also successfully
retrieved, with 22.2 % and 86.5 % of the change pixels
attributed to the correct epoch and within three epochs,
respectively. The results confirmed a great achieve-
ment of the ecological revegetation projects in Yulin
district over the last 40 years and also illustrated the
potential of the time-series of Landsat images for
detecting forest changes and estimating tree age for the
artificial forest in a semi-arid zone strongly influenced by
human activities.
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Introduction

Land-use and land-cover change is an important factor
which affects the terrestrial carbon cycle and biodiver-
sity (Chapin Iii et al. 2000; Foley et al. 2005; Vitousek
et al. 1997). Forest biomass and productivity accounts
for nearly 80 % of the total carbon estimated to be in
the terrestrial above-ground biosphere (Waring and
Running 2007). Human-induced forest changes, such
as afforestation and deforestation, represent major sinks
and sources of CO2 and the associated greenhouse gas
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fluxes (Hirsch et al. 2004; Law et al. 2004). Knowledge
of the afforestation and deforestation history is neces-
sary to understand atmospheric carbon budget (Schimel
et al. 1997; Thornton et al. 2002).

The collection of Landsat images provides a unique
data source for reconstructing forest change history at
regional or global scale. National Aeronautics and
Space Administration and the United States Geological
Survey (USGS) developed a Landsat Data Distribution
Policy for the distribution of global terrain-corrected
data (L1T), making over 2.2 million images freely
available via the Internet (Woodcock et al. 2008).
Huang et al. (2009b) described a streamlined approach
for producing imagery-ready-to-use (IRU) quality
Landsat time-series stacks (LTSS). This approach con-
sists of an image selection protocol, high-level prepro-
cessing algorithms, and IRU quality verification pro-
cedures. Over the past 40 years, Landsat images have
been widely used in forest change analysis (Goward and
Williams 1997). Brandt et al. (2012) mapped the forest
change in southwest China in response to the national
logging ban and ecotourism using multi-date Landsat
images (four epochs). Their analysis showed that log-
ging rates decreased considerably from 1974 to 2009
and that forest cover increased from 62 % in 1990 to
64 % in 2009. Time-series analysis to determine forest
change are preferred (Townshend et al. 2012), as appli-
cations based on two-dates or multi-dates of Landsat
images may be strongly affected by phenology differ-
ences and bidirectional reflectance distribution function
effects (Liu et al. 2009; Zhu et al. 2012). The availability
of dense time series of Landsat images provides a
chance to reconstruct forest disturbance and change
history with higher temporal resolution (such as 1 year)
and higher precision. For example, Caccetta et al. (2013)
and Lehmann et al. (2013) used time-series Landsat
imagery from 1972–2013 to identify changes in forest
extent and trend respectively for the Australian conti-
nent at multiple epochs for the purpose of estimating
forest changes associated with carbon accounting.

Avegetation change tracking algorithmwas presented
by Li et al. (2009a) and Huang et al. (2009a, b) to detect
forest changes from a time-series of Landsat images. Li et
al. (2009a) analyzed the wall-to-wall forest change pat-
terns in Mississippi during the time period 1987–2005
from 132 Landsat TM and ETM+ scenes using a
vegetation change tracker (VCT) algorithm and re-
vealed a gradually decelerating forest fragmentation
during the time period 1987–1993 and an accelerating

fragmentation during the period 1994–2005. Other ap-
plication of VCT included that in Alabama, USA (Li et
al. 2009a); Mississippi (Li et al. 2009b); eastern United
States (Huang et al. 2009a); and the locations where
LTSS have been assembled through the North American
Forest Dynamics project (Goward et al. 2008; Huang et
al. 2010). Huang et al. (2009a) used the VCTmethod for
mapping forest disturbance with an overall accuracy of
about 80 %. Most of these works were focused on
mapping the disturbance (deforestation, fire, regrowth)
over contiguous areas of high-density forest, and the
application of the time-series of Landsat images for
forest change mapping, especially afforestation in the
semi-arid and sparsely forested regions, is still to be
verified.

In 1978, the Chinese government initiated a signif-
icant ecological restoration project in North China,
named The Three-North Shelter Forest Program
(TNSFP), also known as the Great Green Wall.
TNSFP is a huge ecological restoration effort be-
ing implemented in northwestern, northern, and
northeastern China (english.forestry.gov.cn) and is
also the largest ecosystem restoration project in the
world. The program’s aims were to increase the forest
coverage in North China to effectively control sand
storms and soil erosion, and also to improve ecological
conditions and ecosystem services (Wu et al. 2009).
According to the project’s goal, it aimed to in-
crease the forest area in the program regions by
35,083 million ha and increase the forest coverage from
5.05 % in 1977 to 14.95 % in 2050 (State Forestry
Administration, P.R. China 2008). Numerous ecological
restoration projects have been carried out in the TNSFP
region, which has been suffering from serious sand
storm and soil erosion. From 1978 to 2009, the forest
coverage of the project area was raised from 5.05 % to
10.51 % (english.forestry.gov.cn). It is very important to
examine the achievements of these ecological restora-
tion projects by remote sensing. However, many
TNSFP-related papers were focused on monitoring veg-
etation coverage in the TNSFP region using low-
resolution remote sensing data, such as MODIS and
AVHRR (Wu et al. 2009; Duan et al. 2011; Wang et
al. 2011) or mapping forest changes using multi-
temporal Landsat images based on visual interpre-
tation or supervised classification (Yan et al. 2011;
Pang et al. 2012).

The aims of the present study are: (1) to develop a
method for afforestation and deforestation mapping
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from the time-series Landsat TM/ETM+ images; (2) to
examine the spatial and temporal accuracy of the
afforestation and deforestation mapping in a semi-
arid zone with strong human activities; and (3) to
evaluate the afforestation effects of the ecological pro-
jects in key TNSFP regions.

Study area and data acquisition

Study area

The TNSFP region covers 551 county-level adminis-
trative regions in 13 provinces in north China, with an
extent of 4,480 km from east to west and ranging from
560 to1,440 km from south to north. Its total area is
4,069 million km2, accounting for 42.4 % of the total
land area of China (Zha et al. 2007). The land cover
types and range of the TNSFP region is illustrated in
Fig. 1.

Yulin district is an important part of the TNSFP
region, ranging from 107° 28′ E to 111° 15′ E, and
from 36° 57′ N to 39° 34′ N. It consists of 12 counties
(namely Yuyang, Shenmu, Fugu, Hengshan, Jingbian,
Mizhi, Jia county, Dingbian, Suide, Wubao, Qingjian,
and Zizhou) and covers an area of 43,578 km2, ac-
counting for 21.17 % of the total area of Shaanxi
province (Zha et al. 2007). The elevation in Yulin
district ranges from 585 to 1,907 m above mean sea
level. In the north and west parts, it was covered by

vegetated or bared desert, accounting for 42 % of the
total area, while a loess hilly and gully region lies in
the south and east parts, accounting for 58 % of its
total area. The region’s landforms gradually change
from Mu Us Desert to north Shaanxi loess plateau. It
exhibits a temperate semi-arid continental monsoon
climate with the characteristics of being dry and windy
in spring, hot during summer with most of rainfall,
while dry and cold during winter. The mean annual
temperature is about 10 °C, and the mean annual
precipitation is about 400 mm, with most of the rainfall
occurring in July and August (Williams et al. 2006).

Yulin district is an ecologically fragile region in the
TNSFP region. The land cover types include vegetated
dunes, mobile dunes, desert, cropland, and forest, as
illustrated in Fig. 1. According to the survey data by
the Yulin Forestry Administration, the afforestation
area over the whole region reached 1.339 million acres
(30.7 %) before 2010 (http://www.ylxww.com/show.
aspx?id=17589&cid=42). The planted tree species
include Chinese pine (Pinus tabulaeformis), poplar
(Populus alba), Sabina vulgaris (Savin juniper), Scots
pine (Pinus sylvestris), pagoda tree (Styphnolobium
japonicum), and elm (Ulmus rubra).

Figure 2 shows examples of Landsat images in
different years, wherein this display re-vegetation ap-
pears as dark-brown in color. The image sequence
illustrates that most mobile dunes or desert were suc-
cessfully vegetated in the last 30 years and that the
mobile dune stripes, marked A, B, C, D, E, F in

Fig. 1 The Three-North Shelterbelt Region and the study area (central red rectangle) (revised from Wang et al. 2010)
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(Fig. 2a), were successfully fixed and vegetated. It is
evident that the outcomes of the ecological revegeta-
tion projects in Yulin district were consistent with their
goals.

Collection of Landsat temporal images

The Yulin district covers six Landsat TM/ETM+ im-
ages (paths 126, 127, and 128/rows 33 and 34). In
order to avoid differences in acquisition date between
paths, two Landsat scenes from path 127 were chosen
as the study region. These scenes provide complete
cover for seven counties of the Yulin district, including
Shenmu, Yuyang, Jia county, Hengshan, Mizhi,
Zizhou, and Qingjian counties, having a combined
area of 25,682 km2.

In this study, we collected 25 epochs of Landsat
TM/ETM+ satellite images from 1986 to 2011 and
another five epochs of Landsat MSS images from
1974 to 1978, as described in Table 1. The study area
is covered by two Landsat TM scenes, namely
path/row 127/33 and 127/34. The footprint of the
Landsat MSS images is different from that of
Landsat TM/ETM+, and we required two Landsat
MSS paths (136 and 137) to cover the study area.
Path 137 covers about 80 % of the study area, and
another 20 % was filled in with path 136. All 30
epochs (70 scenes in total) were acquired with a quality
higher than seven (minimal or no cloud contamination)
during the vegetation growing season. Almost all forest
species in this region are deciduous. Therefore, only
images during growing season were selected to

(a)  (b) 

(c) 

A
B

C

D

EF

A
B

C

D

EF

Fig. 2 Landsat images of
the study area (RGB 742):
a TM image (paths/rows
127–33 and 34) on 30 June
2009; b TM image (paths/
rows 127–33 and 34) on 2
August 1986; c subset of
TM images for location F
shown in (a) and (b) (from
left to right: 17 July 2010,
31 May 2001, and 2 August
1986), with dark-brown
pixels corresponding to
afforestation areas
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discriminate forest from non-vegetation covers and also
to determine the deforestation or afforestation time.

The images were collected from the USGS Landsat
archive (http://glovis.usgs.gov) and the China remote
sensing satellite ground station (www.ceode.cas.cn).
There were two epochs collected in 2007, and the image
acquired on 24 May 2007 was employed to build the
multi-phenological IFZ (integrated forest z-score) mod-
el (introduced later), and another image acquired on 12
August 2007 was selected to reconstruct the annual
change of forest cover.

Image processing of Landsat time-series data

All Landsat images were sourced from either the USGS
(via the download facility) or the China Remote Sensing
Ground Station (RSGS). Standard level-one terrain-
corrected (L1T) product, which were geometrically
corrected orthorectified products by the data provider
using standard systematic correction methods (Li
et al. 2009b), were selected from the USGS site.
Fast-formatted products without geometric correc-
tion and orthorectification were provided by the
China RSGS.

All Landsat images were processed using the fol-
lowing steps to produce the time-series of ground
reflectance data.

1. Orthorectification to a common spatial reference
for the Landsat TM images from the China remote
sensing satellite ground station, using an earth
orbital model and ASTER 30 m DEM (digital
elevation model) data from USGS and processed
with a software developed by CSIRO (Caccetta et
al. 2007). The Landsat TM image acquired on 30
June 2009 from USGS in L1T format was selected
as the base image for geometric correction,
orthorectification, and also normalization process
of ground surface reflectance for other images. All

the orthorectified Landsat MSS, TM and ETM+
images were re-sampled to a 30 m resolution by
linear interpolation.

2. Terrain illumination correction. All the Landsat
images were corrected using a C-correction meth-
od (Teillet et al. 1982) and ASTER DEM (30 m)
data, using software developed by CSIRO (Wu et
al. 2004).

3. Image atmospheric correction for the base image.
The base image (acquired on 3 June 2009) was first
radiometrically corrected according to the calibra-
tion coefficients and methods described in Chander
et al. (2009). Then, the top-of-atmosphere radiance
image was corrected using an atmospheric correc-
tion algorithm adapted from the MODIS 6S radia-
tive transfer approach (Vermote et al. 2002); the
atmospheric parameters for the 6S model were tak-
en from the MODIS atmospheric products, includ-
ing MOD04 (L2 Aerosol), MOD05 (L2 total pre-
cipitable water vapor), and MOD07 (L2 tempera-
ture and water vapor profiles). We developed soft-
ware to automatically complete this step, requiring
as inputs only the filename of the Landsat image,
the MODIS atmospheric products and DEM data.

4. Production of GSR images based on a relative
normalization method. For such a long time-
series of Landsat images, it is almost impossi-
ble to obtain the measured atmospheric param-
eters for atmospheric correction. Therefore, we
developed a procedure to derive GSR products
based on the relative radiance normalization algo-
rithm (Cohen et al. 2003). An iterative re-weighted
multivariate alteration detection algorithm by
Cohen et al. (2003) was used to detect the invariant
target pixels. The Landsat DN images from Step 2
were then matched to the GSR base image from
Step 3 by least-square fitting for these invariant
pixels, and the time-series Landsat GSR images
were produced.

Table 1 Acquisition dates
(yyyy-mm-dd) of collected
Landsat images (path 127 for
TM/ETM+ sensor, paths 136
and 137 for MSS sensor)

Path/row Acquisition date

127/33 and 34 2012-06-30, 2011-07-22, 2010-07-17, 2009-06-30, 2008-09-15,
2007-08-12, 2007-05-24, 2006-09-10, 2005-07-29, 2004-09-12,
2003-08-17, 2002-08-06, 2001-05-31, 2000-05-20, 1998-07-02,
1996-06-10, 1995-06-08, 1994-08-24, 1993-06-18, 1992-07-17,
1990-08-29, 1989-09-11, 1988-09-24, 1987-05-17, 1986-08-02

137/33 and 34 1978-08-01, 1977-08-15, 1976-09-25, 1975-04-22, 1974-05-24

136/33 and 34 1978-09-23, 1977-07-07, 1976-06-26, 1975-06-14, 1973-11-24
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Figure 3 illustrates three GSR subset images pro-
duced with the above steps (location A marked in
(Fig. 2a and b). All three ground reflectance images
are displayed with the same histogram stretch param-
eters; the same colors can be observed across epochs
for the same targets. This figure also illustrates the
significant increase in forest cover, especially with
large areas of afforestation after 2000. The mean re-
flectance spectra of the water pixels (area A1 in Fig. 3)
and desert pixels (area A2 in Fig. 3) are summarized in
Table 2. This result shows that the relative normaliza-
tion method of Step 4 is satisfactory in producing
high-precision time-series GSR images, with a GSR
absolute error lower than 0.015 for all six reflectance
bands of the three epochs.

Field data

In situ surveys were conducted from 20 to 22 October
2011 and 24 to 28 from May 2012. Fifteen sites were
investigated for forest change mapping, distributed in
four counties of the Yulin district, namely Jia county,
Shenmu, Yuyang, Hengshan, Mizhi, Zizhou, and
Qingjian. The variables recorded were forest type, tree
density, tree diameter at breast height, and affores-
tation time. The afforestation time or land cover
change time was investigated in situ by local for-
estry staff or determined using a tree-ring method
or tree-node number method (only valid for pine
trees). Photographs of the surrounding landscape
were taken and localized by a handheld GPS. Finally,
the 15 ground truth patches for afforestation mapping
were located on the 22 July 2011 Landsat TM image
according to the in situ GPS records. Figure 4 shows
some typical in situ photos of afforestation sites in the
Yulin district.

Methods

Multi-phenological forest z-score for forest mapping

Huang et al. (2009a) presented a vegetation change
tracking model to automatically map the forest change
history from time-series of Landsat images, which has
proved to be able to detect most forest disturbance
events including harvest, fire, and urban development
(Huang et al. 2009a, 2010). An integrated forest z-
score was designed to discriminate forest and non-
forest pixels in multi-spectral images (Huang et al.
2009a).

With training forest pixels determined according to

ground surveys or visual interpretation, the mean (bi)
and standard deviation (SDi) of band i for the training
forest samples can be calculated from the GSR image.
The forest z-score (FZi) value for that band is defined
as follows (Huang et al. 2009a):

FZi ¼
bi−bi

� �

SDi
ð1Þ

For multi-spectral images, the IFZ (integrated forest
z-score) value of each pixel is then defined as
(Shumway 1987; Huang et al. 2009a):

IFZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NB

X
i¼1

NB

FZið Þ2
vuut ð2Þ

where NB is the number of bands used. For Landsat
TM/ETM+ images, bands 3, 5, and 7 were used to
calculate the IFZ values of each pixel (Huang et al.
2009a). For Landsat MSS images, bands 1, 2, and 4
were used to calculate the IFZ value (band 3 was
excluded due to its high correlation with band 4).

A1

A2

A1

A2

A1

A2

Fig. 3 Ground surface reflectance (GSR) images (RGB 742). From left to right: 17 July 2010, 31 May 2001, and 2 August 1986
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Weather limitations (such as cloudy and fog) due to
the monsoon climate mean that it is almost impossible
to collect time series of Landsat images during the
forest growth peak season (July and August). As
shown in Table 1, the Landsat time-series images
cover all the forest growth stages from May to
September. Therefore, the phenological differences in
IFZ scores should be considered, and it is almost
impossible to retrieve the planting year from such
IFZ curves fluctuating as a result of phenological
differences, especially for sparse forest in the semi-

arid loess region, such as the Yulin district. The
spectral signature of known forest pixels within each
image was used to normalize the images acquired at
different time and growth season (Huang et al.
2009a). However, it is quite difficult to find the
stable forest pixels in recent 40 years in Yulin dis-
trict, and the forest growth and disturbance during
such a long period cannot be neglected. Therefore,
the multi-phenological IFZ models were built using
the recent epochs (2007–2011) to normalize the phe-
nological difference.

Table 2 Landsat GSR spectra of
the invariant targets in
different epochs

Water Desert

1986 2001 2010 1986 2001 2010

B1 0.035 0.041 0.036 0.085 0.100 0.087

B2 0.069 0.075 0.061 0.178 0.190 0.180

B3 0.049 0.052 0.043 0.234 0.244 0.235

B4 0.034 0.039 0.032 0.326 0.331 0.339

B5 0.037 0.039 0.035 0.409 0.417 0.412

B7 0.035 0.037 0.033 0.406 0.417 0.412

(a)  (b) 

(c) (d) 

Fig. 4 Photos of different afforestation sites in the Yulin district: a afforestation of Scots pine in 1980; b afforestation of Chinese pine in
1980; c afforestation of S. vulgaris in 2003; d afforestation of Chinese pine in 2004
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A set of persisting forest training sites (1,275
pixels) were selected according to in situ investigation
and visual interpretation, to calculate statistical values
as required in Eqs. 1 and 2, according to ground
surveys and visual interpretation. IFZ models in dif-
ferent months (May to September) were built using
five epochs from 2007 to 2011 and are summarized in
Table 3. The growth difference between 2007 and 2001
was neglected for the stable forest training dataset,
which was fixed across the five epochs. Therefore, we
can calculate the IFZ data for the Landsat GSR images
listed in Table 1 according the IFZ model given by Eq. 2
and the relative statistical parameters in Table 3, which
reduces the phenological difference greatly. Finally, the
time-series of IFZ images are calculated according to
this procedure. The Landsat TM image acquired on 24
May 2007 was only used to build the IFZ model in late
spring (May). It was not employed as one of the time-
series GSR images to map forest changes because there
was already another Landsat TM image in the growth
peak season in 2007.

Based on these results, the impact that phenological
differences would have on the IFZ curves can be easily
evaluated. For instance, if the 22 July 2011 IFZ model
was selected, the IFZ value of the reference forest spec-
trum of 15 September 2008 would be 0.728, which
would effectively lead to a 0.728 phenological fluctua-
tion in the IFZ curve between July and September
(neglecting potential reflectance normalization errors).

For time-series of IFZ images, the cloud-
contaminated (invalid) pixels were identified by their
IFZ value (IFZ value greater than 6). These and other

invalid pixels in Landsat ETM+SLC products (two
epochs only) were replaced by the IFZ values of the
nearest epoch.

Although the phenological impact was considered
here, there were still small fluctuations for stable forest
due to various causes such as inter-annual climate
differences, image radiance normalization, spatial at-
mospheric differences, growth stage differences (less
than half a month), etc. The increase of afforestation
trees is typically gradual and smooth. Therefore, it is
necessary to smooth the temporal IFZ curves to derive
the exact planting year for the afforestation pixels.
Savitzky and Golay (1964) proposed a simplified
least-squares-fit convolution for smoothing a noise
curve. In this study, the Savitzky–Golay filter was
defined as a quadratic polynomial fitting function with
a window size of 11, which proved to be efficient in
smoothing the IFZ curves (Fig. 5). The relatively
smaller variance in the IFZ values of the five
Landsat MSS images (1974 to1978) also illustrated
that the IFZ model based on Landsat MSS B1, B2,
and B4 was not so sensitive to vegetation cover, com-
pared with the IFZ values of the other Landsat
TM/ETM+ images based on Landsat TM B3, B5,
and B7.

Forest change mapping rules using the IFZ time-series
data

As defined in Eqs. 1 and 2, the IFZ parameter has an
inverse relationship with the likelihood of a pixel
belonging to the forest class. If a pixel’s reflectance

Table 3 Mean (bi) and standard deviation (SDi) values for forest z-score models in different months (May to September)

B1 B2 B3 B4 B5 B7

2007-05-24 Mean 0.050 0.094 0.105 0.215 0.233 0.198

SD 0.012 0.016 0.022 0.024 0.029 0.032

2010-06-17 Mean 0.028 0.065 0.082 0.206 0.218 0.172

SD 0.014 0.024 0.032 0.032 0.045 0.051

2011-07-22 Mean 0.026 0.062 0.086 0.235 0.237 0.182

SD 0.023 0.042 0.046 0.029 0.057 0.070

2007-08-12 Mean 0.057 0.101 0.108 0.251 0.254 0.204

SD 0.007 0.014 0.020 0.031 0.037 0.039

2008-09-15 Mean 0.049 0.097 0.115 0.237 0.277 0.236

SD 0.012 0.021 0.030 0.032 0.049 0.052
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spectrum is close to that of the forest training pixels
(as listed in Table 3), its IFZ value will be close to
0 and this pixel would be labeled as forest. On the
other hand, those pixels with high IFZ are more likely
non-forest (as illustrated in Fig. 5).

IFZ thresholds for the identification of forest pixels
and planting year

Assuming that the IFZ values of forest pixels exhibit a
normal Gaussian distribution, the probability of a pixel
being a forest pixel can be directly related to its IFZ
scores using a Standardized Normal Distribution Table
(Huang et al. 2010). In our study, over 98 % of the IFZ
values of the investigated in situ (stable) forest pixels
were less than 2.0; 99 % of the pixels had IFZ values
less than 2.5, and 90 % less than 1.2. Therefore, a
pixel is labeled as stable forest if its IFZ value is 1.2 or
less and labeled as forest if its IFZ value is between
1.2 and 2.0, while an IFZ threshold of 2.5 is used to
identify the planting year and non-vegetated pixels.

However, for some afforestation cases in bare de-
sert areas (as illustrated, for instance, in Fig. 2c and the
photo in Fig. 4d), the sandy background presents high
reflectance, and the IFZ value was far higher than for
bare soil or cropland. As a result, these afforestation
pixels in the desert could not be detected with the
above threshold values (2.0 for forest pixels and 2.5
to identify planting years). Most of these plantings
occurred after 2000 under strong political require-
ments and economical funding supported by China’s
central government. For such cases, a monotonous
decrease of IFZ (the smoothed IFZ data) with an
amplitude greater than 2.0 and with a minimum IFZ

value lower than 2.5 (see “Afforestation 2004” curve
in Fig. 5) was also used to identify a pixel as affores-
tation pixel. And the threshold for determining plant-
ing year was set as a value of 1.0 greater than the
minimum IFZ in the recent 10 years.

For persisting forest, the IFZ value would remain
very small over the study period. Accounting for dis-
turbances such as cloud, haze if a pixel’s IFZ values
were all less than 2.0 except for three epochs, then it is
identified as persisting forest.

Considering the gradual increase of afforestation
plantings, the smoothed IFZ time-series data obtained
by Savitzky–Golay filtering were used for afforesta-
tion mapping according to the above rules.

IFZ thresholds for the identification of deforestation

Deforestation typically causes a rapid increase of IFZ
value. If the IFZ value increases by 1.5 or more from
a low value less than 1.2 (stable forest) and maintains
a high value greater than 2.5 after the increase, this
pixel is identified as deforestation, and the year of
initial increase is recorded as the felling year. The
original IFZ time-series data were used to map
deforestation.

Cropland mapping rules using IFZ time-series data

Parts of the Yulin district are heavily influenced by
human activities, and there are numerous cropland re-
gions surrounded by desert and forest. Where crops
were planted and had significant canopy cover, the
spectra of the pixels in these areas were similar to other
natural vegetation such as forest and shrubs, making it
challenging to discriminate the cropland for these pe-
riods. However, the time-series of Landsat images pro-
vides a chance to discriminate cropland according to the
phenological variations for different crops over time.

As illustrated in Table 1, the acquisition time of the
Landsat images ranges from May to September, which
covers almost the entire growth season for crops in
Yulin district. The crops include winter wheat, spring
maize, rice, millet, and potato. In different growth
stages, the reflectance spectra would vary greatly, even
for one crop. Consequently, cropland regions would
typically exhibit rapid fluctuations under different
growth stages or different crops in the temporal IFZ
curves. In this study, more than five fluctuations with
amplitude greater than 1.0 in the original IFZ time-
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series, with a minimum value lower than 1.2, are taken
as an indication of a pixel being cropland.

Non-vegetation cover mapping rules using IFZ
and GSR reflectance time-series data

For non-vegetated covers, such as water and bare land,
the IFZ value typically remains high during the study
period. Accounting for the inter-annual changes of water
cover and cloud contamination, if a pixel’s IFZ values are
greater than 2.5 except for less than four epochs, it is
labeled as non-vegetated pixel. Subsequently, water
pixels are discriminated from bare land. The spectral
reflectance of water is very low in the near-infrared
(NIR) and short-wave infrared bands (almost zero for
clear water), but the NIR reflectance of bare land is high
(almost always greater than 30%). Considering the water
turbidity in rivers (especially the Yellow River), the pres-
ence of water is deemed likely if the band 7 reflectance of
the Landsat TM/ETM+ image is less than 10 %. Thus, if
this case occurs five times or more in all 25 epochs
(MSS images were not used here due to their low
resolution), a pixel is finally labeled as water, while
otherwise retaining its bare land classification.

Land cover and forest change mapping algorithm

According to the above classification rules, we built an
algorithm to map the different land covers and forest
changes (afforestation and deforestation), as shown in
Fig. 6. The mapping rules for the identification of
forest changes and cropland are described above. C1
and C2 in Fig. 6 are the afforestation and deforestation
cases associated with the afforestation and deforesta-
tion mapping rules, respectively. The corresponding
planting and felling years were also retrieved in this
step according to the methods described above.

Results and validation

Afforestation and deforestation mapping from 1974
to 2012 in Yulin District

The Landsat images listed in Table 1 were all processed
according to our image processing steps, leading to the
production of the time-series Landsat GSR images. The
time-series IFZ images were also calculated according
to the IFZ models for different growth season (listed in

Table 2). For the Landsat MSS data, the IFZ images of
path 136 and 137 were calculated independently (the
IFZ model was different for different growth seasons),
and image mosaicing was applied to the two paths’ IFZ
images. Finally, the time-series of IFZ images and re-
flectance data (band 7 only) was used as input to the
mapping algorithm described in Fig. 6, leading to the
production of land cover and forest change information,
including the planting and felling years for the forest
changes pixels. All land covers were mapped into 56
classes, including water, persisting forest, bare land,
cropland, 26 afforestation classes from 1975 to 2010,
and 26 deforestation classes from 1975 to 2012.

Figure 7 shows the land cover and forest change
mapping results over Yulin district from 1974 to 2012,
which highlights the great achievements of the local
afforestation projects in the past 40 years. In Fig. 8, the
amounts of afforestation and deforestation between
1974 and 2012 are summarized according to the polit-
ical extents of the Yulin district (only seven counties)
and Jia county. It clearly shows a big forest increase in
Yulin district (seven counties) from 1974 to 2012, with
2001 being the most significant growth year with a total
afforestation area of 209,369 ha. Another afforestation
peak occurred around 1977. These two afforestation
peaks agree with the start of TNSFP in 1977 and
another strong political promotion of afforestation after
2000, through an initiative proposed by Premier Zhu
Rongji in 1999 called “Returning cultivated land to
forest and mountain greening.” There was also a small
peak of deforestation (2,984 ha) in 2009, clearly visible
in the plots in Fig. 8, which was caused by basic
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Fig. 6 Flowchart to map land covers and forest changes using
the time-series of IFZ and reflectance data
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infrastructure construction projects (such as road con-
struction, city and airport development, mining indus-
try, etc.) promoted by the government after the global
economic crisis in 2008.

The forest cover areas and forest changes are also
summarized in Table 4 for the Yulin district (only seven
counties) and Jia county (political borders). The
persisting forest cover area is 375,796 ha (14.6 %) and

Fig. 7 Land cover and forest change mapping from 1974 to 2012 over Yulin district
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44,983 ha (22.1 %) for Yulin district and Jia county,
respectively, which was directly mapped according to
the persisting forest IFZ rule as described in the
“Methods” section. The results show a big increase in
forest area over the last 40 years in Yulin district. The
afforestation and deforestation inventory data were not
available for public or scientific research, and it is diffi-
cult to link the remotely sensed afforestation data with
the government’s inventory afforestation data. The
ground survey and biomass harvest experiment was
supported by the Forest Bureau of Jia county, who also
provided information of the forest extends of Jia county
in 1975 and 2010. According to this forest inventory
data, the forested land area of Jia county increased from
59,747 ha in 1975 to 115,380 ha in 2010, corresponding
to a percentage of the forested land increasing from
28 % (1975) to 56 % (2010). According to the remote
sensing results shown in Table 4, the forest cover of Jia
county increased from 45,251 ha (22.2 %) in 1974 to
98,483 ha (48.5 %) in 2010. Due to the definition of
forest cover in this paper being quite different from the
definition of forested land in the inventory data, the
afforestation area from remote sensing mapping is about
7 % lower than that of the inventory area. However, the
results presented in this work remain basically consis-
tent with the inventory data provided by the Forest
Bureau of Jia county, with a similar percentage-wise
increase of total forested area (about 26 %) over the
35-year period. Furthermore, the forest cover of Yulin
district (seven counties) increased from 380,394 ha
(14.8 %) in 1974 to 1,128,380 ha (43.9 %), which is
also consistent with the survey data by the Yulin
Forestry Administration with an afforestation area of
30.6 % over the whole Yulin District (12 counties)

before 2010 (http://www.ylxww.com/show.aspx?id=
17589&cid=42).

Validation of the land cover and forest change mapping

Validation of land cover products mapped from satellite
images is typically based on independent in situ ground
truth data or visual interpretation. In this paper, the land
use and land cover change mapping was validated using
the in situ investigation sites. Seventeen patches were
selected as ground truth data according to in situ in-
vestigations and also the 2011 Landsat TM image. The
validation results of the land cover and forest change
mapping is listed in Table 5. The result showed that
forest cover and forest change time were successfully
mapped from the temporal IFZ data, and cropland was
also discriminated with a producer’s accuracy of 84.7 %
and a user’s accuracy of 81.4 %.

All the land covers and forest changes in Table 5
were merged into six classes, namely water, bare land,
cropland, persisting forest, afforestation, and defores-
tation. The confusion matrix for this six class mapping
was calculated and is shown in Table 6. These results
show that the land covers were successfully classified
with an overall accuracy of 89.1 % and a Kappa
coefficient of 0.858. The producer’s and user’s accu-
racy for afforestation was 78.4 % and 87.9 %, respec-
tively. The producer’s and user’s accuracy for defor-
estation was 89.1 % and 100 %, respectively.

The planting and felling years were also retrieved
from the time-series Landsat GSR images, leading to
the 26 afforestation classes and 26 deforestation clas-
ses. The temporal detection accuracy of forest changes
was also calculated according to Table 5, with the
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results provided in Table 7. The forest change time was
quite good, with 22.2 % of pixels exactly retrieved, and
86.5 % of the pixels having a discrepancy of less than
three epochs. This result illustrates the potential of the
time-series of Landsat images for the detection of tree
age in artificial forests, even in a semi-arid zone.

Conclusion

Landsat time-series images provide a historical record
of land use and land cover change. In this paper, we
developed a method to map the forest changes

(afforestation and deforestation) in a semi-arid zone with
strong human activities based on the time-series GSR
Landsat images and the IFZ model presented by Huang
et al. (2009a). The land covers and forest changes from
1974 to 2012 were successfully reconstructed from the
time series of GSR Landsat images (29 epochs) in Yulin
district, Shaanxi province, China, which is a key part of
the TNSFP region. The land cover and forest change
maps were validated using 17 ground-truth patches, with
an overall accuracy of 89.1 % and a kappa coefficient of
0.858. The forest change times were also successfully
retrieved, with 22.2 % of change pixels exactly retrieved
and 86.5 % correctly identified within less than three

Table 4 Forest area (hectares) and coverage in Yulin district (seven counties) and Jia county from 1974 to 2010

Year Yulin district Jia county

Afforestation Deforestation Forest Coverage Afforestation Deforestation Forest Coverage

2010 8,899 277 1,128,380 43.9 % 118 6 98,483 48.5 %

2009 14,133 2984 1,119,758 43.6 % 288 106 98,370 48.4 %

2008 12,316 834 1,108,609 43.2 % 497 37 98,188 48.3 %

2007 10,851 412 1097127 42.7 % 463 2 97,729 48.1 %

2006 6,908 20 1,086,688 42.3 % 127 1 97,268 47.9 %

2005 11,591 8 1,079,800 42.0 % 173 1 97,142 47.8 %

2004 42,565 6 1,068,216 41.6 % 1,260 0 96,969 47.7 %

2003 82,201 3 1,025,658 39.9 % 5,240 0 95,710 47.1 %

2002 88,349 2 943,460 36.7 % 6,513 0 90,470 44.5 %

2001 209,371 2 855,113 33.3 % 15,647 0 83,957 41.3 %

2000 44,576 22 645,744 25.1 % 2,557 0 68,311 33.6 %

1998 34,240 0 601,190 23.4 % 2,077 0 65,754 32.4 %

1996 34,020 0 566,950 22.1 % 1,872 0 63,677 31.3 %

1995 13,417 0 532,930 20.8 % 1,014 0 61,806 30.4 %

1994 4,567 0 519,513 20.2 % 264 0 60,791 29.9 %

1993 3,004 1 514,946 20.1 % 144 0 60,527 29.8 %

1992 5,459 4 511,943 19.9 % 397 0 60,383 29.7 %

1990 4,901 11 506,488 19.7 % 437 0 59,986 29.5 %

1989 8,523 5 501,598 19.5 % 571 0 59,549 29.3 %

1988 10,284 0 493,080 19.2 % 387 0 58,978 29.0 %

1987 10,951 1 482,796 18.8 % 1,272 0 58,591 28.8 %

1986 23,529 2 471,845 18.4 % 2,193 0 57,319 28.2 %

1978 18,991 2 448,318 17.5 % 2,939 0 55,126 27.1 %

1977 39,470 2 429,329 16.7 % 6,697 0 52,187 25.7 %

1976 5,884 0 389,861 15.2 % 240 0 45,491 22.4 %

1975 3,583 0 383,977 15.0 % 114 0 45,251 22.3 %

1974 0 0 380,394 14.8 % 0 0 45,137 22.2 %

Persisting forest 375,796 14.6 % 44,983 22.1 %
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epochs, which also illustrates the potential of the time
series of Landsat images for the detection of tree age in
artificial forests, even in a semi-arid zone.

The forest change mapping from the time-series
Landsat GSR images clearly shows a big forest increase
in Yulin district (seven counties) from 380,394 ha
(14.8 %) in 1974 to 1,128,380 ha (43.9 %) in 2010.
The largest afforestation occurred in 2001 and another
peak occurred around 1977. These two afforestation
peaks agree with the start of TNSFP in 1978 and another
strong political promotion and funding for afforestation
in 1999. The small deforestation peak in 2009 is also
corroborated by the basic infrastructure construction
projects promoted by the government after the global
economic crisis in 2008. These results confirm the great
success achieved by the ecological projects in Yulin
district over the last 40 years.

In reconstructing the history of forest changes in a
semi-arid zone with strong human activities, the fol-
lowing observations were particularly important.

1. A high quality of image preprocessing was indis-
pensable. In this paper, we developed a relative
reflectance normalization method to build the
time-series GSR image stacks, with a GSR nor-
malization difference less than 0.015 for all six
reflectance bands of three different epochs (17
July 2010, 31 May 2001, and 2 August 1986),
which was the basis for the quantitative analysis of

forest changes from time-series Landsat images.
The terrain radiance correction supported by high-
resolution DEM data was required for rugged
area.

2. The spectral variance of sparse forests in a semi-
arid zone was higher than for forests (Huang et al.
2009a, 2010; Li et al. 2009a, b), and it is more
challenging to retrieve the planting time from
Landsat images acquired during different growth
seasons. In this paper, we presented a multi-
phenological IFZ model (Table 3), which signifi-
cantly eliminates this phenological influence.

3. Considering the gradual growth characteristics of
afforestation, the IFZ time series was smoothed by
a Savitzky–Golay filter (Savitzky and Golay
1964) to remove the fluctuations caused by vari-
ous disturbances. The afforestation year was suc-
cessfully retrieved from the smoothed IFZ time-
series curve. The original (raw) IFZ data were still
used to determine other cases such as deforesta-
tion, cropland, water, bare land, and persisting
forest.

4. The phenological information provided by the
time-series Landsat image acquired at different
growth seasons was different for different land
covers, although it was challenging to retrieve
the exact afforestation time. The fluctuations in
the time-series IFZ curves due to phenological
differences in cropped areas were successfully
used to discriminate cropland from persisting for-
est and other forest change cases.

One limitation, however, is that we could not dis-
criminate shrubs from forest using the time-series
Landsat GSR images. The presented afforestation and

Table 6 Confusion matrix for the six class land cover and forest change mapping

Bare land Cropland Water Afforestation Persisting forest Deforestation Total

Bare land 1,302 76 1,378

Cropland 500 64 19 31 614

Water 306 306

Afforestation 35 55 877 31 998

Persisting forest 35 101 585 6 727

Deforestation 116 116

Total 1,337 590 306 1,118 635 153 4,139

Overall accuracy 89.1 %, Kappa coefficient=0.858

Table 7 Temporal detection accuracy of forest changes (epoch
difference)

0 ≤1 ≤2 ≤3 ≤5

Percent 22.2 % 57.8 % 73.6 % 86.5 % 97.4 %
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deforestation data thus included both forest and shrub
regions, which was also regarded as afforestation by the
Chinese forest department. Other remaining challenges
include discriminating between different afforestation
types and also between the different sparse vegetation
types in a semi-arid zone with strong human activities.
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