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Sensitivity analysis (SA) has become a basic tool for the understanding, application and development of
models. However, in the past, little attention has been paid to the effects of the parameter sample size
and parameter variation range on the parameter SA and its temporal properties. In this paper, the corn
crop planted in 2008 in the Yingke Oasis of northwest China is simulated based on meteorological
observation data for the inputs and statistical data for the parameters. Furthermore, using the extended
Fourier Amplitude Sensitivity (EFAST) algorithm, SA is performed on the 47 crop parameters of the
WOrld FOod STudies (WOFOST) crop growth models. A deep analysis is conducted, including the effects
of the parameter sample size and variation range on the parameter SA, the temporal properties and the
multivariable output issues of SA. The results show that sample size highly affects the convergence of the
sensitivity indices. Two types of parameter variation ranges are used for the analysis, and the results
show that the sensitive parameters of the two parameter spaces are distinctly different. In addition,
taking the storage organ biomasses at the different growth stages as the objective output, the time-
dependent characteristics of the parameter sensitivity are discussed. The results show that several
sensitive parameters exist in the grain biomass throughout the entire development stage. In addition,
analyzing the twelve sensitive parameters has proven that although certain parameters have no effect on
the final yield, they play key roles in certain growth stages, and the importance of these parameters
gradually increases. Finally, the sensitivity analyses of different state variable outputs are performed,
including the biomass, yield, leaf area index, and transpiration coefficient. The results suggest that the
sensitive parameters of various variable processes differ. This study highlights the importance of
considering multiple characteristics of the model parameters and the responses of the models in specific
phenological stages.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Crop growth models are a valuable tool for the quantitative
analysis of the growth and production of crops and play an
important role in crop monitoring, crop yield prediction, field
management recommendations, agricultural production potential
evaluation, and climate change impact evaluation (Batchelor et al.,
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2002; Donatelli et al., 2002; Houles et al., 2004; Bouman and van
Laar, 2006; Varella et al., 2010). Crop growth models primarily
simulate the growth and development of crops, and they encom-
pass the primary biophysical and biochemical processes in the
soilecropeatmosphere system, such as photosynthesis, respira-
tion, transpiration, dry matter partitioning and senescence.

In general, crop growth models are simplifications of the agri-
ecological systems that they represent and include many parame-
ters, the determination of which is a major problem for practical
operational applications (Makowski et al., 2006). Most parameters
are acquired through field observations, which are costly and time
consuming (Hsiao et al., 2009), and the acquisition of certain pa-
rameters is difficult. Alternative methods are directly derived from
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related studies (Confalonieri et al., 2006; Ceglar et al., 2011), but
many parameters vary with the environmental conditions, crop
cultivars, seasonal variation, and other factors (Confalonieri et al.,
2010b; Ceglar et al., 2011; Zhu et al., 2011). Additionally, it is un-
realistic to directly apply these parameters to different locations,
and model predictions based on inaccurate parameter values are
unreliable and not especially meaningful. All of these factors in-
fluence the accuracy of the model outputs, and accurate parameter
estimation is thus necessary (Guerif and Duke, 2000; Guerif et al.,
2006). Many parameter estimation algorithms have been devel-
oped, such as the simulated annealing algorithm, genetic algo-
rithm, and Bayesian approaches (Li et al., 2004; Su et al., 2009; Zhu
et al., 2011). To a certain extent, these methods solve the problem of
difficult-to-acquire parameters, and thus the methods are quite
efficient but applicable only to a small number of parameters
(Varella et al., 2010). Therefore, the inclusion of many parameters in
a single complex crop growth model also presents a problematic
observation: it is nearly impossible to simultaneously estimate all
of the unknown parameters. In fact, a small number of model pa-
rameters are often responsible for most of the variability of the
model outputs, whereas most of the other parameters may have
only small influences. Therefore, an efficient method for parameter
reduction is required (Manache and Melching, 2008; Post et al.,
2008). The parameter sensitivity analysis (SA) method is capable
of playing this role in identifying sensitive parameters, which is
beneficial and allows concentrating efforts on calibrating the sen-
sitive parameters. Those factors with a small contribution may be
set to a default value or an observed value. In addition, based on the
SA, the balance and robustness of themodel can be analyzed for the
future improvement and development of the model (Fraedrich and
Goldberg, 2000; Confalonieri et al., 2010c). Thus, the parameter SA
method has been demonstrated as a beneficial means for under-
standing, improving and applying models (Chu-Agor et al., 2011;
Hirabayashi et al., 2011). In early studies, the parameter SA algo-
rithmwas mainly applied to complex hydrological models (Francos
et al., 2003) and was subsequently widely expanded to various
ecological, crop and environmental models (Asseng et al., 2004;
Confalonieri et al., 2006, 2010a; Feyereisen et al., 2006; Luquet
et al., 2006; Van Griensven et al., 2006; Wang et al., 2006;
Cariboni et al., 2007; Annoni et al., 2011; Miao et al., 2011; Vardit
et al., 2011; Sun et al., 2012).

The SA of model parameters is conducted by altering the pa-
rameters and observing the corresponding responses in the output
variables. Over the past few years, studies of parameter sensitivity
have received much critical attention. Many of these studies
centered on the development of the SA algorithm (Cukier et al.,
1978; Mckay et al., 1979; Yen et al., 1986; Morris, 1991; Sobol,
1993; Saltelli et al., 1999; Van Griensven et al., 2006; Makler-Pick
et al., 2011). At first, parameter SA was used to identify the sensi-
tive parameters formodel reduction. A local sensitivity methodwas
proposed and obtained by varying one input factor at a time while
holding the others fixed at a nominal value. Because this method is
efficient, quick and easy to use, it has been commonly applied in
many disciplines. Together with the increasingly deep knowledge
of model structure and performance, factor interactions have
attracted increasing attention. Thus, the concept of global SA was
proposed, many global SA algorithms were developed and research
in this field has shown considerable progress (Fieberg and Jenkins,
2005; Saltelli et al., 2008). Compared with the local SA algorithms
used previously, the global SA method highlights its ability to
analyze the output uncertainties over the entire parameter space
and determine the comprehensive effects of the parameters on the
output. Global SA methods may be divided into three types:
screening, regression-based and variance-based (Confalonieri et al.,
2010a; Yang, 2011). The screening method is capable of providing
parameter rankings, whereas the variance-based method is able to
quantify the amount of variance that each parameter contributes to
the unconditional variance of the model output (Saltelli et al.,
2009). Due to its advantages, the global SA method is quite popu-
lar in various fields of science (Ginot et al., 2006; Benson et al.,
2008; Manache and Melching, 2008; Miao et al., 2011). However,
the global SA algorithm also displays a well-known shortcoming:
its heavy computational burden. Together with the enhancement of
the knowledge of crop biological processes and their relationships
with the ecological environment, more complex processes have
been included in the crop growth models with each run; however,
these runs require a great deal of time, and performing SA on crop
models is thus quite time-consuming. Therefore, scientists have
turned to research on the enhancement of the algorithm’s effi-
ciency and practicability. The improvement of the sampling strat-
egy is a highly important step with distinct effects on
computational efficiency (Helton et al., 2005; Campolongo et al.,
2007; Castaings et al., 2012). For example, Helton et al. (2005)
suggested that in a complex system, Latin hypercube sampling is
preferable over random sampling. However, based on the meta-
models, emulation technology has become an important and
increasingly expanded area of sensitivity analysis and can also be
used to estimate the sensitivity indices (Borgonovo et al., 2012;
Ciric et al., 2012; Ratto et al., 2012; Villa-Vialaneix et al., 2012).

In addition, certain scientists place additional emphasis on this
question throughout the entire application process. For example,
the convenience and simplicity of performing SA have been high-
lighted. Based on these requirements, a specific software program
known as SimLab has been developed for implementing the SA
algorithm (SimLab, 2009), and certain studies have focused on the
analysis of SA results for different locations, crop varieties, field
management, and climate zones (Francos et al., 2003; Confalonieri
et al., 2010b; Foscarini et al., 2010; Richter et al., 2010). Francos et al.
(2003) proposed that the sensitivity of themodel output to its input
parameters might depend on the value and range of the variation of
the investigated parameters. Based on the global sensitivity anal-
ysis combined with the Latin-hypercube and one-factor-at-a-time
methods, Van Griensven et al. (2006) analyzed the sensitivity of
catchment models for two catchments and showed that the
parameter rankings were dependent on the variables, location and
time period of the simulation. Confalonieri et al. (2010a) believed
that the key to SA is that it should occur in a context that describes
the soil and weather environment under modeling and must
explicitly declare the conditions. DeJongea et al. (2012) compared
the respective parameter sensitivities under irrigation and non-
irrigation conditions. According to the results of the cited study,
for the full irrigation treatment, the most sensitive parameter is
that of the crop cultivar, whereas for the limited irrigation treat-
ment, the parameter of water holding capacity is themost sensitive.
A conclusion may also be drawn from the works of Luquet et al.
(2006) and Confalonieri et al. (2006), which stated that the re-
sults of SA depend on themodel complexity and the number of crop
parameters included in the analysis and the environment. In
addition, certain research works have focused on the convergence
of parameter sensitivity measures (Annoni et al., 2011; Benedetti
et al., 2011; Yang, 2011; Tarantola et al., 2012). For example,
Nossent et al. (2011) showed that the choice of calculation for the
Monte Carlo integrals could highly affect the convergence of the
sensitivity analysis results. Sieber and Uhlenbrook (2005) also
examined the statistical convergence of sensitivity analysis with
increasing sample size and determined the sample size. The above
studies prove that when performing SA, many impact factors must
be considered to obtain a reliable factor importance ranking,
including the parameter sample size, the natural properties of the
parameters and the models, environment, and crop variety.
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Furthermore, in the parameter sensitivity analysis of crop
growth models, the yield and aboveground biomass at maturity are
usually set as the objective outputs, and the parameter space is
usually derived from the reference or ground observations. How-
ever, few studies of SA have focused on the parameter sensitivity
during the process of crop growth, other variable outputs, or the
effects of the parameter space on SA. Lamboni et al. (2009) used the
ANOVA method to perform dynamic parameter SA on the winter
wheat dry matter model (WWDM) and the CERES-EGC model and
proposed that the values of the sensitivity indices vary widely over
time. The actual function of the parameters can be examined by
observing the sensitivity variation of each parameter and the
sensitivity of other outputs. Therefore, the dynamic assessment of
the parameter sensitivity of crop growth models can provide new
insights into themodels andmodel structures and is thus beneficial
to model improvement and development.

Themain objectiveof this study is to examine the influence of the
natural properties of the parameters and models on the parameter
SAresults in cropgrowthmodels. In thiswork, thenatural properties
primarily note the parameter variation range, temporal character-
istics andmultivariable output of themodels. In addition, the impact
of the parameter sample size on the convergence of the sensitivity
measures is discussed. With its generic characteristic, the WOrld
FOod STudies model (WOFOST) has become popular worldwide
(Van Keulen and Wolf, 1986; Supit et al., 1994). In this study, the
WOFOST model is used for parameter SA, and a global SA algorithm
known as the extended Fourier Amplitude Sensitivity Test (EFAST) is
adopted for parameter sensitivity.

The remainder of the paper is organized as follows. The theo-
retical backgrounds of the WOFOST model and the sensitivity
analysis method as well as the data required for model runs are
briefly introduced in the Materials and methods section. This sec-
tion also includes four numerical experiment schemes for the
parameter SA: the convergence of the SA with increasing sample
size, the impact of the parameter variation range on the parameter
SA, the temporal characteristics of the parameter SA, and the
parameter sensitivity of multivariable outputs. The results of this
study are described in detail in the Results and discussion section.
Finally, the last section summarizes the main observations of the
study and suggests lines for further research.

2. Materials and methods

2.1. WOFOST crop growth models

The WOFOST model is a mechanistic crop growth model developed by Wage-
ningen University in the Netherlands and is derived from the SUCROS model (Van
Keulen et al., 1982). Based on different crop parameters, the WOFOST model may
be applied to most crops. The WOFOST model is a classical light-use efficiency
model, which simulates crop growth as a function of irradiation, temperature and
crop properties. It describes plant growth using the phenological development of
the crop as a growth control factor and uses light energy and CO2 assimilation as
growth driving processes. Next, the daily dry matter accumulation is calculated, and
each organ of the plant is constructed using the partition factor. TheWOFOSTmodel
encompasses the primary biophysical and biochemical processes. The output values
Table 1
Field management measures at the Yingke experimental station from 2008.

Irrigation Fertilizer

Date Irrigation amount Date Fertilizer name

May 18 150 mm April 5 Diammonium phosph
June 15 150 mm April 5 Organic fertilizer
July 16 180 mm May 16 Diammonium phosph
August 15 180 mm May 16 Complex-fertilizer
September 8 225 mm June 15 Urea

June 15 Complex-fertilizer
August 14 Ammonium nitrate
are the daily crop growth rates, and the growth status is determined via time
integration. The three crop development stages (DVS) are expressed using dimen-
sionless variables, with zero representing emergence, one representing anthesis,
and two representing maturity. The WOFOST model is capable of simulating both
the potential and water-limited production conditions. An optimal water supply is
assumed in the potential condition. The water-limited growth effect is represented
by the ratio of actual evapo-transpiration to potential evapo-transpiration. The
implementation and detailed structure of the WOFOST model have been described
by Supit et al. (1994).

TheWOFOSTmodel provides the default crop parameter sets for different crops.
For detailed parameter definitions, the reader may refer to the WOFOST model
document. Certain parameters of the WOFOST model are organized in tables, and
their values are altered according to the crop’s phenological stages, which are
determined by the accumulation of thermal time and include the specific leaf area
(SLATB), the maximum leaf CO2 assimilation rate (AMAXTB), and other biomass
partition parameters. For these parameters, the specific parameter values during key
periods are provided in the parameter file. For example, for the parameter SLATB, the
parameter file provides the SLATB at the DVS of 0.00, 0.78 and 2.00, and the
SLATB0.00, SLATB0.78 and SLATB2.00 are subsequently treated as three parameters. In
addition, certain parameters, e.g., the reduction factor for the maximum leaf CO2

assimilation rate (TMPFTB), are also functions of the mean temperature, and the
management of these factors is similar to that of the SLATB.

2.2. Data and management

The crop growth simulation scenario is assumed for a 2008 implementation in
the Yingke Oasis of Gansu Province in northwestern China, which is amajor irrigated
agricultural region. The climate in this region is temperate, with a mean annual
temperature of 7.6 �C, a mean annual precipitation of 117 mm and a mean annual
evaporation of 2390 mm. The soil of this region is sandy loam, and corn is the main
grain crop (Yang and Liu, 2010) and has therefore been chosen as an example crop
for simulation using WOFOST in this study.

Meteorological data are taken from an automated weather station (AWS)
located at the Yingke experimental station (100�250E, 38�510N) (Li et al., 2009, 2011).
This AWS provides measurements of the maximum and minimum air temperature,
precipitation, daily total solar radiation, relative humidity, and wind speed and di-
rection, and these data have been pre-processed for driving crop growth models.
Every phenological stage of corn is recorded as well. Based on these meteorological
data and phenological investigations, two phenological parameters are computed,
TSUM1 and TSUM2, which are, respectively, the effective temperature sum from
emergence to anthesis and from anthesis to maturity.

Corn was hole seeded on April 20 and harvested on September 22 in 2008. The
row spacing was 55 cm, and the plant spacing was 22 cm. Detailed field manage-
ment measures at the experimental station, such as the irrigation amount and
fertilization amount, are listed in Table 1. Throughout the entire growth period, the
amounts of irrigation and fertilizer were sufficient with an irrigation amount that
reached 885 mm and a fertilizer amount that completely met the nutrient needs of
the crops.

In addition, the required soil input data, i.e., the soil physical properties, soil
water retention, and hydraulic conductivity, were obtained during the investigation
at the local agro-meteorological experimental station, and the groundwater level
was obtained from the local water service department. Due to the relatively deep
groundwater level in the region, the WOFOST model was used without consider-
ation of the groundwater.

2.3. Sensitivity analysis method

The EFAST is a global and quantitative SA algorithm that may be applied to
complex nonlinear and non-monotonic models (Saltelli et al., 1999, 2010). In this
study, the EFAST is used to analyze the parameter sensitivity of the WOFOST model
for corn. The main sensitivity index and total sensitivity index of each parameter are
obtained via an analysis of the impacts of the input factors on the output variance.
The method is developed based on the Fourier Amplitude Sensitivity Test (FAST)
algorithm and Sobol’s algorithm. The FAST provides a high-efficiency sampling
Fertilizer amount Nitrogen amount Phosphorus amount

ate 300 kg ha�1 21.2% 23.5%
6 m3 ha�1 1.6% 0.68%

ate 225 kg ha�1 21.2% 23.5%
225 kg ha�1 10% 10%
225 kg ha�1 46%
225 kg ha�1 10% 10%
525 kg ha�1 35%
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method based on a suitably defined search curve, which is capable of scanning the
entire parameter space and obtaining the quantitative sensitivity measures in terms
of the individual contributions of each parameter to the output variance. However,
the FAST method is not able to calculate the higher interaction terms of the pa-
rameters with respect to the output variance. Sobol’s algorithm is capable of
calculating the total sensitivity index and provides an indication of the overall effect
of a given parameter by considering all possible interactions of that parameter with
the others (Sobol, 1993). However, Sobol’s method uses the Monte Carlo method,
which carries a high computational demand. Therefore, by integrating the merits of
FAST and Sobol’s algorithm, the EFAST provides a method that possesses the char-
acteristics of high efficiency and accuracy in addition to the ability to compute the
interaction effects among parameters. In recent years, due to these advantageous
properties, the EFAST has recently become more popular in hydrological, ecological,
and meteorological modeling (Varella et al., 2010; Miao et al., 2011; Reusser et al.,
2011; Pandya et al., 2012). The source code for EFAST can be downloaded from the
website http://sensitivity-analysis.jrc.ec.europa.eu/software/index.htm.

Because it is a variance-based method, the EFAST algorithm primarily includes
two steps: sampling and sensitivity index calculation (Chan et al., 1997; Saltelli et al.,
1999). First, a highly efficient and uniform sampling procedure is performed via a
transformation function. Next, using the Fourier Amplitude Sensitivity Test, the
quantitative sensitivity indices are obtained. The main formulations are given as
follows:

EðYÞ ¼ 1
2p

Zp
�p

f ðsÞds (1)

VarðYÞ ¼ 1
2p

Zp
�p

f 2ðsÞds�½EðYÞ�2z
XN

j¼�N

�
A2
j þB2j

�
�
�
A2
0þB20

�
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j¼1

�
A2
j þB2j

�
: (2)

where E(Y) and Var(Y) is the expected value and variance of the output Y, s is a scalar
variable varied over the range �N < s < þN; Aj and Bj are the Fourier coefficients
over the domain of integer frequencies j ˛ {�N,., �1,0,1,., þN}, the expressions
for which are as follows:
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; (6)

Si ¼ dVari ðYÞ=dVarðYÞ; (7)

STi ¼ 1�
dVarð�iÞðYÞdVarðYÞ ; (8)

C ¼ nNs ¼ nNrð2Mumax þ 1Þ: (9)

where dVariðYÞ is the estimated conditional variance of the ith factor, dVarð�iÞðYÞ is the
estimated conditional variance except for the ith factor, Si is the main sensitivity
index of the ith factor, STi is the total sensitivity index of the ith factor, n denotes the
number of parameters, Ns is the sample size, Nr is the search curve number of the re-
sampling scheme, M is the interference factor (set to 4), umax is the largest among
the set of ui frequencies, and C is the number of model evaluations needed to
complete a numerical experiment of SA. A higher frequency is set for the analyzed
factor, and a lower frequency is set for other parameters. According to the discussion
on the frequency and search curve by Saltelli et al. (1999) and selected numerical
experiments, the frequency of the parameter of interest and other parameters as
well as the search curve numbers are determined according to the relationships
among ui, Nr and M.

2.4. Sensitivity analysis numerical experiment

Four numerical experiment schemes of the parameter SA in the WOFOST model
are designed and described in detail in the following section.

2.4.1. The impacts of sample size on the convergence of the sensitivity measures
During the parameter SA process, sampling is a highly important step for

exploring the interest domain, and the sample size determines the number of model
evaluations. The high number of model evaluations needed to perform the param-
eter sensitivity analysis restricts the method’s use; as a consequence, the relation-
ship between the sample size and the convergence of the sensitivitymeasurement is
of the utmost importance.

Therefore, to assess the influence of sample size on the convergence of the
sensitivity indices, the evolution of the sensitivity index values is investigated in this
paper for all parameters with increasing sample size. For this research, we design
nine cases for the sample size, i.e., the frequency assigned to the factor of interest,
which is set to 8, 16, 32, 64, 128, 256, 512, 1024 or 2048. Therefore, the sample size is
equal to 65, 129, 257, 513, 1025, 2049, 4097, 8193, and 16,385, respectively, to
observe the convergence of the sensitivity index.

In addition, we investigate the robustness of the EFAST algorithm by repeating
the experiment times for each of the nine sample sizes. In this work, the number of
repetitions is taken as 10. Next, the mathematic mean and the standard deviation of
these repetitions are calculated. In this analysis, a � 10% perturbation of the specific
corn parameter values described in the parameter file was chosen as the parameter
variation range for the requirements of the EFAST algorithm.

2.4.2. The impacts of parameter variation ranges on sensitivity analysis
Two sets of parameter variation ranges derived from the references and docu-

mentation are used to set the upper and lower limits of the crop parameters, as
presented in Table 2. One set is determined by the �10% perturbation of the specific
corn parameter values described in the parameter file. The other set is based on the
Ceglar’s collection (Ceglar et al., 2011), which is derived from observations, refer-
ences, and statistical data of corn crops. No further information on these parameters
is available, and therefore, a uniform distribution is temporarily assumed in this
experiment. Moreover, the major objective of the crop growth models is the esti-
mation of yield and is therefore considered to be the target output for assessing the
impact of parameter variation range on the parameter SA.

In addition, a more detailed numerical experiment is performed on the first
parameter variation range. The parameter variation range is separately set to those
cases, which are the�10%,�20%,�30%,�40% and�50% perturbations of the default
corn parameter values. In fact, these cases proportionally magnify the lower and
upper limits of the first parameter variation range, and with the boundary condition
amplified, the parameter space is also enlarged.

2.4.3. The temporal characteristics of parameter sensitivity
The main eco-physiological processes of the crop vary in every growth stage. For

example, in the early growth stage, vegetative growth is dominant, whereas
reproductive growth is dominant after anthesis. The dominant biological process
differs throughout the entire growth period, which results in differences among the
dominant parameters. Therefore, it is necessary to analyze the temporal charac-
teristics of each of the parameter sensitivities.

The yield remains the main concern for crop growth models. The storage organ
biomass is the basis of yield formation and is thus selected as the target output of the
temporal characteristic analysis of the parameter sensitivity. Because the storage
organ becomes relevant after anthesis, the simulation is discussed beginning from
the 210th day. In this numerical experiment, the �20% perturbation of the default
corn parameter values are set as the upper and lower limits of the parameter vari-
ation, and the main sensitivity index is adopted as the evaluation criterion.

2.4.4. Parameter sensitivity analysis for various output variables
Crop growth models are able to simulate many physiological processes and can

export various state variables, including the dry biomass of each plant organ,
transpiration rate, leaf area index, growth respiration and maintenance respiration.
These variables are also important to the modeling of users and policy makers. For
example, research on biomass is closely related to that of carbon cycles. Therefore,
analyzing the roles of the parameters for other state variables is quite meaningful.

The WOFOST model, a light-use efficiency model, is based on the relationship
among the photosynthetic active radiation, leaf area index and light use efficiency.
Therefore, the simulations of the leaf expansion and dry mass accumulation,
including the total aboveground biomass (TAGP), leaf area index (LAI), and weight
of storage organ (WSO), carry important meaning and must be addressed. In
addition, the transpiration coefficient (TRC), which represents the water use effi-
ciency, is also set in the analyzed output variables. Moreover, the parameter sensi-
tivities in the three important development periods (emergence, anthesis and
maturity), are chosen to simultaneously reflect the respective temporal character-
istics of the SA.

3. Results and discussion

3.1. The impacts of sample size on the convergence of the sensitivity
measures

The goal of parameter SA is to explore the entire input space
with a reasonable sample size and identify the sensitive parame-
ters. A key element of SA is the sampling of input parameters for the

http://sensitivity-analysis.jrc.ec.europa.eu/software/index.htm


Table 2
Upper and lower limits of the parameters in the WOFOST model.

Parameter names Definition �10% perturbation
of default corn parameter value

Parameter variation range
provided by Ceglar et al.

Minimum Maximum Minimum Maximum

LAIEM Leaf area index at emergence (ha ha�1) 0.0435 0.0532 0.04 0.09
RGRLAI Maximum relative increase in LAI (ha ha�1 d�1) 0.0265 0.0323 0.02 0.04
SLATB00 Specific leaf area (DVS ¼ 0) (ha kg�1) 0.0023 0.0029 0.0022 0.0035
SLATB0.78 Specific leaf area (DVS ¼ 0.78) (ha kg�1) 0.0011 0.0013 0.0010 0.0018
SLATB2.0 Specific leaf area (DVS ¼ 2.0) 0.0011 0.0013 0.0010 0.0018
SPAN Life span of leaves growing at 35 �C (d) 29.70 36.30 30 35
TBASE Lower threshold temperature for aging of leaves (�C) 9.00 11.00 8 10
KDIFFTB0.0 Extinction coefficient for diffuse visible light (DVS ¼ 0) 0.54 0.66 0.44 0.65
KDIFFTB2.0 Extinction coefficient for diffuse visible light (DVS ¼ 2.0) 0.54 0.66 0.44 0.65
EFFTB00 Light-use efficiency of single leaf (kg/ha h j/m2 s) (T ¼ 0 �C) 0.405 0.495 0.45 0.55
EFFTB40 Light-use efficiency of single leaf (kg/ha h j/m2 s) (T ¼ 40 �C) 0.405 0.495 0.45 0.55
AMAXTB0.0 Maximum leaf CO2 assimilation rate (DVS ¼ 0) 63.00 77.00 65 72
AMAXTB1.5 Maximum leaf CO2 assimilation rate (DVS ¼ 1.5) 56.70 69.30 55 65
AMAXTB1.75 Maximum leaf CO2 assimilation rate (DVS ¼ 1.75) 44.10 53.90 40 50
AMAXTB2.0 Maximum leaf CO2 assimilation rate (DVS ¼ 2.0) 18.90 23.10 15 25
TMPFTB9 Reduction factor of AMAX (T ¼ 9 �C) 0.045 0.055 0.05 0.225
TMPFTB16 Reduction factor of AMAX (T ¼ 16 �C) 0.72 0.88 0.48 0.80
TMPFTB18 Reduction factor of AMAX (T ¼ 18 �C) 0.85 1.00 0.55 0.94
TMPFTB20 Reduction factor of AMAX (T ¼ 20 �C) 0.90 1.00 0.63 1.00
CVL Efficiency of conversion into leaves 0.61 0.75 0.68 0.72
CVO Efficiency of conversion into storage organ 0.60 0.74 0.73 0.76
CVR Efficiency of conversion into roots 0.62 0.76 0.65 0.69
CVS Efficiency of conversion into stems 0.59 0.72 0.65 0.72
Q10 Relative increase in respiration rate per

10 �C temperature increase
1.80 2.20 1.50 2.00

RML Relative maintenance respiration rate of
leaves (kg(CH2O) kg�1 d�1)

0.027 0.033 0.003 0.011

RMO Relative maintenance respiration rate of
storage organ (kg(CH2O) kg�1 d�1)

0.009 0.011 0.005 0.010

RMR Relative maintenance respiration rate of
roots (kg(CH2O) kg�1 d�1)

0.014 0.017 0.006 0.010

RMS Relative maintenance respiration rate of
stems (kg(CH2O kg�1 d�1))

0.014 0.017 0.006 0.015

RFSETB1.75 Reduction factor for senescence (DVS ¼ 1.75) 0.23 0.68 0.70 0.80
RFSETB2.0 Reduction factor for senescence (DVS ¼ 2.0) 0.28 0.83 0.20 0.30
FRTB0.0 Fraction of total dry matter to roots (DVS ¼ 0) 0.36 0.44 0.35 0.40
FRTB0.4 Fraction of total dry matter to roots (DVS ¼ 0.4) 0.24 0.30 0.25 0.30
FRTB0.6 Fraction of total dry matter to roots (DVS ¼ 0.6) 0.17 0.21 0.19 0.23
FRTB0.9 Fraction of total dry matter to roots (DVS ¼ 0.9) 0.05 0.07 0.06 0.10
FLTB0.0 Fraction of aboveground dry matter to leaves (DVS ¼ 0) 0.56 0.68 0.55 0.65
FLTB0.33 Fraction of aboveground dry matter to leaves (DVS ¼ 0.33) 0.56 0.68 0.55 0.63
FLTB0.88 Fraction of aboveground dry matter to leaves (DVS ¼ 0.88) 0.14 0.17 0.10 0.20
FLTB0.95 Fraction of aboveground dry matter to leaves (DVS ¼ 0.95) 0.14 0.17 0.10 0.20
FLTB1.1 Fraction of aboveground dry matter to leaves (DVS ¼ 1.1) 0.09 0.11 0.05 0.10
FOTB1.1 Fraction of aboveground dry matter to storage organ (DVS ¼ 1.1) 0.45 0.55 0.45 0.55
FOTB1.2 Fraction of aboveground dry matter to storage organ (DVS ¼ 1.2) 0.90 1.00 0.90 1.00
PERDL Maximum relative death rate of leaves due to water stress 0.03 0.03 0.01 0.03
RDRSTB1.5001 Relative death rate of stems (DVS ¼ 1.5001) (kg kg�1 d�1) 0.018 0.022 0.005 0.020
RDRSTB2.0 Relative death rate of stems (DVS ¼ 2.0) (kg kg�1 d�1) 0.018 0.022 0.005 0.020
RDI Initial rooting depth (cm) 9.00 11.00 7.00 10.00
RRI Maximum daily increase in rooting depth (cm d�1) 1.98 2.42 1.50 3.00
RDMCR Maximum rooting depth (cm) 90.00 110.00 80.00 130.00

Note: DVS denotes the phenological development stage.
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simulation, and the sample size determines the computational cost
of the analysis.

The parameter rankings for all parameters with an increasing
sample size are presented in Table 1. From this table, we find the
sample size affects the parameter importance ranking. However,
this influence is small. As shown in Table 1, the rankings for most
parameters remain quite stable for a smaller sample size. The
sensitive parameters still rank at the top after an increase in
sample size. For example, the most sensitive parameter (SPAN)
ranks first in all cases, and the non-sensitive parameters still rank
lower. The variation in the parameter rankings is small with the
increase in sample size. Therefore, if the objective of the
parameter SA is solely to calculate a parameter ranking prior to
calibration of the parameters, then the EFAST analysis can be
applied with a sample size of 129 to yield a reliable ranking result
(as described in Table 3).

In addition, the evolution of the sensitivity index with the
increasing sample size is shown in Fig. 1. In this work, we
choose only three types of parameters: the most important, the
medium important and the non-important. According to the
importance ranking of the parameters listed in Table 1, the
SPAN, FOTB1.1 and RDRSTB1.5001 were separately chosen as the
cases with the most importance, medium importance and no
importance.

From this figure, the sample size is the main determining factor
for the convergence of the main sensitivity indices for the yield



Table 3
Influence of sample size on the parameter importance ranking of the WOFOST model.

Parameter
names

Sample size

65 129 257 513 1025 2049 4098 8193 16,385

LAIEM 47 47 47 45 45 45 45 45 45
RGRLAI 36 36 35 35 35 35 35 35 35
SLATB00 27 29 28 28 28 28 28 28 28
SLATB0.78 5 5 5 5 5 5 5 5 5
SLATB2.0 34 34 34 32 32 32 32 32 32
SPAN 1 1 1 1 1 1 1 1 1
TBASE 3 3 3 3 3 3 3 3 3
KDIFFTB0.0 17 18 19 19 19 19 19 19 19
KDIFFTB2.0 8 9 10 8 8 8 8 8 8
EFFTB00 6 6 6 6 6 6 6 6 6
EFFTB40 4 4 4 4 4 4 4 4 4
AMAXTB0.0 23 24 24 25 25 25 25 25 25
AMAXTB1.5 13 14 14 14 14 14 14 14 14
AMAXTB1.75 16 13 12 12 12 13 13 13 13
AMAXTB2.0 26 26 26 26 26 26 26 26 26
TMPFTB9 44 45 45 47 47 47 47 47 47
TMPFTB16 39 38 38 38 38 38 38 38 38
TMPFTB18 35 33 33 34 34 34 34 34 34
TMPFTB20 18 16 18 18 17 18 18 18 18
CVL 22 20 20 20 20 20 20 20 20
CVO 2 2 2 2 2 2 2 2 2
CVR 21 22 23 23 23 23 23 23 23
CVS 33 35 37 37 37 37 37 37 37
Q10 9 7 7 7 7 7 7 7 7
RML 15 12 13 13 13 12 12 12 12
RMO 20 21 21 21 21 21 21 21 21
RMR 19 19 17 17 18 17 17 17 17
RMS 10 8 8 10 9 10 9 10 10
RFSETB1.75 14 15 15 15 15 15 15 15 15
RFSETB2.0 31 31 31 31 31 31 31 31 31
FRTB0.0 29 27 27 27 27 27 27 27 27
FRTB0.4 37 37 36 36 36 36 36 36 36
FRTB0.6 32 32 32 33 33 33 33 33 33
FRTB0.9 42 41 42 42 42 42 42 42 42
FLTB0.0 25 23 22 22 22 22 22 22 22
FLTB0.33 11 11 11 11 11 11 11 11 11
FLTB0.88 12 17 16 16 16 16 16 16 16
FLTB0.95 28 28 29 29 29 29 29 29 29
FLTB1.1 30 30 30 30 30 30 30 30 30
FOTB1.1 24 25 25 24 24 24 24 24 24
FOTB1.2 7 10 9 9 10 9 10 9 9
PERDL 45 44 44 44 44 44 44 44 44
RDRSTB1.5001 46 46 46 46 46 46 46 46 46
RDRSTB2.0 41 39 39 39 39 39 39 39 39
RDI 40 43 43 43 43 43 43 43 43
RRI 38 42 41 40 40 40 40 40 40
RDMCR 43 40 40 41 41 41 41 41 41

Fig. 1. Evolution of the sensitivity index of parameters SPAN, FOTB1.1, and RDRSTB1.5001 with increasing sample size.
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simulations with the WOFOST model. In general, it appears from
the plots that a sample size of greater than 1025 is required to reach
the final converged value for the most parameters. The sample size
of 2049 yields themost stable sensitivity indices.When sample size
is small, i.e., only 65, the sensitivity index shows strong variations
and cannot reach a stable convergence result for the three pa-
rameters. For most parameters, fewer than 65 samples are not
sufficient to reach a stable value. This situation can be noted for the
sensitivity index value of SPAN, FOTB1.1, and RDRSTB1.5001. In addi-
tion, the error grows gradually smaller as the sample size increases.

For the parameter with the highest sensitivity, such as SPAN, the
final stable sensitivity index value is attained rather slowly, and
greater fluctuations are observed. The sensitivity is able to obtain
convergence for this type of parameter under the condition of large
sample size. However, those insensitive parameters are more prone
to the minor fluctuations that can appear with increasing sample
size. For those insensitive parameters, the sensitivity analysis can
quickly obtain convergence.

3.2. Impacts of parameter variation range on the parameter
sensitivity analysis

According to the above numerical experiments on sample size,
the frequency of the interest parameter was set to 128 in this and
the following sections. The impacts of the parameter variation
range on the parameter SA are shown in Fig. 2. When adopting
different parameter variation ranges, the sensitive parameters vary
as well. For the first parameter variation range, four parameters had
the highest sensitivities to yield, i.e., the life span of leaves growing
at 35 �C (SPAN), the efficiency of conversion into a storage organ
(CVO), the lower threshold temperature for aging of leaves (TBASE),
and the light use efficiency of a single leaf (T ¼ 40 �C)(EFFTB40).
Their main sensitivity indices all exceeded 0.05, and their total ef-
fects reached 85%, with SPAN showing a 47% effect on the yield
variance. SPAN had twice as much influence on the total variance
than the second-ranked parameter. However, for this case, certain
parameters did not show any influence on the final yield. For the
Fig. 2. Effects of the different parameter variation ranges on the parameter SA:
second parameter variation range, four parameters, i.e., the relative
maintenance respiration rate of stems (RMS), the SPAN, the specific
leaf area (DVS ¼ 0.78)(SLATB0.78), and the extinction coefficient for
diffuse visible light (DVS ¼ 2.0)(KDIFFTB2.0), were identified as
those showing the most important effects on yield, with a total
effect of 74%. The reduction factor of the AMAX (DVS ¼
2.0)(TMPFTB2.0) and EFFTB40 were also noted as sensitive param-
eters. The conclusions of the second parameter set were same as
those in Ceglar’s studies.

In general, regardless of the parameter space, the parameter
SPAN is identified by the EFAST method as the parameter with the
higher influence on the yield simulation. The parameters are
related to specific biological processes. The important biological
processes for yield formation differ together with the variation of
the parameter range. For example, in the first variation range, only
carbon assimilation and dry matter conversion dominate the
highest parameter ranks, whereas in the second variation range,
maintenance respiration plays the most critical role. The above
results show that the parameter variation range was the main in-
fluence factor on its sensitivity.

In both cases, the most sensitive parameters were those of the
leaf expansion and crop respiration processes. Because the leaf (one
of the most important organs) is able to intercept light and absorb
energy to form the basis of yield formation, the parameters that
address the leaf expansion processes are highly important. The
respiration parameters are defined as the dry mass consumption
ratio relating to the plant respiration and indirectly influencing the
accumulation of biomass and its conversion to yield. Therefore, the
respiration parameters are also highly important, especially for the
stem maintenance respiration rate, which ranks at the top due to
the high matter consumption induced by a high stem dry weight.

In addition, several parameters cause markedly different output
variations in the two cases, andmany parameters do not impact the
yield, as they have main sensitivity indices less than 0.001. These
parameters are primarily related to the stem death and root
properties. The research region is located in an irrigation agricul-
ture zone, where irrigation water is able to meet the requirements
(a) �10% perturbation of the corn parameter, (b) provided by Ceglar et al.
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of crops such that the root parameters have little effect, suggesting
that the sensitivity of certain parameters may be related to the
environment. Furthermore, for the final yield, the partition pa-
rameters as well as the photosynthesis parameters and their limit
factors are also insensitive to the final yield in these two cases.

According to Fig. 3, when the parameter range is proportionally
amplified from �10% to �50% perturbation, although the param-
eter space enlarges, the sensitivity rankings do not change and
remain the same as that of the �10% perturbations. The most
sensitive parameters are still SPAN, CVO, TBASE, and EFFTB40.
Compared with the above results for the two types of parameter
variation range, although certain parameter spaces are also
magnified (such as the SLATB0.78, the parameter space of which
varies from [0.0011,0.0013] to [0.0010, 0.0018]) according to
documentation by Ceglar, it is clear that the parameter sensitivity
ranking has changed. This result suggests that parameter sensitivity
Fig. 3. Proportional influence of default corn parameter amplification on the SA.
is mainly related to the combination and configuration among the
parameters, not only to the parameter values.

3.3. Temporal characteristics of parameter sensitivity

The temporal characteristics of the parameter sensitivity are
shown in Fig. 4. According to this figure, several parameters that are
sensitive to grain biomass exist throughout the entire development
stage, i.e., SLABT0.78, SPAN, TBASE, KDIFFTB2.0, EFFTB0, EFFTB40,
AMAXTB1.5, CVO, Q10, RML, RMS, FLTB0.33, FOTB1.1, and FOTB1.2. It is
clear that their sensitivity indices are higher than those of the other
parameters during the reproduction period. In addition, at a certain
stage, these parameters play key roles and have much higher
sensitivity indices. However, certain parameters perform only small
roles in grain biomass after anthesis, such as TMPFTB, RFSETB, FRTB,
RDRSTB, RDI, and RRI.

Twelve sensitive parameters, each with a main sensitivity in-
dex exceeding 0.05, are chosen to better understand the temporal
trends of the parameter sensitivity (Fig. 5). The temporal evolution
of the parameter sensitivity is shown in the diagram. Similarly,
SPAN, EFFTB40, CVO, and FOTB1.2 play important roles in the yield
throughout the entire growth period, whereas the other eight
parameters have influence only during certain growth stages. In
this model, SPAN, KDIFFTB2.0, EFFTB40, and AMAXTB1.5 are related
to the process of carbon assimilation, illustrating that carbon
assimilation is the core of the WOFOST model and plays an
important role up to the maturity stage. The related process is the
key factor that determines the final yield. At the reproduction
growth stage, the life span of leaves growing at 35 �C and the
efficiency of conversion into the storage organs are both highly
important. If the SPAN and CVO values are high, then the yield will
increase. In addition, the fraction of aboveground dry matter to
leaves at the jointing stage also plays a role in the final yield,
which suggests that this growth stage is quite important. During
the jointing growth stage, more crop individuals and leaves grow
rapidly, and additional carbohydrates are allocated to the leaves,
which is beneficial for intercepting additional light and forming
the final dry matter. Thus, sufficient amounts of fertilizer and
irrigation are necessary in the jointing stage, and the fraction of
aboveground dry matter shunted to the storage organs shortly
after anthesis is also highly important.

During crop growth, certain parameters aremore sensitive, such
as SPAN. The importance of SPAN becomes increasingly distinct,
especially in the growth stage just before maturity. For other pa-
rameters, such as CVO, the sensitivity decreases. This behavior
suggests that at the upcoming maturity stage, the leaf life is more
important because it is able to efficiently provide nutrient matter.
Because the accumulation of leaf biomass is the base of yield for-
mation and may continuously provide nutrient matter to the stor-
age organ even at the maturity stage, maintaining additional
vegetative organs is necessary for a higher yield.

Previous studies have shown that certain parameters may have
zero effects on the final yield and are thus considered insignificant,
and even their related parameterization processes are in question.
However, from the analysis shown in the present study, it may be
observed that certain parameters play roles in certain growth
stages but may have no effect on the final yield. An example is the
fraction of aboveground dry matter directed to the storage organs,
FOTB. If we only consider the final yield to be the output variable, its
importance is not distinct. However, from the results of this study, it
may be said that FOTB is valuable for storage organ accumulation.
This analysis will aid in correctly understanding the model struc-
ture and the roles of each parameter. The results suggest that when
performing SA on a dynamic model, it is necessary to perform
research throughout the entire time series.



Fig. 4. Temporal attributes of the parameter sensitivity.
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3.4. Parameter sensitivity for various state variables

The effects of the parameter on four state variables were
assessed, and the results are shown in Fig. 6. It may be observed
that the sensitive parameters for the four state variable outputs
were completely different. Because grain biomass does not come
into being until the anthesis stage, no parameter has an effect on
theWSO in the emergence stage. During this earlier stage, SLATB0.0,
FLTB0.0, and FRTB0.0 are sensitive to LAI, whereas SPAN and CVO are
the most sensitive for TAGP, and EFFTB0, EFFTB40, KDIFFTB0.0,
KDIFFTB2.0, and CVO have important effects on TRC. After the
anthesis stage, the sensitive parameters of TRC are same as in the
previous stage, but the sensitive parameters of LAI, WSO, and TAGP
at the reproductive stage are distinctly different from those at the
vegetation stage. At the anthesis stage, KDIFFTB0.0 and KDIFFTB2.0
for LAI, EFFTB40 and CVS for TAGP, and EFFTB40 and FOTB1.1 forWSO
Fig. 5. Temporal characteristics of the parameter
are more sensitive, as are SPAN for LAI, SPAN, and EFFTB40 for TAGP,
and SPAN and CVO for WSO at the maturity stage. Similar to the
conclusion drawn in the previous section, during the last growth
period, SPAN is a highly sensitive parameter for all processes
directly related to crop growth, and the accurate estimation of this
parameter is therefore critical for precise crop growth monitoring
and yield prediction.

In addition, because carbon assimilation and water evapo-
transpiration combine the most eco-physiological processes and
factors, additional parameters play important roles in the total
biomass and transpiration coefficient.

From the dynamic evolution of parameter sensitivity, it may be
found that, with the exception of TRC with non-variable parameter
sensitivity, the sensitive parameters from emergence to maturity of
other outputs are variable, which proves that the temporal prop-
erties of parameter sensitivity are highly important.
sensitivity for the twelve main parameters.



Fig. 6. Parameter sensitivity analysis of the weight of storage organ (WSO), leaf area index (LAI), total aboveground biomass (TAGP), and transpiration coefficient (TRC) as the target
outputs in the growth stages of emergence, anthesis, and maturity.
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4. Conclusion

Crop growth models have been widely applied in the fields of
crop-growth monitoring, yield estimating and agricultural policy-
making. However, numerous parameters and their difficult acqui-
sition restrict their applications. Parameter SA is a basic tool for
model understanding and application. Based on the results of the
parameter SA, the sensitive parameters are first calibrated, and a set
of parameters applicable to the local environment is subsequently
obtained. The EFAST algorithm provides a simple, quick and global
method for the assessment of parameter sensitivity across the
entire feasible parameter space.

However, when implementing the EFAST method, attention has
rarely focused on the effects of the parameter variation range on
the SA. With the exception of parameters with distinct physical
meanings that possess clear parameter attributes, most parameter
properties are difficult to acquire and may only be obtained indi-
rectly or estimated from references, observations or statistical files.
For these reasons, the parameter SA results are quite uncertain. A
default parameter range is often adopted, especially for crop
growth models, which is improper from the perspective of crop
properties. In addition, little attention has focused on the evolution
of the sensitivity index with increasing sample size, which is
important for the parameter SA to achieve a stable sensitivity
ranking with a proper sample size. In addition, a larger sampling
size indicates higher computation consumption, especially for
complex ecological models. Therefore, before performing the
sensitivity analysis, determining the necessary sampling size is
essential, which is helpful for high-efficiency parameter sensitivity
analysis.

In this paper, taking the WOFOST crop growth models as an
example, several issues related to parameter SA application are
discussed, such as sampling size, parameter variation range, tem-
poral characteristics of SA and multi-variable output. The results
show that sampling size has little influence on the parameter
importance ranking; however, it distinctly affects the convergence
of the sensitivity measures. For most parameters, if the sampling
size is above 1025, a stable sensitivity analysis result can be ob-
tained. For certain parameters, the sensitivity analysis can produce
stable results with a small sample size, and the non-sensitive pa-
rameters converge rather quickly.

In addition, the parameter variation range has a clear influence
on the parameter sensitivity, including the individual parameters
and parameter interactions. However, when the upper and lower
limits of the parameter range are proportionally magnified, there is
little impact on the parameter sensitivity rankings. These obser-
vations suggest the importance of confirming the correct param-
eter boundary conditions before conducting the parameter SA. At
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the same time, the results also show that certain parameters are
highly important, whereas others have little influence. It was found
that the leaf expansion, light interception, assimilation and
phenological parameters play key roles in the WOFOST model.

The temporal characteristics of the parameter SA are also
studied. The results show that certain parameters have little in-
fluence on the final output but play key roles at other growth
stages, and the importance of other parameters gradually increase.
Lamboni et al. (2009) also emphasized that when performing SA on
a dynamic model, it is most practical to consider the output
throughout the entire time series. Therefore, when improving or
simplifying the model structure, the dynamic characteristics of
parameter sensitivity must be considered. For example, when not
considering the temporal properties of parameters, certain
parameterization processes for the dry mass partition are clearly
redundant, which suggests that this process may be simplified
(Richter et al., 2010). Steduto et al. (2009) proposed that the
partition coefficients among different plant organs may be
neglected and that the harvest index may substitute for the rela-
tionship between yield and biomass. A similar example is found in
the crop growth models of Aquacrop (Steduto et al., 2009). How-
ever, due to the temporal characteristics of parameter SA, the
partition coefficients of different plant organs also play key roles at
certain growth stages. Therefore, the time-dependent characteris-
tics are an important feature of the parameter SA.

In addition, although the crop yield is the main output of the
crop growth models, in this study, the energy and mass trans-
mission processes between the crops and the eco-environment are
also simulated and yield many significant outputs, particularly the
state variables related to the carbon cycle, e.g., GPP, LAI, biomass,
and transpiration rate. Sensitivity analyses of different state vari-
ables are performed, and the results indicate that for different
model outputs, the sensitive parameters also differ. This result
suggests that when simplifying or improving models, the various
roles of the models and parameters must be considered, and this
observation aids in further understanding the model structure and
how to more efficiently apply the crop growth models. Campbell
et al. (2006) proposed a new approach for a dynamic model with
multivariable and temporal characteristics known as the multi-
variate global SA. This concept will be tested in future research and
will also further aid in understanding parameter sensitivity.

Finally, it may be said that in the WOFOST model, only a few
parameters play important roles in the final yield output, which is
risky for the model robustness, although it may reflect the true
nature of the system (Confalonieri et al., 2010c). If these key pa-
rameters are set to incorrect values, the model yield prediction
output will be uncertain; improving the model structure and
increasing its stability are thus the next objectives in research on
parameter SA. The perspective of SA further proves that SAwill lead
to a better comprehension of model behavior, which is directly
related to a more informed operational application of crop growth
models.
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