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Abstract The estimation of vegetation coverage is essential
in the monitoring and management of arid and semi-arid
sandy lands. But how to estimate vegetation coverage and
monitor the environmental change at global and regional
scales still remains to be further studied. Here, combined
with field vegetation survey, multispectral remote sensing
data were used to estimate coverage based on theoretical
statistical modeling. First, the remote sensing data were
processed and several groups of spectral variables were
selected/proposed and calculated, and then statistically cor-
related to measured vegetation coverage. Both the single-
and multiple-variable-based models were established and
further analyzed. Among all single-variable-based models,
that is based on Normalized Difference Vegetation Index
showed the highest R (0.900) and R2 (0.810) as well as
lowest standard estimate error (0.128024). Since the
multiple-variable-based model using multiple stepwise re-
gression analysis behaved much better, it was determined as
the optimal model for local coverage estimation. Finally, the
estimation was conducted based on the optimal model and
the result was cross-validated. The coefficient of determina-
tion used for validation was 0.867 with a root-mean-squared
error (RMSE) of 0.101. The large-scale estimation of vege-
tation coverage using statistical modeling based on remote
sensing data can be helpful for the monitoring and control-
ling of desertification in arid and semi-arid regions. It could

serve for regional ecological management which is of great
significance.
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1 Introduction

As an important parameter frequently used to describe the
quantity of vegetation on land surface, vegetation coverage
is defined as the ratio of upright area of vegetation projected
to land surface area [1–3]. It has always been a crucial
variable in terrestrial ecosystem monitoring and climate
change studies [4], thus playing an important role in the
research of various fields, such as climate change, resources
survey, as well as environment management and so on
[5–7]. Especially in the context of global climate change,
desertification is gradually becoming a serious phenomenon
in arid and semi-arid regions, especially in western China
[2]. As a crucial factor indicating the impacts of many
biophysical processes including the evaporation and tran-
spiration as well as photosynthesis, vegetation coverage is
attracting wide attention from not only the experts but the
public [8].

In western China, there are a large area of arid sandy
lands, among which, the Mu Us sandy land ranks the four
largest ones. The shrubs and meadow play an essential role
in the terrestrial ecosystems of this region [9, 10] and
vegetation coverage, which acts as a main factor indicating
the land use and land cover, has been closely related with
soil and water loss and land desertification in local area.
Thus, it is crucial to perform estimation of the vegetation
coverage which can serve for the monitoring and improve-
ment of local ecological environment [11, 12].
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Traditional ground-based field measurements of vegeta-
tion coverage, which are implemented mainly through plot
survey [13] or digital photograph classification [14], seem
relatively subjective, expensive, time consuming as well as
labor intensive, and thus appear unrealistic for the dynamic
monitoring of land vegetation status in wide-range, long-
term and with high accuracy. As an alternative, the advanced
remote sensing techniques, which are greatly developed and
widely applied in various fields, have been proved to be able
to provide systematic, repetitive and comprehensive obser-
vations at scales from local to continental and even global
[15, 16]. Recently, a variety of remote-sensing satellites and
sensors with different spatial, spectral, and temporal resolu-
tions have been developed rapidly, providing sufficient spa-
tial and temporal coverage of high-quality data at different
scales. As a result, the potential of remote sensing tech-
niques as a monitoring tool has been widely recognized
[17, 18].

Consequently, remote sensing-data now represent an af-
fordable, cost-effective, and standardized source of environ-
mental information and have been greatly used for
environmental surveys. Furthermore, multisource remote-
sensing data have also been utilized to monitor the vegeta-
tion growth and environmental change in many disciplines
[6, 10, 11, 16, 19–23]. The remote-sensing approaches are
potentially suited for the effective and efficient estimation of
vegetation coverage.

Among all remote-sensing data-based applications, mul-
tispectral satellite and aerial images which are well suitable
for capturing horizontally distributed characteristics and
changes, have been widely used to estimate vegetation
coverage especially at moderate resolution and in large
scales [16, 24]. Based on these data, the statistical modeling
algorithm is one of the most convenient and effective
methods. It is generally performed through spectral reflec-
tance or transformations such as vegetation indices (e.g.,
Normalized Difference Vegetation Index (NDVI)) which
are statistically correlated to field measured coverage values
[12]. As the statistical modeling approaches show obvious
advantages of simple modeling principles and easy calcula-
tions, less demanding of input data, thus are particularly
suitable for quantitative estimation of vegetation coverage.

In this study, taking the Mu Us sandy land in western
China as study site, we proposed to estimate the vegetation
coverage based on multivariate statistical models. During
the modeling process, several groups of remote-sensing
variables had been selected and calculated, some of which
were established by ourselves, and then statistically corre-
lated to vegetation coverage data from field survey. Both the
single- and multiple-variable relationships between remote-
sensing variables and field measured values were further
analyzed and final estimation was performed using an opti-
mal model. The estimation result was also cross-validated

and can be used to provide overall quantitative descriptions
of local vegetation. It could serve for local vegetation mon-
itoring and ecological management which is of great
significance.

2 Methods

2.1 Study Site

Our study site is the Mu Us sandy land which is located at
the junction of Ningxia, Inner Mongolia autonomous region
and Shaanxi province with geographic coordinates ranging
from 37°27.5′ to 39°22.5′ N in latitude and from 107°20′ to
110°30′ E in longitude. This region with an area of 4×104

km2 and elevation from 1,100 to 1,300 m, includes the
Ordos city in southern Inner Mongolia Autonomous Region,
the northern part of Shaanxi Yulin, and the northeast of the
Ningxia Hui Autonomous Region. As one of the four largest
sandy lands in China, it lies in the transition between the
Ordos Plateau and the Loess Plateau [2].

The specific study area ranging from 37°39′ to 39°24′ N
in latitude and from 108°17′ to 109°40′ E in longitude
locates in the hinterland of the Mu Us sandy land in Wushen
Banner, Ordos City, Inner Mongolia Autonomous Region
(Fig. 1). The region has a typical temperate continental
semi-arid climate with low rainfall, droughts, strong winds
and evaporation as well as abundant sunshine. The annual
average temperature is 6 to 8 °C with an annual average
accumulated temperature of 2,621 °C. The annual evapora-
tion is about 2,592 mm, while the annual average of sun-
shine hours are 2,860 h which together result in an arid
climate. Although the sandy land is seated in a semi-arid
steppe area, wind-blown sand accounts for 78.3 % of the
total area of Wushen Banner and the soil type of this area
includes meadow soil, chestnut soil, saline soil, loess soil,
and swamp soil [9]. The shrubs which are dominant in the
Mu Us sandy land include the species of Tamarix, Salix
psammophila, Peking willow, Hippophae rhamnoides,
Scoparium, Caragana, Artemisia, Hedysarum, and Salix
cheilophila [7].

2.2 Remote-Sensing Image

In this research, the HJ-1 (“Huan Jing”—Chinese pronunci-
ation of “Environment”) charge-coupled device (CCD) data
acquired at 2nd July 2009 was used for modeling and
analysis. The Small Satellite Constellation A and B satellites
for Environment and Disaster Monitoring and Forecasting
(HJ-1A/1B satellites) were launched at 11:25 on 6 Septem-
ber 2008 (http://www.cresda.com/n16/n1130/n1582/
8384.html). The HJ-1A satellite is equipped with a CCD
camera and a hyperspectral image radiometer, while the HJ-
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1B satellite is equipped with a CCD camera and infrared
camera. The CCD cameras on HJ-1A and HJ-1B are of the
same design and make complementary observations. They
are combined to achieve four-spectrum pushbroom imaging
with a ground swath width of 700 km and a ground pixel
resolution of 30 m. As only the CCD data are used here, the
main characteristics of the CCD cameras are listed in
Table 1.

2.3 Data Pre-processing

Based on acquisition of the remote-sensing image, by using
the Landsat Thematic Mapper/Enhanced Thematic Mapper
plus image of the same area as the reference image and
selecting the same points of road intersections, border points
of water, as well as other typical features, the HJ-1B image
was geometrically corrected through the polynomial model.
During the geometric correction, the error was controlled
within 0.5 pixels, which met the requirement of the study.

After geometric correction, we calculated the surface
reflectance from the digital number (DN) value through
radiometric calibration and atmospheric correction. Firstly,
we converted the DN value of the raw image to at-satellite
radiance through the following equation:

Ll ¼ DN gainþ offset= ð1Þ
Where L1 is the at-satellite radiance, DN is the dig-

ital number of the raw image, and gain and offset
indicate the absolute radiometric calibration coefficients
of HJ-1B CCD (Table 2), respectively. The unit of converted
radiance is W m�2 sr�1 μm�1.

The atmospheric correction was applied based on moderate
resolution atmospheric transmission (MODTRAN) model. The
MODTRAN model employs a stored spectral database for
H2O, CO2, O3, N2O, CO, CH4, O2, NO, SO2, NO2, NH3, and
HNO3. It considers the effects of scattering (such as Rayleigh
andMie scattering) and allows the user to specify the profiles of
temperature, water vapor density, ozone, aerosols, and any
other gases that may vary with time [25]. In our study area,
the aerosol model was of the rural-based aerosol and the aerosol
optical thickness which described the aerosol optical properties
came from the product of moderate resolution imaging
spectroradiometer (MODIS). MODIS is a key instrument
aboard the Terra and Aqua satellites. Terra's orbit around the
earth is timed so that it passes from north to south across the
equator in the morning, while Aqua passes south to north over
the equator in the afternoon. Terra MODIS and Aqua MODIS
are viewing the entire earth's surface every 1 to 2 days, acquir-
ing data in 36 spectral bands, or groups of wavelengths. These
data will improve our understanding of global dynamics and
processes occurring on the land, in the oceans, and in the lower
atmosphere (http://modis.gsfc.nasa.gov/index.php).

Through the pre-processing steps of geometric and atmo-
spheric correction, we finally acquired the surface reflec-
tance of the study area.

2.4 Field Survey

In order to investigate the feasibility and practicality of
environment monitoring in Mu Us sandy land using HJ-
1A/B satellite data, a field survey was planned and achieved
in the land area within Wushen Banner, Ordos from 3th to
15th July 2009. As the spatial resolution of HJ-1 satellite was

Fig. 1 The location of the Mu Us sandy land in China (left) and the specific study area in sandy land (right)
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30 m, the size of our sample plots was designed as 30×30 m.
The coordinates of four corners and the centre of each plot
were measured using a Differential Global Positioning System
device with a maximum error of 6 m. Within each plot, the
maximum height and the crown radius of each clump of
shrubs were measured using altimeter rods, tape measure,
etc. There were totally 19 sample plots which were surveyed.

As the vegetation within these plots in the study area
were relatively sparse and unevenly distributed, it was
unsuited to use the diagonal intercept sampling or visual
interpreting methods to measure the vegetation coverage.
An alternative method here being used was to calculate the
projected area of tree’s canopy on the ground based on the
canopy structural parameters, which was then divided by the
plot’s area to ultimately calculate the vegetation coverage.

As the field measured coverage are spatial data, we need
to test the magnitude of spatial autocorrelation. Here, we
selected the Moran’s I index [26] which is one of the most
famous and commonly used method to calculate spatial
autocorrelation. In general, a Moran's I Index value near +
1.0 indicates clustering while an index value near −1.0
indicates dispersion. The calculation was conducted in the
software of ArcGIS 9.3 (Developed by ESRI corporation).
The calculation result of “Moran's Index=0.2” and “Z Score=
1.06” indicate that while somewhat clustered, the pattern of
data may be due to random chance. It means that the original
spatial data of measured coverage do not have significant
spatial autocorrelation and can be used to perform linear
regression analysis which requiring independent observations.
It meets the assumption of data independence.

2.5 Multivariate Selection and Correlation Analysis

Based on the acquisition of pre-processed remote sensing
image and the field measured vegetation coverage, we were

able to carry out modeling. During the modeling process, we
selected and calculated several groups of spectral variables
which were then statistically correlated to field measured
values. These variables were as follows:

2.5.1 Surface Reflectance of Single Band

From long-term studies, we have found that there is signif-
icant difference between the spectral characteristics of veg-
etation and other surface features. Especially for healthy
vegetation, characteristics of spectral curves (Fig. 2) are
particularly notable: a small peak of reflectivity of 10–
20 % high at the green band with central wavelength of
0.55 μm; two absorption valleys at the blue-purple band of
0.45 μm and red band of 0.65 μm, respectively; a sharp
increase shown as a steep on the curve at about 0.7–0.8 μm
followed by a significant reflectivity peak of 40 % or larger
in the near-infrared band of 0.8–1.3 μm. Additionally, there
are another three absorption valleys at the bands of 1.45,
1.95, and 2.6–2.7 μm, respectively. The spectral character-
istics of green vegetation is a comprehensive reflection of its
own biophysical characteristics and environmental impacts,
which can be used to identify and monitor vegetation in
various related fields [1, 27].

Based on above analysis, we realize that single-band
reflectance could be used to establish regression model with
measured coverage values for the coverage estimation at

Table 1 Characteristics of HJ-1A/1B satellite CCD camera

Satellite Sensor Bands Wavelength range (μm) Spatial resolution (m) Swath width (km) Sub-cycle (days)

HJ-1A/B CCD 1 0.43–0.52 30 360 4
2 0.52–0.60 30

3 0.63–0.69 30

4 0.76–0.90 30

Table 2 The absolute radiometric calibration coefficient of HJ-1B
CCD

HJ-1B CCD GainðDN=W m�2 sr�1 mm�1Þ OffsetðW m�2 sr�1 mm�1Þ

Band1 0.5782 3.4608

Band2 0.5087 5.8769

Band3 0.6825 8.0069

Band4 0.6468 8.8583
Fig. 2 The spectral curve of healthy vegetation
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larger scales. For example, Graetz et al. [28] took use of the
reflectance of Landsat Multi-Spectral Scanner (MSS) band 5
and the measured vegetation coverage to build linear regres-
sion models and then estimated the coverage of large sparse
grassland. Here, we used the four single-band reflectance of
HJ-1 image to carry out correlation analysis and establish
statistical models. As the Pearson correlation analysis was
performed, the correlation coefficient was calculated
according to Eq. 2:

r ¼
P

xi � xð Þ yi � yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi � xð Þ2 P yi � yð Þ2

q ð2Þ

Here, the xi and yi indicate two groups of variables; x and
y are corresponding mean values, and r is the correlation
coefficient. The result of correlation analysis was shown in
Table 3.

From Table 3, we could find that the significant
probabilities (Sig.) between reflectance of band1, band2,
and band3 and measured vegetation coverage were all
less than 0.05 which indicates significant correlation
between them.

2.5.2 Vegetation Indexes

Vegetation Index (VI) is a combination of single bands of remote
sensing image and can be used as a simple, effective and
experienced characterization of ground vegetation state
[29–31]. Previous studies have shown that vegetation index has
a good correlation with a variety of physiological and ecological
parameters of vegetation and thus be widely used to diagnose a
range of vegetation biophysical parameters, such as Leaf Area
Index, vegetation coverage, biomass and so on [12, 32, 33].

In our study, when establishing the relationships between
vegetation coverage and vegetation indexes, we considered
the impacts of soil background and atmosphere and then
finally selected six indexes for modeling. They are Differ-
ence Vegetation Index (DVI) [34], Ratio Vegetation Index
(RVI) [35], NDVI [36], Soil-Adjusted Vegetation Index
(SAVI) [29], Atmospherically Resistant Vegetation Index
(ARVI) [37], and Enhanced Vegetation Index (EVI) [38]
which were expressed from Eq. 3 to Eq. 8.

DVI ¼ ρNIR � ρRed ð3Þ

RVI ¼ ρNIR
ρRed

ð4Þ

NDVI ¼ ρNIR � ρRedð Þ
ρNIR þ ρRedð Þ ð5Þ

SAVI ¼ 1þ L1ð Þ � ρNIR � ρRedð Þ
ρNIR þ ρRed þ L1

ð6Þ

ARVI ¼ ρNIR � ρRBð Þ
ρNIR þ ρRBð Þ ð7Þ

EVI ¼ 2:5 � ρNIR � ρRedð Þ
ρNIR þ c1 � ρRed � c2 � ρBlue þ L2

ð8Þ

Here ρNIR, ρRed, and ρBlue indicate the reflectance of the
near-infrared and red and blue bands respectively. Then
ρRB ¼ ρRed � g ρBlue � ρRedð Þ and + which indicating the
radiation correction coefficient of optical path is assumed to
the recommended value (by Kaufman) of 1. The parameter L1
in Eq. 6 indicates a soil adjusted coefficient which is normally
assumed to be 0.5 for most areas. In Eq. 8, we set c1=6.0, c2=
7.5 and L2=1 which have been used in the MODIS product.

After acquiring the six vegetation indexes, Pearson cor-
relation analysis was also performed and results were shown
in Table 3. From this part, it could be easily found that the

Table 3 The results of Pearson correlation analysis between four
groups of variables and measured vegetation coverage

Variablesa Pearson correlation coefficient Sig. (1-tailed)

Single-band reflectance of four bands of HJ-1

Band1 −0.575 0.005b

Band2 −0.700 0.000b

Band3 −0.825 0.000b

Band4 −0.008 0.486

Vegetation indexes

DVI 0.729 0.000b

RVI 0.896 0.000b

NDVI 0.900 0.000b

SAVI 0.837 0.000b

ARVI 0.875 0.000b

EVI 0.845 0.000b

The first three components from PCA

PCA_1 −0.436 0.031a

PCA_2 −0.865 0.000b

PCA_3 −0.333 0.082

SBI, GVI, and YSI from modified tasseled cap transform

SBI −0.671 0.001b

GVI 0.776 0.000b

YSI −0.265 0.136

a Variables of Pearson correlation analysis, another one is measured
vegetation coverage
a Significant correlation (0.01<Sig.≤0.05)
b Extremely significant correlation (Sig.≤0.01)
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Pearson correlation coefficients between all six indexes and
measured coverage were larger than 0.7 and corresponding
significant probabilities (Sig.) were all 0.000 which indicat-
ing extremely significant correlation between them.

2.5.3 Principal Components from Principal Component
Analysis

When the concept of principal component was firstly pro-
posed in 1901 by Pearson, it was only for non-random vari-
ables. Then its application was extended to random vectors in
1933. Principal Components Analysis is one kind of trans-
formations used to simplify the data structure through dimen-
sion reduction. It is usually used to produce uncorrelated
output bands, to segregate noise components, and to reduce

the dimensionality of data sets. Because multispectral data
bands are often highly correlated, the principal components
transformation is used to produce uncorrelated output bands.
This is done by finding a new set of orthogonal axes that have
their origin at the data mean and that are rotated so the data
variance is maximized. By principal component analysis
(PCA), multiple variables (indicators) were reduced to much
less variables (indicators), which still incorporated most of the
original information [39]. Its principle could be expressed by
following equations:

X ¼

x11 x12 � � � x1p
x21 x22 � � � x2p
..
. ..

. . .
. ..

.

xn1 xn2 � � � xnp

2
6664

3
7775~¼ X1 X2 � � � XPð Þ ð9Þ

Table 4 The model summary
and ANOVA of single-variable-
based models and the multiple-
variable-based model

SEE standard error of the
estimate
aIndependent variables include
constant; dependent variable is
measured coverage
bSingle-variable-based model
cExtremely significant correla-
tion (Sig.≤0.01)

Independent variablesa R R2 SEE F statistics Sig.

Single band reflectance of HJ-1b

Band1 −0.575 0.330 0.241 8.386 0.010c

Band2 −0.700 0.490 0.210 16.362 0.001c

Band3 −0.825 0.681 0.166 36.225 0.000c

Vegetation indexesb

DVI 0.729 0.532 0.201 19.300 0.000c

RVI 0.896 0.803 0.130 69.425 0.000c

NDVI 0.900 0.810 0.128 72.633 0.000c

SAVI 0.837 0.701 0.161 39.930 0.000c

ARVI 0.875 0.766 0.142 55.593 0.000c

EVI 0.845 0.714 0.157 42.419 0.000c

The first two components from PCAb

PCA_1 −0.436 0.189 0.265 3.989 0.062

PCA_2 −0.865 0.748 0.147 50.543 0.000c

SBI and GVI from modified tasseled cap transformb

SBI −0.671 0.450 0.218 13.938 0.002c

GVI 0.776 0.602 0.186 25.686 0.000c

Multiple-variable-based model

NDVI and GVI 0.945 0.893 0.099 66.962 0.000c

Fig. 3 The models based on single-band surface reflectance
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F1 ¼ a11x1 þ a21x2 þ � � � þ ap1xp
F2 ¼ a12x1 þ a22x2 þ � � � þ ap2xp

..

.

Fp ¼ a1px1 þ a2px2 þ � � � þ appxp

8>>><
>>>:

ð10Þ

Fi ¼ a1ix1 þ a2ix2 þ � � � þ apixp i ¼ 1; 2 � � � p

Here X1 X2 � � � XPð Þ indicate the original variables
and F1 F2 � � � FPð Þ indicate the new variables produced

from PCA. They meet the two conditions: cov Fi;Fj

� � ¼ 0

and var Fið Þ � var Fj

� �
i < j . Generally, the first three

components contain more than 85 % of the previous
information which are usually used to represent the
original image.

Using the first three components from PCA, Pearson
correlation analysis was also performed and result was
shown in Table 3. From it, we could conclude that the first
two components were both significantly correlated with
measured coverage (Sig.<0.05) while the third one was not.

Fig. 4 The models based on
vegetation indexes
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2.5.4 Spectral Variables from Tasseled Cap Transformation

Similar with PCA, tasseled cap transformation is also one
type of spectral transformations which turn original, highly
covariant data into three uncorrelated indices called bright-
ness, greenness, and wetness (the third tasseled cap trans-
formation components for MSS was called yellow stuff).
But the difference lies in that it is only designed for Landsat
data during a long period of time and be extended to a few
other sensors such as IKONOS [40] and MODIS [41] until
recently.

At present, there was no existing transform matrix for HJ
data which we can use in our study, new transform matrix
should be proposed. Thus before performing the tasseled
cap transformation, we modified the existing transform ma-
trix designed for Landsat MSS [42] and TM/ETM+ [43]
sensors to fit the HJ-1 image according to their similarities
in spectral characteristics. The designed transformation ma-
trix was shown as follows:

B ¼
0:332 0:603 0:675 0:262
�0:285 �0:244 �0:544 0:724
�0:899 0:428 0:076 �0:041

2
4

3
5 ð11Þ

Based on the improved tasseled cap transformation, three
variables of SBI (Soil Brightness Index), Green Vegetation
Index (GVI) and Yellow Stuff Index (YSI) were got and
correlation analysis was performed. From Table 3, we con-
cluded that the SBI and GVI had significant correlation with
measured coverage and hence be used to estimate vegetation
coverage.

3 Results

3.1 Multivariate Statistical Modeling

We had selected the reflectance of four bands of HJ-1 image,
six vegetation indexes, three principal components from
PCA and three variables of SBI, GVI, and YSI from tasseled
cap transformation and then analyzed the correlation be-
tween all variables and measured vegetation coverage. With
those showing significant correlation, statistical regression
models were established and analysis of variance (ANOVA)
were conducted. The results were shown in Table 4. The
effective models which were statistically significant could
be used for estimation of vegetation coverage at large scales.

Fig. 5 The models based on
two principal components from
PCA

Fig. 6 The models based on
SBI and GVI from tasseled cap
transformation
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3.1.1 Single Band Reflectance of HJ-1 Data

For this group of variables, we used the reflectance of band1,
band2 and band3 to establish the statistical regression models.
The modeling results were shown in Table 4 and Fig. 3. From
them, we could conclude that the three models were all
significantly effective (Sig.≤0.01) and could be used to esti-
mate the vegetation coverage individually.

3.1.2 Vegetation Indexes

Based on these vegetation indexes, we were also able to
establish the estimation models which were shown in Fig. 4.
The model summary and ANOVA result were shown in
Table 4. As expressed in the table, the correlation coefficient
(R) and determination coefficient (R2) were all quite high
(most R are larger than 0.8 and most R2 are larger than 0.7)
and the standard error of the estimate (SEE) were particularly
little. These coefficients together indicated the validity and
efficiency of these models. The significant probability (Sig.)
of 0.000 was a supplementary indication of the effects.

Compared with the models from single-band reflectance,
the advantage of these ones seem especially obvious. This
may be due to that the vegetation indexes are combinations
of single bands and thus incorporate comprehensive infor-
mation. Additionally, the indexes remove the impact of soil
background and atmosphere which help to improve their
accuracy. These also account for the wide applications of
vegetation indexes in vegetation and ecological studies.

3.1.3 Principal Components from PCA

As only the first two principal components were significantly
correlated with measured coverage, we established models only
based on the two variables. The results were shown in Table 4
and Fig. 5 from which we found that the model from PCA_2
was significant and could be used for estimation of coverage
individually. However, the model based on PCA_1 act insignif-
icantly (Sig.=0.062>0.05) and thus cannot be used individually.

3.1.4 Spectral Variables from Tasseled Cap Transformation

With the proposed new transformation matrix, three vari-
ables were acquired from the tasseled cap transformation

and two of them (SBI and GVI) had significant correlation
with measured coverage. Based on SBI and GVI, statistical
models were established and shown in Fig. 6. The summary
and ANOVA of them can be seen in Table 4. From them, we
concluded that the two models were both significant and
could be used for estimation. In fact, the nature of GVI is
close to that of vegetation index.

3.2 Multiple-Variable-Based Modeling and Selection
of Optimal Model

All above models are single-variable-based, multiple-
variable-based models usually have a better modeling
accuracy and estimation effects. Thus, stepwise regres-
sion analysis was conducted to estimate vegetation
coverage based on SPSS 16, using the reflectance of
band1, band2, and band3 of HJ-1 data, six vegetation
indexes, two principal components from PCA as well
as SBI, GVI from tasseled cap transformation as the
input independent variables. The stepwise regression
analysis can automatically select the most significant
variable(s) and produce the “best” regression model(s).
The probability of F test in the model was set for
variables to enter at ≤0.05 while to remove at ≥0.10.
The mode outputted by stepwise regression analysis
was shown in Table 4.

From Table 4, we found that only two variables of NDVI
and GVI entered the multiple regression model while others
removed because of insignificant impact or collinearity be-
tween variables. Here, based on SPSS 16.0, we also
performed the test of normality of the error variance using
Kolmogorov–Smirnov and Shapiro–Wilk statistics and the
test of homoscedasticity using Levene statistic. The testing
results showed that the three variables of NDVI, GVI, and
measured coverage which were incorporated in the multiple
regression model significantly met those assumptions. It
made the multiple-variable-based model effective and
reliable.

From the comparison and simple analysis of all
single-variable-based models, we found that the model
based on NDVI had the highest R (0.900) and R2

(0.810) as well as lowest SEE (0.128), thus showed
the best effect. But when taking the multiple-variable-
based model into account, we concluded that the

Table 5 The detailed evaluation
coefficients of the optimal model

aExtremely significant correla-
tion (Sig.≤0.01)

Independent variable Dependent variable Unstandardized coefficients T Sig.

B Standard error

Constant Measured coverage −0.874 0.121 −7.197 0.000a

NDVI 8.689 1.314 6.611 0.000a

GVI −11.193 3.174 −3.526 0.003a
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multiple-variable-based model behaved even much better
(higher R and R2 and lower SEE). Thus finally it was
determined as the optimal model for estimation consid-
ering all the evaluation coefficients. This model was
expressed as Eq. 12 and the detailed evaluation coeffi-
cients were shown in Table 5.

coverage ¼ �0:874þ 8:689 NDVI� 11:193 GVI ð12Þ

3.3 Estimation and Validation of Vegetation Coverage

Based on the selected optimal model from multiple stepwise
regression analysis, the vegetation coverage of the study
area was estimated and the distribution was mapped as
shown in Fig. 7. In this figure, the white marks area with
no vegetation, which are covered by bare land, water
and buildings, and so on. The light green areas indicate
the vegetation cover lower than 0.25 while the red areas
indicate a value higher than 0.75. By reference to orig-
inal remote sensing image and Google Earth image of the study area, the estimation results are accordant with

the actual situation.
Additionally, in order to illustrate the effect of the

estimation result adequately, quantitative validation was
conducted using measured coverage values of 19 field
plots. As these data had also been used in modeling
process, the approach of cross-validation was used to
ensure the validity of the verification. The cross-
validation is done through “leave-one-out” method. It
involves iteratively removing one plot of vegetation coverage
from the full set, fitting a regression equation to the remainder
of the plots, and applying the equation to predict the value for
the “left-out” plot. This work is repeated for each plot in the
sample to produce a set of plot-based estimated vegetation
coverage.

The validation result was shown in Fig. 8. The de-
termination coefficient (R2) of cross-validation was
0.867 with a RMSE of 0.101. For estimation of vege-
tation coverage, it was a quite low value. Besides, the
significant probability of 0.000 also indicated no signif-
icant difference between measured and estimated cover-
age. All these conclusions demonstrated that the selected
optimal model is applicable for local coverage estimation
and the result was valid and useful for further applications
and actual environment management.

4 Discussion

Vegetation coverage, which is a basic and important envi-
ronmental parameter, serves as a crucial input variable of a
large number of ecological and hydrological models and
thus attracts much attention. This study provides an example
on its estimation based on multivariate statistical modeling
using remote sensing data. Although some positive

Fig. 7 The distribution map of estimated vegetation coverage in the
study area

Fig. 8 The cross-validation of estimated vegetation coverage
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experience has been acquired, there are still many aspects
which could be discussed and improved.

Firstly, during the modeling process, the NDVI performed
excellent and entered the stepwise multiple-variable-based
model. It was a quite normal phenomenon as NDVI was one
of the oldest, most well known, and widely used vegetation
indexes. The initiative of modeling lay in the acquisition and
using of GVI. Here, based on the modified tasseled cap
transformation, a variable of GVI was got from HJ-1 data
for the first time. In fact, we were surprised and excited that it
had significant correlation with measured coverage and also
been incorporated in the optimal model for coverage estima-
tion. Does it fit for other vegetation applications? More cases
are in need for further validation in future studies.

Then as current statistical regression models are restricted
to a specific study area, we need to adjust the coefficients or
try to build physical model for other areas.

Additionally, there were only 19 effective sample plots
investigated for studies because of the hot summer weather
and hard sampling conditions in sandy land. There is no
doubt that we have to add more sample plots for modeling
and validation in future work.

Finally, the optical image used in this study is only the HJ-1
multispectral data which has some limitations in the spectral
resolution and spatial resolution. In future studies, we need to
try other multispectral images such as Landsat TM/ETM+,
Advanced Land Observing Satellite as well as hyperspectral
data (MODIS, etc.), and explore their potential for the estima-
tion of coverage and many other ecological parameters. As
more and more active remote sensing techniques, such as light
detection and ranging (LiDAR) and synthetic aperture radar
(SAR) have been widely and successfully used in various
applications, the synergy estimation combining optical images
with LiDAR or SAR data should be considered.
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