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Abstract Over the past decades, the vast limestone

mountain areas in southwestern China have suffered greatly

from karst rocky desertification (KRD), which is a unique

type of desertification caused by irrational land-use prac-

tices and has drawn increasing attention of international

academic community. Characterizing soil erosion in this

region is the key to understanding the escalating KRD

problem and finding solution to it. The authors applied

leveling method to study soil erosion process in the Hua-

jiang Karst Canyon area between 1999 and 2003, and tried

to relate it to KRD expansion. The monitoring data indicate

that soil in the study area was losing at an alarming rate,

which is much higher than soil formation rate and has

already resulted in severe KRD problem. Soil loss under

different land-use conditions varied greatly during the

monitoring period. The highest soil erosion rate occurred in

bare and newly abandoned cropland, followed by sparse

grass land, forest land, and dense grass land. In addition,

soil erosion could be significantly different under different

micro-topographic conditions. Because soil erosion rate in

the studied karst mountain areas is surprisingly high, it is

urgent to take quick actions to fight against the ongoing

KRD problems in Southwest China before an irreversible

situation occurs. However, the traditional way to combat

KRD by abandoning current cropland needs to be carefully

reconsidered, since a bare newly abandoned cropland may

suffer more from rapid soil loss than before.

Keywords Soil erosion � Karst rocky desertification

(KRD) � Leveling method � Land use � The Huajiang

Canyon � Southwest China

Introduction

Over the past half century, the issues of land degradation

and desertification have raised broad concern around the

world. According to the definition given by United Nations

Environment Programme (UNEP), desertification refers to

land degradation resulting from various natural (particularly

climatic) and anthropological factors in arid, semi-arid, and

sub-humid areas (UNEP 1992). Land degradation under

desertification is usually irreversible and featured by the

loss of biological productivity and biodiversity and the

extension of desert-like conditions (Mainguet 1994). This is

the main reason why desertification is also called the cancer

of the Earth. Since the 1950s, there has been an increase in

publications on desertification. Geographically speaking,

the majority of the literature is focused on dry land (Avni

et al. 2006; Ghosh 1993; Glantz 1977; Hill et al. 2008;
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Huang and Siegert 2006; Mainguet 1994; Sellers et al.

2008). Desertification problems in humid areas have not yet

received proportional attention around the world.

Karst land is an important and unique type of terrain on

the Earth’s surface, which is usually characterized by

extensive outcropping of soluble rocks (overwhelmingly

carbonate rocks) and distinguishable morphological and

hydrological processes. Overall, karst area covers around

22 million km2 of the Earth’s surface or 15 % of land area,

and holds about 1 billion people (Yuan 1997). Southwest

China is one of the largest karst areas in the world, and is

home to about 100 million people. About 42.6 9 104 km2

land in this area is covered by carbonate rocks, mainly in

Guizhou (11 9 104 km2), Guangxi (8.9 9 104 km2), and

Yunnan (6.1 9 104 km2) (Wang et al. 2004).

For a long time, China has suffered greatly from a

variety of land degradation problems and environmental

damages that were mainly caused by irrational human

activities. Many researchers paid attention to desertification

issues in non-karst regions in northern and northwestern

China where climate is mostly arid or semi-arid (Han et al.

2010; Huang et al. 2009; Xu et al. 2010; Zuo et al. 2009).

However, desertification in karst areas should behave quite

differently and also needs to be addressed appropriately

because karst eco-environmental system is fragile and

usually featured by low environmental capacity, high

sensitivity to external interruption, and poor self-recovery

capability (Yang 1990). Karst rocky desertification (KRD)

is defined to be a special type of severe land degradation in

warm and humid subtropical karst areas that is normally

characterized by rapid soil loss, widely exposed bedrocks,

decreasing land productivity, and fast expansion of desert-

like landscape (Wang et al. 2004). Therefore, KRD is a

huge obstacle to achieving regional sustainable develop-

ment. For the past 20 years, KRD in Southwest China has

spread rapidly and become increasingly severe, and thus

has drawn broad attention from both Chinese government

and academic societies (Huang and Cai 2007; Liu et al.

2008; Xiong et al. 2002; Xiong et al. 2009). In 2001, the

State Council of China released its ‘‘Outline of the 10th

Five-year Plan for National Economical and Social

Development’’, and explicitly declared to combat the

escalating KRD problem in southwestern China. On a

global scale, KRD issue has not got the attention it

deserves over the past few decades, and even has not been

on the agenda of the International Desertification Preven-

tion and Control Treaty (Wang et al. 2004). On the other

hand, Chinese academic community has carried out a

number of studies on KRD for the past decades, trying to

understand its geographic distribution, negative impacts,

driving forces, and rehabilitation models (Huang and Cai

2006, 2007; Jiang et al. 2009; Li et al. 2009; Liu et al.

2008; Xiong et al. 2002, 2009; Zhang et al. 2010).

However, few studies have focused on specific soil loss

rate and its relationship to KRD.

Guizhou is one of the provinces with the most severe

KRD problems in China. An investigation using remote

sensing (RS) in 2004 showed that over 20 % of Guizhou’s

territory (*3.5 9 104 km2) was ravaged by karst rocky

desertification (Wang et al. 2004). Local governments and

research institutes are confronted with a huge challenge:

how to fight against KRD and achieve sustainable devel-

opment in the problematic areas? It is generally believed

that KRD results directly from soil erosion triggered by

vegetation clearance (Liu et al. 2008; Xiong et al. 2002,

2009). However, there is an apparent shortage of knowl-

edge about how fast soil is eroded away in KRD areas and

possible relationship between soil erosion and KRD

expansion. In this article, the authors, based on their field

observations on soil erosion in the Huajiang Canyon area in

Southwest Guizhou, are going to (1) examine the rate and

surface process of soil erosion in a typical KRD area;

(2) unveil the difference in soil erosion under different

conditions (i.e., land-use, vegetation cover, micro-

topography); (3) compare soil erosion over time in karst

(particularly KRD) areas with non-karst areas.

Study area

The study area, located in Southwest Guizhou, covers an

area of 47.63 km2 (Fig. 1). The Beipanjiang River, also

called the Huajiang River by local people, is a tributary of

the Pearl River in South China, running from northwest to

southeast and dividing the study site into two parts. The

northeastern part belongs to Guanling County, and the

southwestern side is a part of Zhengfeng County. Since

the early Tertiary, the Beipanjiang River, influenced by the

Neo-tectonic Movement, has intensely incised Guizhou

Plateau and formed an amazing canyon across the study

site. The so-called Huajiang Canyon, nearly 1,000 m deep,

can be morphologically divided into an upper and a lower

portion. The upper portion is a wide U-shaped valley

(8–10 km in width), and the lower portion is a narrow

V-shaped gorge (100–200 m in width). Geologically

speaking, the canyon is in accordance with an asymmetric

syncline, which dips steeply to the southwest at 50�–70�
and gently to northeast at 10�–20�. The majority of the

exposed bedrock at the study site is Triassic limestone and/

or dolostone, which covers more than 80 % of the land and

has developed typical cone karst landforms. A series of

Triassic sandstone and shale, exposed only along the bot-

tom of the wide valley, forms a non-karst belt that extends

from northwest to southeast.

Subtropical monsoon climate prevails at the study site.

Annual precipitation ranges from 1,000 to 1,400 mm and
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mean annual temperature is around 18.5 �C. As a result of

long-term irrational land use, karst areas of the Huajiang

Canyon have suffered greatly from severe rocky desertifi-

cation. Natural vegetation has been totally cleared, and

persistent soil erosion has already exposed a large area of

limestone to air, whereas the remaining soil is thin, poor in

organic and scattered in karst fissures, grikes, dolines,

depressions, or valleys.

The study site includes 8 villages with a total population

of around 6,000 people. Most local people make their

living on agriculture and quarry. Natural conditions do not

favor agricultural production except in its non-karst region

where soil is continual, thick, and fertile enough to grow

cash crops as well as grain crops. Overall, cropland is very

limited at the study site, and has a total area of about

464 ha. On average, each adult farmer owns only 0.084 ha

of farming land, which is about 44 % of the world average

level and also less than national average value of China.

Limited cropland has given rise to low population carrying

capacity. In 2001, the cereal yield per capita at the study

site was merely *220 kg. Apparently, this area was

overpopulated, which exerted high population pressure on

local environment and land resources. To achieve a sub-

sistence economy under conditions of increasing popula-

tion, land reclamation through clear-cutting has been an

inevitable choice for local people for the past few decades.

Under favorable climatic, geological and topographical

conditions, vegetation clearance in karst mountain region is

usually followed by surprisingly fast soil loss within a very

short period of time. As a result, the Huajiang Canyon area

has become one of the most severe and typical KRD areas

in China (Figs. 2, 3).

Since the late 1990s, a series of major projects, including

the 9th, 10th, and ongoing 11th Five-year Key Programs for

Science and Technology Development supported by the

Ministry of Science and Technology of China, has been

implemented in the Huajiang Canyon area, trying to find

effective solutions to ecological rehabilitation and strategies

for sustainable development in typical KRD regions. To

constrain KRD expansion, certain types of cash crops have

been introduced to the study area, e.g. Pericarpium

zanthoxyli in non-karst region of Zhengfeng County, and

Amomum villosum in karst area of Guanling County. They

are shown to be able to conserve soil and increase house-

hold income for local farmers. With the implementation of a

nationwide Slope Cropland Conversion Project, part of

croplands at the study site was required by the Ministry of

Forestry of China to be abandoned in 2001, trying to further

reduce soil loss and to hold back KRD expansion.

Materials and methods

Soil erosion directly results in the expansion of rocky

desertification in karst mountain areas. The direct con-

nection between soil erosion and KRD expansion has been

well documented, and a number of methods have been

employed to evaluate soil erosion in karst areas, such as

Revised Universal Soil Loss Equation (RUSLE), Remote

Sensing (RS), and 137Se (Collins et al. 2001; Lv et al.

Fig. 1 The location of the study

area
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2007; Xu et al. 2008). However, it is still not very clear

how fast soil is eroded in typical KRD land. In this study,

the cost-effective leveling method was adopted to monitor

soil loss in the Huajiang Canyon area, which measures

vertical shifts of soil surface to quantitatively assess the

effect of erosion (Zachar 1982).

Fig. 2 The extensively exposed limestone landscape at the study area

Fig. 3 The terraced fields in a karst depression at the study area
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Two field trips were arranged to monitor soil loss under

different conditions at the study site. The first investigation

was focused on the northeastern side of the Huangjiang

Canyon. In March 1999, 25 rounded wood stakes, which are

about 50 cm in length and 5 cm in diameter, were driven

into soils at different locations and the original position of

soil surface marked. To minimize human disturbance and

obtain reliable data, all stakes were driven into uncultivated

land. Among them, 8 were in Duoniudong (a grass-covered

talus composed of limestone debris), 4 in Bashan (a non-

karst foothill covered by dense grass), and the remaining 13

were in Qinggangpo (a non-karst footslope covered by

semi-natural oak forest). Because other natural factors (e.g.

variations in humidity, freeze–thaw cycle) may also play a

role in vertical changes of soil surface, these negative

impacts should be minimized as much as possible and

measurements should be made in the same season of the

year (Zachar 1982). In April 2000, the vertical changes of

soil surface on each stake were measured. Unfortunately,

only 16 stakes were found, and 9 stakes in Bashan and

Qinggangpo were lost. This might be caused by (1) decay or

rottenness under humid conditions, and (2) damage result-

ing from grazing animals or playing kids.

The second field survey was held in typical KRD areas of

Southwest Huajiang Canyon. In April 2002, 50 wood stakes

of the same type were driven into soil at different sites with

different lithology, land use, and micro-topography. Most

stakes were put in the village of Chaeryan, where soil is

thick enough to hold stakes (Fig. 4). However, in places

where soil is too thin to support stakes, the original soil

surface on the exposed bedrock was marked by drawing a

red line (Fig. 5). After 1-year erosion, only 25 stakes and

12 red lines were found for making measurements.

Results

The soil erosion monitoring data between 1999 and 2003

are shown in Tables 1, 2 and 3. Clearly, study site expe-

rienced an intensive soil loss during the observation period,

which was apparently influenced by a number of factors,

such as land use, vegetation cover, micro-topography, and

lithology.

Soil erosion under different land use and vegetation

cover conditions

In the Huajiang Canyon area, land use and vegetation cover

are diverse and different from place to place, and three

different types can be distinguished: grazed grassland,

forest land, and bare newly abandoned cropland. The most

severe soil loss apparently occurred in the bare, abandoned

cropland and corresponded to the greatest net erosion

depth, which was 18 mm during the monitoring period.

Soil erosion in the fields covered by semi-natural oak forest

or cash crops was relatively higher than that in grassland

but much lower than that in the abandoned cropland, with a

mean annual net erosion depth ranging from 7 to 5 mm

(Figs. 6, 7). Clearly, even though land was not bare but

covered by semi-natural or artificial forest, its soil was still

susceptible to erosion. In addition, grass cover seemed to

be more effective in preventing soil erosion than the other

two types of vegetation covers. However, dense grass and

sparse grass played quite different roles. The mean net

erosion depth per year in the dense grassland was only

around 1 mm during the observation period (Figs. 6, 7). In

most cases, there was even no soil erosion observed in the

fields covered by dense grass. Soil erosion in sparse

grassland was *5–7 times higher than that in dense

grassland, with a mean annual net erosion depth of 6 mm.

Soil erosion under different micro-topographic

conditions

It is interesting to determine in this study that slope angle

did not play an important role in soil erosion under similar

land use and/or vegetation cover conditions. Regression

analysis shows that the correlation coefficient between the

observed net soil erosion depth and the slope angle of the

corresponding site is only -0.027 with a significance of

0.846, implying that there is no statistically significant

change in net soil erosion depth associated with slope angle

at this study site.

However, there was an apparent difference in soil erosion

under different micro-topographic conditions in the Huaji-

ang Canyon area, which is consistent with other people’s

observations around the world (e.g. Pennock and Jong 1987;

Quine et al. 1994; De Santisteban et al. 2005). In general,

soil erosion on slope surface was much less severe than that

on gully bottom. For example, during 1999–2000 monitor-

ing period, the annual net soil erosion depth on slope surface

ranged from -3 mm (net deposition) to 19 mm, with a

mean value of 6 mm; whereas soil loss rate at a gully bottom

in Qinggangpo varied greatly from 12 mm per year at the

head to 126 mm per year at the end (Table 1; Fig. 6).

During the monitoring period between 2002 and 2003,

similar trend was also observed in Chaeryan. Soil erosion

rate at grike bottom changed from -3 mm to 119 mm per

year, with a mean value of 15.6 mm per year; whereas

annual soil loss rate on slope surface was 0–18 mm, with a

mean value of only 3 mm (Tables 2, 3; Fig. 7).

Soil erosion under different lithological conditions

Because lithology influences the physical and chemical

properties of parent material of soil (Fitzpatrick 1972) to
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a great extent, soil formed on different categories of rocks

usually shows different color, structure, granularity, and

compactness. As a result, the anti-erodibility of soil may

change under different lithological conditions. Two major

types of soil can be distinguished in the Huajiang Canyon

area: soil developed on sandstone is often sandy, thick,

and extensive; whereas soil formed on limestone is usu-

ally calcareous, thin, and patchy. Soil erosion also

behaved quite differently in karst and non-karst areas

under similar conditions. Generally speaking, soil erosion

in karst areas was apparently higher than that in non-karst

areas. For instance, the mean annual net soil erosion

Original soil surface 

Net erosion depth 

Fig. 4 Soil erosion recorded by stake-driven method

Fig. 5 The soil loss measured by line-drawing method
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depth in karst areas ranged from 6 mm in Duoniudong

(1999–2000) to 11 mm in Chaeryan, whereas the mean

yearly soil loss in non-karst areas was just about 5–6 mm

(Figs. 6, 7).

Discussion

It is generally believed that stopping cultivation may be a

good way to reduce soil erosion. However, a newly

Table 1 Soil erosion

measurements between March

1999 and April 2000

(1) Stakes # 1–8 were from

Duoniudong, 9–11 from

Bashan, 12–16 from

Qinggangpo. (2) Stakes # 15

and 16 were placed at the head

and end of a gully respectively.

(3) Negative sign in the ‘‘Net

erosion’’ column indicates a net

deposit

Stake # Net erosion (mm) Slope (�) Underlying rock Vegetation cover Micro-topography

1 2 31 Limestone Dense grass Slope surface

2 -3 31 Limestone Sparse grass Slope surface

3 0 31 Limestone Sparse grass Slope surface

4 7 31 Limestone Sparse grass Slope surface

5 7 31 Limestone Sparse grass Slope surface

6 5 31 Limestone Sparse grass Slope surface

7 19 31 Limestone Sparse grass Slope surface

8 14 31 Limestone Sparse grass Slope surface

9 3 31 Sandstone Dense grass Slope surface

10 -1 24 Sandstone Dense grass Slope surface

11 7 24 Sandstone Sparse grass Slope surface

12 7 19 Sandstone Forest (oak) Slope surface

13 9 19 Sandstone Forest (oak) Slope surface

14 4 19 Sandstone Forest (oak) Slope surface

15 12 17 Sandstone Bare Gully bottom

16 126 22 Sandstone Bare Gully bottom

Table 2 Soil erosion recorded

on stakes between April 2002

and April 2003

AC abandoned cropland, UG
unused grassland, CCP cash

crop planning

Stake # Net erosion (mm) Slope (�) Underlying rock Land use Veg. cover Micro-topography

1 1 21 Limestone AC Bare Grike bottom

2 5 21 Limestone AC Sparse grass Grike bottom

3 5 5 Limestone AC Bare Grike bottom

4 3 5 Limestone AC Sparse grass Grike bottom

5 3 30 Limestone AC Bare Grike bottom

6 119 21 Limestone AC Bare Grike bottom

7 0 10 Limestone AC Sparse grass Grike bottom

8 7 32 Limestone AC Sparse grass Terraced cropland

9 2 10 Limestone AC Sparse grass Grike bottom

10 -3 10 Limestone AC Bare Grike bottom

11 2 16 Limestone UG Dense grass Grike bottom

12 4 15 Limestone AC Sparse grass Terraced cropland

13 1 18 Limestone UG Dense grass Slope surface

14 0 18 Limestone UG Dense grass Slope surface

15 0 20 Limestone UG Dense grass Slope surface

16 0 15 Limestone UG Dense grass Slope surface

17 0 25 Limestone UG Dense grass Slope surface

18 0 25 Limestone UG Sparse grass Slope surface

19 0 41 Shale UG Dense grass Slope surface

20 1 41 Shale UG Dense grass Slope surface

21 18 30 Sandstone UG Sparse grass Slope surface

22 4 30 Sandstone UG Dense grass Slope surface

23 0 27 Sandstone CCP Cash crop Slope surface

24 7 27 Sandstone CCP Cash crop Slope surface

25 9 24 Sandstone CCP Cash crop Slope surface
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abandoned cropland may even suffer more from erosion

than before. Cerdá’s (1997) conducted a thorough com-

parison study on soil erosion among a bare cultivated field,

a 3-year-abandoned field, a 10-year-abandoned field, and

two soil units covered with semi-native and native vege-

tation in the southeastern Spain. He found that runoff

Table 3 Soil erosion recorded

by drawing lines in abandoned

cropland between April 2002

and April 2003

UL unused land

Line # Net erosion (mm) Slope (�) Underlying rock Land use Veg. cover Micro-topography

1 2 15 Limestone AC Bare Grike bottom

2 -3 15 Limestone AC Bare Grike bottom

3 5 15 Limestone AC Bare Grike bottom

4 2 15 Limestone AC Bare Terraced cropland

5 2 10 Limestone AC Bare Terraced cropland

6 8 20 Limestone UL Bare Grike bottom

7 38 21 Limestone UL Bare Grike bottom

8 22 32 Limestone AC Bare Terraced cropland

9 41 15 Limestone AC Bare Grike bottom

10 37 10 Limestone AC Bare Grike bottom

11 15 18 Limestone AC Bare Grike bottom

12 12 15 Limestone AC Sparse grass Terraced cropland
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discharge and erosion rate increased immediately after land

abandonment but decreased later owing to gradual increase

in vegetation cover. For fields abandoned for 10 years and

covered by native or semi-native vegetation, the site con-

ditions were very stable, producing almost no runoff and

erosion. Similar tendencies were also observed in Medi-

terranean region: runoff and erosion rates were the lowest

in semi-natural fields, and the maintenance of semi-natural

vegetation may help to prevent runoff generation and

erosion (Dı́az et al. 1999). In the Huajiang Canyon area, the

monitoring data show that the newly abandoned cultivated

land was undergoing severe soil erosion and grass cover

(particularly dense grass) is much more helpful than forest

in preventing soil erosion. Therefore, before these aban-

doned croplands are re-covered by grass in a natural way, it

is urgent to take measures to hold back soil erosion,

especially in grikes where soil is being lost at an alarmingly

high rate. Otherwise, the fast-going erosion will deplete the

remaining soil in a very short period of time and may result

in rapid KRD expansion.

For the past few decades, the remote mountain regions

of China have been under great pressure to create more

arable land due to rapid population growth. With more

mouths to feed, local farmers used to clear vegetation cover

to obtain more croplands at the study site. As a result, the

area often experienced severe soil erosion and more

underlying carbonate rocks were exposed to the surface.

With time passing by, local soil was getting thinner and

thinner, and soil water holding capability would decline,

which would in turn decrease infiltration and increase

surface runoff. Eventually, this would lead to more erosion

on both remaining soil and the exposed carbonate rocks.

Unexpectedly, KRD was never a gradual and slow process

but occurred in a sudden and fast way. Therefore, once

vegetation cover is cleared in karst mountain areas, a

negative feedback loop between soil erosion and KRD

expansion will be triggered (Fig. 8). This also explains to a

great extent why the measured soil erosion rate is appar-

ently higher in the karst areas of the Huajiang Canyon.

According to field observation and interviews with local

people, a lot of soil has been lost in a very short period of

time over the past few decades at the study site. This can be

further verified by the evidences kept in a number of karst

grikes near Chaeryan, where soil used to be relatively thick

accelerated
soil erosion

population
increase

fast roccky
desertification

surface runoff
increase

vegetation
clearance

Fig. 8 The feedback loop between soil erosion and KRD expansion

in karst mountain areas

Sub-aerial 

corrosion 

Subsoil 

corrosion 

Fig. 9 The fast erosion and remaining soil in a karst grike near Chaeryan (dashed line represents previous soil surface)
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and arable. The upper portion of the exposed limestone is

usually rough and relatively dark in color due to a long-

term sub-aerial corrosion, whereas the lower portion is

newly exposed to atmosphere by fast soil erosion and is

normally characterized by smooth and relatively light-

colored surface owing to subsoil erosion. The persistent

and rapid soil erosion has soon led to an extensive exposure

of underlying limestones and also made the differences

visible between sub-aerial corrosion and subsoil corrosion

(Fig. 9).

It is well agreed that soil forms at a very slow rate in

karst areas. Yuan and Cai (1988) estimated that the for-

mation of 1-cm-thick soil in limestone areas would usually

take thousands of years. Once soil is entirely eroded away,

local ecosystem may collapse. It is thus absolutely neces-

sary to take countermeasures as early as possible to hold

back the fast and extensive expansion of KRD land before

situation is getting worse and becomes irreversible.

Conclusions

In this paper, the results of field investigation were reported

on soil erosion under different conditions in the Huajiang

Karst Canyon area in Southwest China over a 2-year period

from 1999 to 2000 and from 2002 to 2003, and the possible

connection between soil erosion and expansion of karst

rocky desertification (KRD) was also discussed. The mon-

itoring results indicate that the study site was losing soil at

an alarming rate, which is far greater than soil formation

rate and is thus causing rapid expansion of KRD. Soil

erosion under different conditions varied greatly during the

monitoring periods. From 1999 to 2000, the recorded mean

net soil erosion depth was 7 mm in forest land, 1 mm in

dense grass land, and 7 mm in sparse grass land. For

observation period between 2002 and 2003, local soil losing

rate was recorded as 18 mm year-1 in bare and abandoned

cropland, 5 mm year-1 in cash cropland, 1 mm year-1 in

dense grass land, and 6 mm year-1 in sparse grass land.

Clearly, soil erosion rate differs under different land use and

vegetation cover conditions at the study site, with the

highest rate observed in bare and newly abandoned crop-

land, followed by sparse grass land, forest land, and dense

grass land. Therefore, grass cover, particularly dense grass

coverage, is the most effective vegetation cover category

that can significantly reduce soil erosion. Due to the low

cost of grass and its wide availability in a variety of natural

environments, planting native grasses instead of trees may

be a better way to fight against KRD problem.

It was determined that different micro-topographic

conditions usually lead to obviously different soil erosion.

The 2-year monitoring data at the study site showed that

soil erosion rate at the bottom of a gully or grike is 5–12

times faster than that on slope surface. It is also observed

that soil erosion rate in karst area is apparently higher than

that in non-karst area. In stony karst areas, as time goes on,

more carbonate bedrocks will be exposed to air by soil

erosion. As a result, the water holding capability of soil

will decline, and same amount and intensity of precipita-

tion will produce more surface runoff due to less infiltra-

tion, and therefore would result in a more rapid soil erosion

than previous period in karst areas. It implies that soil

erosion might accelerate once rocky desertification starts,

which will lead to fast disappearance of soil in a short time.

In addition, once vegetation cover in karst area is cleared, a

negative feedback loop between soil erosion and KRD

expansion will be triggered. This will eventually lead to

rapid expansion of KRD. It is thus very urgent to take

effective measures to fight against the ongoing KRD issue

in Southwest China as early as possible before it becomes

irreversible. However, the traditional way to combat KRD

(e.g. abandoning cropland in steep slope areas) needs to be

carefully reconsidered. This is because a bare, newly

abandoned cropland may suffer more from rapid soil loss

than before. It is very necessary to take cost-effective

engineering measures to hold back or alleviate rapid soil

loss before the abandoned cropland is re-protected by

vegetation through natural recovery.
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