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a  b  s  t  r  a  c  t

Earth  observation  based  monitoring  of change  in  vegetation  phenology  and  productivity  is an  important
and widely  used  approach  to  quantify  degradation  of  ecosystems  due  to  climatic  or  human  influences.
Most  satellite  based  studies  apply  linear  or polynomial  regression  methods  for  trend  detections.  In this
paper it is  argued  that  natural  systems  hardly  react  to human  or  natural  influences  in a  linear  or  a
polynomial  manner.  At shorter  time-scales  of few  decades  natural  systems  fluctuate  to  a  certain  extent
in a non-systematic  manner  without  necessarily  changing  equilibrium.  Finding  a systematic  model  that
describes  this  behavior  on  large  spatial  scales  is  certainly  a difficult  challenge.  Furthermore,  the  manner
vegetation  phenology  reacts  to climate  and to socio-economic  changes  is  also  dependent  on  the  land
cover  type  and  on  the  bioclimatic  region.  In  addition  to this,  traditional  parametric  methods  require
the  fulfillment  of  several  statistical  criteria.  In case  these  criteria  are violated  confidence  intervals  and
significance  tests  of  the  models  may  be  biased,  even  misleading.  This  paper  proposes  an  alternative
approach  termed  the  Steadiness  to traditional  trend  analysis  methods.  Steadiness  combines  the  direction
or tendency  of  the  change  and  the  net  change  of  the time-series  over  a selected  time  period.  It  is  a  non-
parametric  approach  which  can  be  used  without  violation  of  statistical  criteria,  it  can  be  applied  on  short
time-series  as  well  and  results  are  not  dependent  on  the  significance  test  or on  thresholds.  To  demonstrate

differences,  a time-series  of  satellite  derived  Season  Length  images  for 24  years  is  analyzed  for  the  entire
European  continent  using  linear  regression  and  the  Steadiness  approach.  Spatial  and  temporal  change
patterns  and  sensitivity  to pre-processing  algorithms  are  compared  between  the two  methods.  We  show
that  linear  regression  limits  the  possibilities  of assessing  fluctuating  ecosystem  changes  whereas  the  non-
parametric  Steadiness  index  more  consistently  confirms  the  fluctuating  phenological  change  patterns.
. Introduction

To address complex global challenges, environmental man-
gers need up-to-date information on the status and trends of land
egradation, their causes and effects, and need to be offered routes
or possible solutions. In particular, various aspects of vegetation
ynamics, reflecting land cover/use transitions that can lead to

and degradation, need to be considered in spatio-temporal con-
ext. Because of the large areal coverage and continuous temporal
ampling, remotely sensed data provides a synoptic picture of veg-
tation dynamics in space and time and thus have a great potential
or monitoring vegetation and ecosystem change from regional to

lobal scales (Myneni et al., 1997). Using satellite based time-series
magery vegetation phenological metrics can provide a quantitative
asis to monitor such changes. This has been one of the central
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features in global change research as it provides researchers with
an independent measure on how ecosystems respond to external
impacts, be it human induced or climate change (Fensholt et al.,
2012; Linderholm, 2006; Parmesan, 2006; White et al., 2009).

Many studies applied time-series of remote sensing images to
investigate the timing of recurring biological events and their con-
nection to climate change. However, some of these studies present
different magnitudes of phenological changes and report contra-
dicting findings related to earlier/later or shorter/longer seasons
(among others Hogda et al., 2001; Zhou et al., 2001; Stöckli and
Vidale, 2004; Julien and Sobrino, 2009; Zhu et al., 2011; Jeong et al.,
2011a,b). Contradicting results were also reported from studies
using similar time series of satellite derived productivity data in
terms of which areas show negative trends (Bai et al., 2008; Hein
and de Ridder, 2006; Hellden and Tottrup, 2008; Prince et al., 2007;

Wessels, 2009). Naturally, some of the contradictions arise from
the different length of the time series analyzed and from the differ-
ent satellite sensors used (deBeurs and Henebry, 2005; Jeong et al.,
2011a), from differences in methods applied for detecting trends

dx.doi.org/10.1016/j.ecolind.2012.10.012
http://www.sciencedirect.com/science/journal/1470160X
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Fensholt and Rasmussen, 2011) as well as from differences of the
patial scale of the studies.

Most of these studies rely on linear regression modeling of a
onotonous trend in natural systems, which is disputable as it may

ot account well for the fluctuation inherent to natural systems. The
resent study refers to the fact that natural systems hardly change

inearly or react to human or natural influences in a linear manner.
herefore, finding a systematic model that describes spatially dis-
ributed areas according to their different system stages in terms
f their likeliness of undergoing ecosystem change or rather fluc-
uating in a relative equilibrium is a difficult challenge. Moreover,
he linear regression as a quantitative parametric model that relies
n four principal assumptions which must be met. If any of these
ssumptions are violated then confidence intervals and significance
ests of the linear regression model may  be misrepresentative: (1)
inearity of the relationship between dependent and independent
ariables; (2) independence of the errors, i.e. no serial autocorre-
ation of the residuals; (3) stationarity (constant variance) of the
rrors versus the predictor; (4) normality of the error distribu-
ion. Some authors tried to get around these constraints by, e.g.
dding a non-linear term in the regression equation (deBeurs and
enebry, 2004, 2005). However, it was also suggested by the same
uthors that depending on the latitude and land cover the non-
inear function needs further adjustments (deBeurs and Henebry,
005). Non-parametric trend measures as, e.g. the Theil–Sen’s
Theil, 1950; Sen, 1968) and the Mann–Kendall tests (Mann, 1945;
endall, 1975) are robust against non-normality of the distribution

n the time-series (Yue and Pilon, 2004). However, non-parametric
ests also require the setting of user-defined thresholds introducing
ubjectivity similarly to significance assessment based on the t-test.
hou et al. (2001) calculated the persistency index from piecewise
inear trends of the phenological time-series (denoted as t(i)), over
ncreasing number of years but with the same starting year. In case
(i + 1) > 80% of t(i) a score of 1 was given, otherwise the score was
ero. The sum of these scores is the index of persistent NDVI phe-
ological change and is categorized into high and low persistency.
owever, the Persistence Index is also subject to setting thresholds

hat might jeopardize the consistency and repeatability of global
cale studies. Local to regional scale studies may  apply user-defined
hresholds, continental to global scale assessments however can-
ot be based on subjective decisions because trends are land cover
nd bio-climate dependent (deBeurs and Henebry, 2005).

The aim of the present study is to address the methodologi-
al and conceptual constraints faced when using linear methods to
ssess the fluctuating nature of phenological changes. Using only
ne aspect of ecosystem change, for practical reasons we limit the
tudy to time series analysis of the remote sensing derived veg-
tation growing season length (SL) over the European continent
or the years 1982–2005 derived from NDVI of the GIMMS  dataset.
ests and comparisons are made between a non-parametric linear
rend analysis method and an alternative method termed “Steadi-
ess”, which combines the trend tendency and the net change
f the time series. For the latter method, the slope of the linear
rend (tendency) and the net change values are used as qualitative
lassifiers of the phenological fluctuation dynamics. Relying on a
onvergence of evidence rather than on significance values these
lassifiers are combined into a classification scheme that expresses
he apparent long term direction into which the ecosystem appears
o move in the given time window. The resulting classes represent
he levels of Steadiness of change dynamics of the phenological

etric. The different Steadiness classes characterize ecosystems
anging from strong negative to strong positive dynamics and also

ssign classes where the system can be assumed to fluctuate within
he boundary condition of a steady equilibrium. In this study we
rgue that a not-significant test of the linear trend should not
e taken indicative of a non-changing ecosystem state and that
ators 26 (2013) 49–60

a simple measure like the here proposed Steadiness index might
be better adapted to reflect fluctuating phenological dynamism of
ecosystems.

To test and evaluate the two  different approaches comparisons
are made between the temporal profile and the spatial distri-
bution of pixels under the different Steadiness classes and the
temporal profile and spatial distribution of pixels with signifi-
cant linear regression trends. The temporal profiles and spatial
distribution of those pixels where the trend was  not signifi-
cant are also addressed and compared, respectively. In order to
test the robustness of the Steadiness approach in relation to
time series data normalization and data noise, we also consid-
ered two major pre-processing methods on the season length
time-series frequently used in remote sensing change detection
studies: Z-score normalization and moving average smoothing
of the time-series. Subsequently, the Steadiness classes and the
slope and significance statistics of linear trends were calculated
from the unprocessed and from the pre-processed SL time-series.
The manner phenology reacts to climate and to socio-economic
changes is strongly dependent on the land cover type, land use
and also on the bioclimatic region. Therefore, all comparisons were
performed in a stratified way  within the Northern, Central and
Southern European Environmental Zones to account for the nat-
ural differences of phenological dynamics in major bioclimatic
regions.

2. Materials and methods

2.1. Study area and data sets

The study area includes the entire European continent includ-
ing Turkey and the Southern Mediterranean countries of Northern
Africa and the Middle East extending between 10.8 degree West and
40.5 degree East and between 71.4 degree North and 27.8 degree
South (Fig. 1). The bio-climatic zones covering the test region pro-
vided by the Environmental Classification of the world of Metzger
et al. (2011) were used for the stratified analysis and comparison
of the derived SL linear regression trends and Steadiness results, as
shown in Fig. 1.

The Season Length (SL) time-series was derived from the Global
Inventory Modeling and Mapping Studies (GIMMS) NOAA-AVHRR
1982–2005 NDVI 10 days composite data set covering the entire
Earth at 8 km × 8 km pixel sampling (Tucker et al., 2005). It is con-
sidered and described as an NDVI dataset that has been corrected
for calibration, view geometry, volcanic aerosols, and other effects
not related to vegetation change (Tucker et al., 2005). Full detail
can be found at the website of the Global Land Cover Facility
(www.landcover.org) of the University of Maryland. The yearly val-
ues of SL were derived for each image pixel of the study area using
the algorithms of the “phenolo” package for the derivation of vege-
tation phenology and productivity metrics as outlined by Ivits et al.
(2012). Using this method, the GIMMS  NDVI data was overlaid with
smoothed forward and backward lagged curves derived from the
original time-series by means of a Moving Average (MA) algorithm
(Fig. 2). The “phenolo” package is designed to account for the time
series dynamism of each pixel individually and adopts an objective
approach to compute the lag, expressed in days:

L =

N∑

i=1

(365 − 2STDi)

N
(1)
where L is the lag (in days), N is the number of years, 365 is the num-
ber of days in the year and STDi is the standard deviation from the
barycentre of the area under the yearly NDVI curve (expressed in
days). Thus, at the individual pixel level, the lag applied for shifting

http://www.landcover.org/
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Fig. 1. Extent of study area and the average Season Length time series from 1982 to 200
the  study area (Y axis: Season Length in days). The ecosystems are divided into the zones
(Metzger  et al., 2011).
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ig. 2. Example for the calculation of Start of Season (SOS) and End of Season (EOS)
oints on the NDVI curve and the derived season length (SL).

he MA  curves is constant throughout the time-series as deter-
ined by the per pixel average length of the non-growing season.

n this way the phenolo approach, unlike the method of Reed et al.
1994), is independent of user defined determination of the forward
nd backward lag shift. Thus, the method adjusts to the individual
haracteristics of the NDVI time series curve under each pixel when
rocessing the time series imagery accordingly and better reflects
emporal and bioclimatic conditions, land-cover and management.
he cross points of the original NDVI time series and the MA  curves
ere used to approximate the start (SOS) and the end (EOS) of the

egetative growing season days for each year (Fig. 2). For each year,
he distance between the SOS and EOS points was defined as the
eason length (SL).

Two main pre-processing algorithms were carried out on the
henological time-series which are often used in remote sensing
hange detection studies. Firstly, a normalization was  carried
ut on the time-series by converting the series into Z-scores.
he Z-score normalization gives insight into how typical a given
bservation is with regards to the entire time-series and enhances
he comparison of the trend magnitudes because larger values

ill have larger slopes, which is inevitable along the North–South

limatic gradient in Europe. As a result, this method provides a
obust and valid estimate of the temporal rather than spatial and
5 over the Northern, Central and Southern European Environmental Zones within
 North, Central and South using the boundaries of the Environmental Classification

geographical transect driven trends (Hellden and Tottrup, 2008).
The Z-scores were calculated according to:

Z = Xt − X̄

s
(2)

where Z is the resulting normalized time series value, Xt is the
original time series value for year t, X̄ is the series mean and s is the
standard deviation of the series. The Z-score normalization reduces
the influence of outliers and of pixels with very high variations that
result in extreme trend values and thus enables the comparison
of the trend magnitudes along large spatial scales. Secondly, a
moving average smoothing was  performed over the time-series to
remove high frequency variability using a 3-years window. Moving
averages are used in time series analysis to smooth out short-term
fluctuations (e.g. in Jeong et al., 2011b)  thus highlighting longer-
term trends or cycles. It has to be noted however, that the SL
estimate is an already processed output and on shorter time-series
a moving average filter might remove valid information rather than
reducing additional noise. The filter was applied nevertheless to
demonstrate the effect of pre-processing on the Steadiness index
and on the significance test. Fig. 3 illustrates the effect of smoothing
the SL time-series from 1982 to 2005 in the nine ecosystems (see
Metzger et al., 2011) of Northern, Central and Southern Europe.
When compared to Fig. 1 displaying the unsmoothed time series,
the effect of smoothing in reducing the high fluctuations and thus
the variance becomes obvious. However, in the Southern European
ecosystems the residual variation in the time-series is still strongly
indicating the difficulty of applying linear (or any polynomial
functions for that matter) trend analysis methods over these
areas.

2.2. Linear regression versus Steadiness – methodological
considerations
When a linear model is fit to a time series that changes in a
non-linear way, results tend to inaccurately over- or under esti-
mate ecosystem change dynamics. This problem becomes more
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ig. 3. Season Length time series over the Northern, Central and Southern Europ
moothing over the time series with a window size of 3.

erious when data are aggregated and results are extrapolated to
arger spatial extents, as done with many remote sensing appli-
ations. Solutions to achieve linearity in the time-series include
ogarithmic transformations although the logarithm of, e.g. season
ength might be troublesome to understand. Adding a non-linear
erm in the regression equation in the form of a polynomial func-
ion is another solution. deBeurs and Henebry (2004) showed that
n temperate regions quadratic models fit well for modeling the
henology of growing degree days over agricultural and herbaceous
egetation. The same authors however suggested that non-linear
pherical models were fitting better for woody vegetation in North-
rn latitudes (due to a more rapid green-up and staying green for

 relatively long period, deBeurs and Henebry, 2005). Although the
alue of these studies is unquestionable, important conclusions can
e drawn: (1) phenological changes are rarely linear, (2) phenologi-
al changes are land cover dependent (deBeurs and Henebry, 2004),
3) phenological changes depend on the bioclimatic region and (4)
raditional trend analysis methods must be adapted when applied
n a continental or global level.

Another problem is that estimating the linear regression
oefficients of time-series over natural systems becomes problem-
tic with the inherent complexity of ecosystems. The fitted line will
e strongly dependent on the sample’s variance and consequently
he residuals will also strongly depend on the sample’s variance:
he larger the variance the larger the residuals and consequently a
imple straight line might not represent the real nature of change
ynamics. Furthermore, the standard error of the linear trend is
trongly influenced by the residuals and by the variance of the time-
eries. As a result, the t-statistics that depends on the standard error
ill be strongly influenced in such ecosystems and the significance

est becomes unreliable. As an example, consider Fig. 1 show-
ng SL time-series (1982–2005) averaged for the Northern, Central
nd Southern European ecosystems. The circumpolar and Boreal
egions in Northern Europe exhibit trends with low variances and
ith a monotonous change pattern where linear regression in fact

ould be considered good approximation of ecosystem change. In
he Central and especially in the Southern European regions, how-
ver, ecosystems exhibit increasingly non-linear change dynamics
nd increasing variance in their time-series, which will influence
he calculation of the standard error. Over these complex areas lin-
ar trend models will be strongly affected by large variances and
y the violation of the linearity assumption and consequently, the
ynamisms of the system will not be well described by the linear
odel.
Regarding the violation of the independent errors criteria,

t mainly points out that seasonality of the time-series has not
een properly accounted for and makes transformation of the

ariables necessary. Transformations may  help to stationarize
he variables but, as mentioned above, they strongly reduce the
nterpretability of the results. Regarding the stationarity criteria of
inear methods, it is now widely understood that natural systems
cosystems (for the subdivisions see Metzger et al., 2011) after a moving average

do not fluctuate within an unchanging envelope of variability,
which, in fact has long been compromised by human disturbances
(Milly et al., 2008). Furthermore, non-stationarity often arises
due to growth that represents the real nature of the time series
and therefore transforming the data would distort the results.
However, violations of stationarity usually results in confidence
intervals that are too wide or too narrow and may  have the effect of
giving too much weight to small subsets of the data and bias signif-
icance results. The t-test, used to conduct hypothesis tests on the
regression coefficients obtained in the linear regression, can only
be carried out if the random error term is normally and indepen-
dently distributed. Yet natural systems hardly ever are normally
distributed and the transformation of the variables introduces
difficulties in the interpretation of results. Non-normality can also
be caused by large outliers, but in many cases these outliers are
genuine members of the natural system as e.g. productivity drop
in case of forest fires or droughts. These extreme values are just
the values we are interested in and accordingly should not be
removed. Non-parametric trend measures as, e.g. the Theil-Sen’s
(Theil, 1950; Sen, 1968) and the Mann–Kendall tests (Mann, 1945;
Kendall, 1975) are robust against non-normality of the distribution
in the time-series (Yue and Pilon, 2004) and therefore are now
increasingly used in studies instead of the t-test to assess trend
significance. However, if all above mentioned statistical criteria are
met  and in case the natural system changes in a linear manner with
low fluctuation one still faces the problem of setting a threshold
for the non-parametric significance test that will only present
results that fall in a given confidence interval.

The proposed Steadiness approach intends to address the above
listed problems. The method, being non-parametric, does not have
to comply with the assumptions of linear regression regarding
independence of the errors, stationarity and normality and can
be applied on any type of data. There is no reliance on statisti-
cal significance as a criterion of trend relevance in order to avoid
the necessity of setting thresholds. Avoiding significance tests also
enables the method to be applied on short time series where the
calculation of statistical significance would not provide meaning-
ful information due to the limited number of observations. Instead,
the Steadiness index is based on a convergence of evidences that
the ecosystem changes dynamics. This is reached by combining two
simple measures:

(1) The tendency of the change, expressed in the slope of the trend.
The tendency is calculated by fitting a linear trend over the
time-series using the formula:

Y = ˇ0 + ˇ1X (3)
where ˇ0 is the intercept, ˇ1 is the slope of the fitted line,
X is time and Y is the SL time series. The slope of the linear
trend expresses the dominant tendency, positive or negative,
toward which the system moves. In assessing this tendency no
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Table  1
Summary of the four Steadiness classes.

Steadiness classes
Steadiness 1: negative slope and negative change. Represents pixels under

strong and negative ecosystems dynamics, with a probability of changing
equilibrium

Steadiness 2: negative slope and positive change. Represents pixels under
moderate negative ecosystems dynamics but likely to remain in current
equilibrium

Steadiness 3: positive slope and negative change. Represents pixels under
moderate positive ecosystems dynamics but likely to remain in current
equilibrium

Steadiness 4: positive slope and positive change. Represents pixels under
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is classified from the un-processed time-series.
strong and positive ecosystems dynamics with a probability of changing
equilibrium

hypothesis test is performed but the raw values are used in a
qualitative scheme independently of their significance.

2) The net change, positive or negative, of the phenological metrics
over the selected time period, supplying a second evidence
of ecosystem dynamism. The net change is calculated by the
Multi Temporal Image Differencing (MTID) method (Guo et al.,
2008). MTID for the Season Length time-series over the period
1982–2005 of the present study is calculated as:

TID =
2004∑

i=1982

(D2005 − Di) (4)

here Di equals the digital number of the Season Length value in
he corresponding year. Although these two measures develop alike
ver large areas, due to the non-linear, fluctuating nature of Sea-
on Length values of ecosystems, a pixel with positive slope might
xpress negative net change, and vice versa as shown in Fig. 4.

The combination of the tendency and change of the time-series
rovides a convergence of evidence for monotonous and dominant,
pwards or downwards, change of the system and results in the
lasses of the Steadiness index. There are four potential combi-
ations of the negative or positive trend and of the negative or
ositive change (Table 1 and Fig. 4) that represent the levels of
quilibrium or possibly changing equilibrium of the phenological
etric. The Steadiness 1 class indicates strong negative dynamics

f the observed time series with monotonous downwards trends
nd negative net change, indicating that the ecosystem is develop-
ng toward a changing equilibrium. Steadiness 2 class shows areas

here the trends are negative but the net change is positive. Here
he system fluctuates but does not show a clear tendency toward a
ew equilibrium characterized by, e.g. systematically shorter sea-
on length. Hence, these areas are more likely to remain within
he current equilibrium and have a chance to maintain the steady
tate. Steadiness 3 class shows areas where the time series trends
re positive but the net changes are negative. Here the system fluc-
uates but is likely to remain in current equilibrium and positive
rends will not necessarily result in long term improvement of the
cosystems. Steadiness 4 class shows positive trends with positive
et change of the observed time series with a probability of chang-

ng equilibrium. These four classes indicate an apparent direction
nto which the phenology dynamics of each pixel is evolving over
ime, upward or downward, confirmed or enhanced by the net
hange of the metric expressing the prevailing dynamic fluctuation
f the system. Furthermore, this qualitative approach precludes the
equirement for statistical significance inherent to the short time
indow of the time series and avoids the need to introduce possi-
ly subjective or solely locally valid thresholds for interpretation of
trengths of trends. Relying on convergence of evidence from the
lope of the linear regression and from the change (MTID) indicator
f the time-series, the Steadiness replaces the significance test and
ators 26 (2013) 49–60 53

assesses the general nature of the change without excluding pixels
from the further analysis.

Furthermore, we note that the last value of the time series,
which is used as the reference in the MTID index, might have a
strong effect on both the calculated MTID value and on the slope
value in case the least year is an outlier. This is not an entirely
unwanted effect for two reasons. (1) In our study we search for
convergence of evidence for similarity in the change of ecosystem
dynamisms therefore it is desirable to use change measures which
are affected by the same way. Using a change indicator of another
nature would disable finding convergence of evidence because of
showing ecosystem changes in a different manner. (2) At such early
stage of a time-series analysis it is not possible to state weather
the first or the last year is a real outlier or rather a measurement
error, e.g. a sensor artifact. If extreme values in the first or last years
are not outliers, these values form an important component of the
time series, as an extremely wet  or extremely dry year or significant
land use change might have happened just in one of those years.
Therefore, smoothing out the effect of these values at this stage of
the analysis could be a mistake that might lead to severe informa-
tion loss. Following this reasoning, in this study Eq. (4) is used for
assessing the change while being well aware of the possible effect
of the last year on the value and we  argue that this affect can only
be accounted for with extra information on land use change and
climatic effects at a later stage of the analysis.

2.3. Comparative case studies between Steadiness and linear
regression

We calculated the linear trend and the MTID change measure
over the SL time series for the entire study area. Significant pix-
els were defined with the Mann–Kendall test setting a threshold
of p < 0.1. In order to evaluate the potential and the robustness of
the Steadiness approach compared to linear regression, the follow-
ing comparative case studies were performed under the Northern,
Central and Southern European Environmental Zones:

1. The area proportion of pixels under negative and positive trends
(raw and significant) and under the four different Steadiness
classes were computed and compared.

2. Comparisons were made between the temporal profile of pixels
under the Steadiness 1 class with the temporal profile of signifi-
cant negative trends, and to the temporal profile of those pixels
where the negative trend was  not significant, respectively.

3. Comparisons were made between the temporal profiles of pixels
under the Steadiness 2 class with the temporal profile of pixels
under not significant but negative trends.

4. Comparisons were made between the temporal profiles of pixels
under the Steadiness 3 class with the temporal profile of pixels
with not significant positive trends.

5. Comparisons were made between the temporal profile of pixels
under the Steadiness 4 class with the temporal profile of signif-
icant positive trends, and to the temporal profile of those pixels
where the positive trend was  not significant, respectively.

6. Subsequently, we calculated the Steadiness classes on the
smoothed, on the Z-score normalized and on the smoothed and
Z-score normalized SL time-series and compared the results
with the Steadiness classes calculated from the un-processed
time-series. Where Steadiness is steady, after pre-processing the
time-series most pixels should stay in the Steadiness class that
7. Finally, we  calculated the significance and slope statistics of the
linear trends on the un-processed and on the pre-processed (as
under point 6) SL time-series and compared the results.
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ig. 4. Slope (upper left) and change (MTID, upper right) of the linear trend of th
veraged within the zones North, Central and South as in Fig. 1 (Y axis: Season Le
espectively the MTID value of the presented SL time series.

. Results

.1. Spatial and temporal patterns of linear regression and
teadiness classes of the Season Length time series

The temporal profiles of the Northern, Central and Southern
cosystems indicate that significant negative trend pixels exhibit

 strong downwards slope reacting a drop of SL values in 1989
nd in 2000 (Fig. 5). The temporal profile of Steadiness 1 pix-
ls, indicating a strong and downwards changing equilibrium of
cosystems, exhibit very similar pattern to pixels with significant
egative trends and also react to the strong drops in SL values. The
umber of pixels with significant (p < 0.1) negative SL trend was
ess than 2% of the study area (Table 2), which drastically reduces
he number of pixels to be used for further studies (Fig. 5). In com-
arison, the amount of pixels classified as Steadiness 1 class cover
8% of the study area with dominance in the Southern regions.
son Length (SL) time-series for the years 1982–2005. Graphs: The SL time-series
n days; X axis: calendar year). Boxes indicate the calculated linear trend equation

These results indicate that while the temporal profiles of Steadi-
ness 1 and of the significant negative trend pixels are very similar,
the significance assessment excludes those areas from the further
analysis where the system evolved toward changing equilibrium.
Pixels where the fitted linear trend was  negative, irrespective of
their significance, exhibit a temporal profile similar to the Steadi-
ness 1 class pixels but cover a much larger area (27.6% of the study
area). It appears therefore that the Steadiness 1 class meaningfully
refines the assessment of negative trends and is less restrictive than
the assessment of significance of the linear trend model. Steadi-
ness 2 groups pixels where the multi-annual residual net change of
the variable value is positive despite negative linear slopes (Fig. 6).
Over these pixels the system fluctuates therefore fitting a linear

trend would not be representative for the overall resilience of such
ecosystems. From the overall temporal profile it can be deducted
that despite long term negative tendencies the dynamism of these
ecosystems is not downwards with changing equilibrium but rather
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Fig. 5. Comparison of the spatial and temporal patterns of the Steadiness 1 class with the significance of the negative trends in the Northern, Central and Southern ecosystems.
Note  that the indicated areas overlap, where all negative values cover the largest and significant values cover the smallest areas. The Y-axes on the plots show the SL values
in  the ecosystems in days.

Table 2
Proportion (in %) of pixels within the four Steadiness classes and within the trend classes in the Northern, Central and Southern European ecosystems.

Ecosystems Steadiness Sig. negative
trends, p < 0.1

All negative
trends

Sig. positive
trends, p < 0.1

All positive
trends

1 2 3 4

% of North 8% 7% 10% 68% 0.7% 15.2% 28.7% 78.8%
%  of Central 19% 9% 34% 38% 0.9% 27.9% 8.9% 72.0%

2.3% 
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%  of South 34% 13% 23% 30% 

%  of total 18.3% 9.2% 21.7% 48.1% 

f a fluctuating nature. The temporal profile of Steadiness 2 pixels
xhibit very similar pattern to pixels with not significant nega-
ive slopes without clear upwards or downwards changing pattern.

e observed Steadiness 2 pixels over 9% of the study area mostly
n the Central European and Southern regions (Table 2) whereas
ot significant negative trend pixels covered ca. 26% of the area
all negative - significant negative trends). The latter shows again
hat significance assessment would exclude a large area from fur-
her analyses whereas the Steadiness index assigns a value to this
uctuating ecosystem behavior.

Steadiness 3 groups pixels where the multiannual residual net
hange of the variable value is negative despite positive linear
lopes (Fig. 7). Over these pixels the system fluctuates and fitting

 linear trend would not represent the mere fluctuation around
he equilibrium state of these ecosystems. The temporal profile of
teadiness 3 pixels exhibit very similar pattern to pixels with not
ignificant positive slopes without clear upwards or downwards
hanging pattern. We  observed Steadiness 3 pixels over ca. 22% of
he study area mostly in the Central European and Southern regions
hereas not significant positive trend pixels covered ca. 55% of the
rea (Table 2) excluding large territories from the analysis. The tem-
oral profile of Steadiness 4 pixels, indicating a strong and upwards
hanging equilibrium of ecosystems, exhibit very similar pattern
o pixels with significant positive trends (Fig. 8). The number of
46.9% 2.4% 52.8%
27.6% 15.3% 69.9%

pixels with significant (p < 0.1) positive SL trend was only 15% of
the study area (Table 2 and Fig. 5). In comparison, the amount of
pixels classified as Steadiness 4 class covered 48% of the area. Pixels
where the fitted linear trend was  positive irrespective of their sig-
nificance, exhibit an upwards temporal profile similar to pixels in
the Steadiness 4 class but cover ca. 70% of the study area showing
that Steadiness 4 meaningfully refines the assessment of positive
trends. These results indicate that while the temporal profiles of
the Steadiness 4 class and of the significant positive trend pixels
are very similar, the significance assessment drastically reduces the
number of pixels to be used for further studies and excludes those
areas from the further analysis where the system evolved toward
changing equilibrium.

3.2. Effects of data pre-processing on the Steadiness classes and
on the significance and slope of the linear trend

Fig. 9 demonstrates the spatial distribution of the four Steadi-
ness classes before and after applying various pre-processing algo-
rithms on the SL time-series. All four images show almost identical

results with respect to the spatial distribution of the four classes.
Table 3 lists the proportion of pixels in the study area belonging to
each of the Steadiness classes. The proportion of pixels classified
in the different Steadiness classes remains similar independently
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ig. 6. Comparison of the spatial and temporal patterns of the Steadiness 2 class with
he  Y-axes on the plots show the SL values in the ecosystems in days.

f pre-processing the SL time series and of the pre-processing
ethod applied. In the Central European Region most pixels belong
o Steadiness classes 3 and 4 whereas in the Southern zones
he Steadiness classes 1 and 4 have the largest and most similar
roportion of pixels. Moreover, the Northern European ecosys-
ems are mostly characterized by the large, spatially continuous

ig. 7. Comparison of the spatial and temporal patterns of the Steadiness 3 class with the s
he  Y-axes on the plots show the average SL values in the ecosystems in days.
ignificance of the negative trends in the Northern, Central and Southern ecosystems.

Steadiness 4 class whereas the Southern European regions are
mostly fragmented belonging to one of the four Steadiness classes

(Fig. 9).

Fig. 10 demonstrates the differences in spatial distribution of
significant (p < 0.1) linear trends of the SL time-series calculated
from the raw data and on the time-series after the pre-processing

ignificance of the positive trends in the Northern, Central and Southern ecosystems.
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Fig. 8. Comparison of the spatial and temporal patterns of the Steadiness 4 class with the significance of the positive trends in the Northern, Central and Southern ecosystems.
The  Y-axes on the plots show the average SL values in the ecosystems in days.

Table 3
Proportion (in %) of pixels within the four Steadiness classes before and after pre-processing the time-series in the Northern, Central and Southern European ecosystems.

Raw time-series Smoothed time-series Z-score normalized time-series Z-score normalized,
smoothed time-series

ST1 ST2 ST3 ST4 ST1 ST2 ST3 ST4 ST1 ST2 ST3 ST4 ST1 ST2 ST3 ST4

North 8% 7% 10% 68% 9% 10% 10% 65% 8% 7% 11% 68% 9% 10% 10% 65%
Central 19% 9% 34% 38% 16% 9% 37% 37% 19% 9% 34% 38% 16% 9% 38% 37%
South  34% 13% 23% 30% 31% 14% 26% 28% 34% 13% 23% 30% 30% 14% 27% 29%

Table 4
Proportion (in %) of pixels under significant (p < 0.1) negative and positive trends before and after pre-processing the SL time-series in the Northern, Central and Southern
ecosystems.

Raw time-series Smoothed time-series Z-score normalized time-series Z-score normalized,
smoothed time-series

Sig. neg. Sig. pos. Sig. neg. Sig. pos. Sig. neg. Sig. pos. Sig. neg. Sig. pos.

North 0.164% 4.925% 1.164% 7.940% 0.164% 4.925% 0.956% 7.486%
Central 0.183% 1.623% 1.299% 5.985% 0.183% 1.623% 1.003% 5.496%

.467%
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South 0.311% 0.386% 1.812% 2

uns. The spatial distribution of the significant trend pixels exhibit
trong changes after applying the smoothing filter either with-
ut or after the Z-score normalization of the time series (Table 4).
he Z-score normalization alone did not affect the proportion of
ixels under negative or positive trends. Smoothing the Z-score
ormalized time-series decreases the proportion of negative trends
ompared to the effect of smoothing the raw time-series whereas
he proportion of positive trends was more stable. The difference in
rend proportion was more significant in the Central European and
outhern regions. Here, large areas which did not exhibit significant
rends in the raw time-series became significant after smoothing

as applied. In the Southern regions negative trends increased

rom 0.3% to 1.8% of the area whereas positive trends showed even
igher differences with an increase from 0.4% to 2.5%. As shown

n Fig. 10,  the different pre-processing algorithms have a strong
 0.311% 0.386% 1.457% 2.067%

influence on the strength of the linear trends as well. In particular
the Z-score normalized time-series changes the distribution of pos-
itive and negative slopes along the North–South gradient of Europe
largely. Over Northern Europe for example the increase of strong
positive trends can be observed which in turn was only moderate
in the raw time-series. These results show the enormous impact of
simple pre-processing algorithms on the outcome of linear regres-
sion, which in turn may  strongly change the findings of research
studies concerning phenological changes of ecosystems.

4. Discussion
Significance assessment of the linear trend might perform well
where the established statistical criteria correspond to situations
characterized by gradual system change. We  argue however, that
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Fig. 9. Spatial distribution of the four Steadiness classes 

inear trend assessment does not optimally reflect the way  vegeta-
ion phenology varies as a function of environmental change and
uman impact. At shorter time-scales of few decades natural sys-
ems appear to fluctuate in a steady but non-systematic manner
ven without necessarily changing equilibrium. As shown for the
emote sensing derived Season Length index in this study, signif-
cance thresholds of linear trends exclude most of the study area
rom further assessment not confirming to the inherent, non-linear
ay ecosystems adapt to disruptions and their predisposition to

esilience where and whenever possible. We  argue therefore that a
ot significant trend assessment should not be considered indica-
ive for non-changing ecosystem conditions. This study showed
hat after the assessment of significance less than 2% of the study
rea showed negative Season Length trends and most of the trends
isplayed a spatially scattered pattern. Such a decreased sample
ize and a spatially incoherent pattern would not supply a spatially
nd statistically representative sample for further comprehensive
nvironmental monitoring and assessment. Furthermore, the size
f the area unassigned depends on the significance level set which
ntroduces an element of subjectivity to objective research stud-
es. The study indicates that the Steadiness approach resulted in a
ore coherent spatial pattern of negative (and positive) dynamics.
he Steadiness approach assigns the entire study area into classes
hat make distinction between probable equilibrium change and
pparent variations that however stay within the limits of the
 and after pre-processing the Season Length time-series.

natural fluctuation of the ecosystems. In this way the entire
spatially continuous dataset is maintained and addressed in an
objective manner. This provides a more complete basis to further
analyze the characteristics of the ecosystem changes in different
land cover and/or in different bioclimatic regions.

The postulated ecosystem fluctuation with varying tendencies
toward short term change, which insinuates trends of improving
or worsening stages, depends widely on the resilience toward land
management and changing environmental factors. Instances where
an area does not exhibit statistically significant trends does not
necessarily mean that the ecosystems over this area is not under-
going change processes over the observed period, thus excluding
pixels from further studies based on significant tests would impose
a risk of misleading statements by giving-up the overall spatial con-
text. Assigning instead all trends to relevant change irrespective of
their significance increases the probability of overestimating neg-
ative and positive changes of the study area by including pixels
where the system does not change but fluctuates in the limits of
steady equilibrium. Results of this study suggest that the Steadiness
approach is more effective in describing the inherent way  ecosys-
tems behave than traditional linear regression methods because it

better reflects the fluctuating, non-stationary manner of constant
ecosystem changes. Combining negative or positive trends with the
net residual change provides convergence of evidence of chang-
ing equilibrium and indicates the apparent direction into which
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Fig. 10. Differences in spatial distribution of the significant 

he dynamics of each pixel is evolving in the given time interval.
he Steadiness approach is suggested as a simple, transparent and
omplementary way for interpretation of the change or fluctuating
tate of all ecosystems. Additionally, the Steadiness method being
on-parametric, does not need to comply with the assumptions of

inear regression, can be applied to any type of data and to short
ime-series where the calculation of statistical significance would
ot provide meaningful information due to the limited number of
bservations.

The analysis also showed that regardless of the pre-processing
lgorithm used, the spatial distribution of the Steadiness classes
nd the proportion of pixels belonging to each class remained sta-
le. Applying simple smoothing algorithms on the Season Length
ime series largely changed the spatial distribution of the signifi-
ant Season Length trend pixels. Large areas that did not exhibit
ignificant trends in the raw time series became significant after
moothing was applied. When smoothing was applied on the Z-
core normalized time series the proportion of significant negative
nd positive trend pixels changed in a drastic manner. The Z-score

ormalization also influenced the spatial distribution of strong
egative and strong positive trends. These results may  conform
o statistical criteria, but the mere level of dissimilarity under-

ines further consistent analysis and interpretation of ecosystem
) slopes before and after pre-processing the SL time-series.

changes. Non-parametric trend measures as, e.g. the Theil–Sen’s
(Theil, 1950; Sen, 1968) and the Mann–Kendall tests (Mann, 1945;
Kendall, 1975) are robust against non-normality of the distribu-
tion and missing values in the time-series (Yue and Pilon, 2004)
overcoming the need to conform strict statistical criteria. However,
this study showed that pre-processing the time-series impacts the
spatial distribution of non-parametric significant trends as well,
influencing the findings of research studies concerning phenologi-
cal changes of ecosystems. Additionally, non-parametric tests also
require the setting of user-defined thresholds introducing subjec-
tivity in the study of ecosystem change dynamism. Local to regional
scale studies may  apply user-defined thresholds, continental to
global scale assessments however cannot be based on subjective
decisions and on unique thresholds because trends are land cover
and bio-climate dependent (deBeurs and Henebry, 2004).

This paper illustrates that the Steadiness approach, that com-
bines the evidence of long term state fluctuation and residual
change, is a valid complementary approach to address the fuzzy
nature of ecosystem variability. Traditional trend analysis tech-

niques cannot jointly address fluctuation and change and are
unable to deliver this supplementary information, as they only
classify ecosystems into hard boundaries of changing, either signif-
icantly or not. The results presented here illustrate the applicability
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nd document the logic of the Steadiness approach for ecosystem
hange analysis, an important asset considering needs for environ-
ental impact evaluation. The strength of the Steadiness method

ays in the simplicity, robustness and straightforward applicability
ithout setting user-defined subjective thresholds. It is proposed

hat for full thematic analysis the Steadiness should be calculated
or a wider range of phenological and productivity variables derived
rom time-series images. More specific thematic analysis of envi-
onmental change and its cause–effect relationship of human and
atural drives could then be performed as, e.g. proposed by Hill et al.
2008).  In this context, Steadiness would have a strong potential
o extend this type of approach to larger variable sets in a strat-
fied way, e.g. combined analysis of selected variables e.g. season
ength, start/end of season, overall annual productivity and timing
f vegetation maximum.
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