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Abstract We have found that a spatial interpolation of mean annual temperature (MAT) in
China can be accomplished using a global ordinary least squares regression model since the
relationship between temperature and its environmental determinants is constant. Therefore the
estimation of MAT does not very across space and thus exhibits spatial stationarity. The
interpolation of mean annual precipitation (MAP), however, is more complex and changes
spatially as a function of topographic variation. Therefore, MAP shows spatial non-stationarity
and must be estimated with a geographically weighted regression. A statistical transfer function
(STF) of MATwas formulated using minimized residuals output from a high accuracy and high
speed method for surface modeling (HASM) with an ordinary least squares (OLS) linear
equation that uses latitude and elevation as independent variables, abbreviated as HASM-
OLS. The STF of MAP under a BOX-COX transformation is derived as a combination of
minimized residuals output by HASM with a geographically weighted regression (GWR) using
latitude, longitude, elevation, impact coefficient of aspect and sky view factor as independent
variables, abbreviated as HASM-GWR-BC. In terms of HASM-OLS and HASM-GWR-BC,
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MAT had an increasing trend since the 1960s in China, with an especially accelerated increasing
trend since 1980. Overall, our data show thatMAT has increased by 1.44 °C since the 1960s. The
warming rates increase from the south to north in China, except in the Qinghai-Xizang plateau.
Specifically, the 2,100 °C·d contour line of annual accumulated temperature (AAT) of ≥10 °C
shifted northwestward 255 km in the Heilongjiang province since the 1960s. MAP in Qinghai-
Xizang plateau and in arid region had a continuously increasing trend. In the other 7 regions of
China, MAP shows both increasing and decreasing trends. On average, China became wetter
from the 1960s to the 1990s, but drier from the 1990s to 2000s. The Qinghai-Xizang Plateau and
Northern China experienced more climatic extremes than Southern China since the 1960s.

1 Introduction

Meteorological stations are primary sources for climatic data. However, sparsely distributed
meteorological stations are often unable to satisfy the data requirements of most ecosystem
change studies. One major problem is how to estimate values for locations where primary
data is not available (Akinyemi and Adejuwon 2008).

GIS-based techniques have been widely used for interpolating observed point-based
climatic data (Agnew and Palutikof 2000; Yue 2011). For instance, Ordinary kriging (OK)
was used to interpolate the daily and monthly rainfall of Australia using ground-based
observational data (Jeffrey et al. 2001). Lloyd (2005) compared the performance of different
interpolation methods, including a moving window regression (MWR), inverse distance
weighting (IDW) and Kriging, demonstrating that methods using elevation as secondary
data performed better than others because of the relationships between climate factors, such
as temperature, precipitation and evaporation, to elevation. Hancock and Hutchinson (2006)
used thin plate smoothing splines (Spline) to interpolate mean annual temperature of the
Australian and African continents.

Thiessen polygons (TP), IDW, Spline and OK were used to interpolate thirteen widely
scattered rainfall stations and their daily time series into gridded rainfall surfaces over the
1950–1992 period in a West African catchment; assessment of the interpolation methods
using reference point data indicated that interpolations using the IDW and OK were more
efficient than TP and, to a lesser extent, Spline (Ruelland et al. 2008). Different interpolation
models in a GIS environment were used to generate precipitation surfaces for the north-
western Himalayan Mountains and upper Indus plains of Pakistan at a spatial resolution of
250×250 m2 for a baseline period (1960–1990). This precipitation simulation using a
regional climate model (PRECIS) showed that OK, using elevation as secondary data,
provided the best results especially for the monsoon months (Ashiq et al. 2010). Three
interpolation approaches, IDW, Spline and Co-kriging, were used to interpolate monthly
mean temperature, seasonal mean temperature, and annual mean temperature in the eastern
part of India; it was found that Spline was preferred to Kriging and IDW because it was
faster and easier to use (Samanta et al. 2012).

Many scholars are working to improve the interpolation of climate surfaces by using data
from meteorological stations in China. For instance, Shang et al. (2001) employed IDW to
interpolate mean annual precipitation from 1951 to 1980, including a digital elevation model
(DEM) as secondary data; the interpolation had a mean absolute error of 102.23 mm. Lin et
al. (2002) applied different interpolation techniques, OK and IDW, to estimate 10-day mean
air temperature from 1951 to 1990; the results indicated that the mean absolute errors for OK
and IDW were 2.15 °C and 1.9 °C respectively. Pan et al. (2004) interpolated mean annual
temperature using 726 meteorological station observations in China from 1961 to 2000
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using IDW with a mean absolute error of 1.51 °C. Hong et al. (2005) used climate data from
1971 to 2000 from meteorological stations in China to develop thin-plate smoothing spline
surfaces for monthly mean temperature and precipitation for January, April, July and
October. Their results showed interpolation errors for monthly temperatures varying from
0.42 to 0.83 °C and 8–13 % for monthly precipitation.

A combination of interpolation methods applied through statistical transfer func-
tions (STFs) is an efficient approach to improve the estimation error of climatic
variables for locations where primary data is not available. It has been determined
that the statistical relationship between mean annual temperature (MAT) and its
environmental determinants is the same no matter where the measurement takes place
(Yue 2011). But a simple ‘global’ model cannot explain the relationship between
mean annual precipitation (MAP) and its environmental variables. The MAP relation-
ship changes across space as a function of topographic structure across the landscape.
In other words, MAT exhibits spatial stationarity and its statistical transfer function
can be expressed by an Ordinary Least Squares regression (OLS), while MAP exhibits
spatial non-stationarity and therefore its statistical transfer functions have to be
formulated through Geographically Weighted Regression (GWR). In this paper, OLS
for MAT and GWR for MAP are combined with a high accuracy and high speed
method for surface modeling (HASM) to produce surfaces of climatic change for the
past 50 years in China at a spatial resolution of 1 km×1 km. HASM, OLS and GWR
are described in detail by the online supplements 1 and 2.

2 Methods

A STF of MATwas formulated using minimized residuals output from HASM with an OLS
linear equation that used latitude and elevation as independent variables. This MAT transfer
function is abbreviated as HASM-OLS (Supplement 2). The simulated MAT from 1961 to
2010 at every grid cell i, in which i=1, 2,…, 19606916, can be formulated as,

Tsi tð Þ ¼ θols⋅xT þ HASM Tk tð Þ−θols⋅xT
� � ð1Þ

where x=(1, Lat, Ele), θols=(38.552, 0.705, 0.003), Tk (t) is the MATobserved in the year of
t at the meteorological station k.

The STF of MAP under a BOX-COX transformation was derived as a combination of
minimized residuals output by HASM with a GWR using latitude, longitude, elevation,
impact coefficient of aspect and sky view factor as independent variables. The MAP transfer
function is abbreviated as HASM-GWR-BC (Supplement 2). Let x=(Lon, Lat, Ele, ICA,
SVF), in which Lat represents latitude, Lon refers to longitude, Ele is elevation, ICA the
impact coefficient of aspect on precipitation, and SVF the sky view factor. Then the STF of
MAP under a BOX-COX transformation can be formulated as,

Psi tð Þ ¼ θgwr⋅xT þ HASM Ψ0:475 Pk tð Þð Þ−θgwr⋅xT
� � ð2Þ

where θgwr=(x ⋅W ⋅xT)−1 ⋅x ⋅W ⋅<0.475(Pk(t));W is the geographical weight matrix; Psi is the
simulated MAP at the grid cell i(i=1, 2,…,19606916);<0.475(Pk(t))=(Pk

0.475(t)−1)/0.475 is a
BOX-COX transformation of annual mean precipitation Pk (t) at observation station k in the
year t.

Results of the HASM-OLS of MAT and HASM-GWR-BC of MAP were cross-validated
using observational data from meteorological stations across China for the same period, for
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which mean absolute error (MAE) and mean relative error (MRE) of climate variables are
calculated. They are respectively formulated as,

MAE ¼ 1

n

Xn
i

oi−sij j ð3Þ

MRE ¼ MAE

1

n

Xn
i¼1

oij j
� 100% ð4Þ

where oi represents the observed value such as MAT or MAP at the ith meteorological
station; si the simulated value at the ith meteorological station; n is the total number of
meteorological stations for validation.

We used a consistent cross-validation methodology to test OK, IDW, Spline, and HASM
results. Validation results of HASM-OLS for MAT during the 1961 to 2010 period were
compared to the OK-OLS, IDW-OLS and Spline-OLS results. OK-OLS, IDW-OLS and
Spline-OLS respectively refer to the combination of OK, IDW and Spline with the OLS.
GWR-BC means that the result of a BOX-COX transformation of MAP during the 1961 to
2010 period at every meteorological station were used to operate the geographically
weighted regression. HASM-GWR-BC, OK-GWR-BC, IDW-GWR-BC and Spline-GWR-
BC respectively describe the interpolation processes of MAP by combining HASM, OK,
IDW and Spline with GWR-BC.

2.1 Cross-validation in space

Cross-validation in space was comprised of four steps: i) 5 % of the meteorological
stations were removed for validation prior to model creation; ii) MAT and MAP from
1961 to 2010 were simulated at a spatial resolution of 1km×1km using the remaining
95 % of meteorological stations, iii) MAE and MRE were calculated using the 5 %
validation set, and iv) the 5 % validation set is returned to the pool of available
station for the next iteration. This process is repeated until MAT and MAP at all
meteorological stations have been simulated and the simulation error statistics for each
station can be calculated.

Cross validation in space indicates that MAEs of MAT during the 1961 to 2010 period
created by HASM-OLS, OK-OLS,IDW-OLS and Spline-OLS were 0.73 °C, 0.81 °C,
0.82 °C and 1.18 °C respectively. MAT accuracy of HASM-OLS was 11 %, 12 % and
62 % higher than OK-OLS, IDW-OLS and Spline-OLS respectively. MAEs of MAP during
the 1961 to 2010 period produced by HASM-GWR-BC, OK-GWR-BC, IDW-GWR-BC and
Spline-GWR-BC are 48.78 mm, 65.29 mm, 65.10 mm and 124.14 mm respectively
(Table 1). MAP accuracy of HASM-GWR-BC was 34 %, 34 % and 155 % greater
than the accuracies of OK-GWR-BC, IDW-GWR-BC and Spline-GWR-BC respective-
ly. HASM was the best performer when compared to the more widely used classical
methods.

Results from Pan et al. (2004) and Shang et al. (2001) indicated that the interpolation
results of MAT and MAP had MREs of 13 % and 14 % using IDW (Table 1). In other words,
the accuracies of MAT and MAP interpolation were respectively increased by 6 % and 3 %
because of the introduction of the STFs.
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2.2 Cross-validation in time

We used MAT and MAP from the 661 meteorological stations within 5 years, randomly
selected from all years from the 50 year record, as the validation source, while the remaining
data was used for model calibration. In other words, first, MATand MAP were simulated at a
spatial resolution of 1km×1km using data from the 661 meteorological stations for the other
45 years; then, MAE and MRE were calculated using the 5-year validation data; the
validation data was then returned to the pool of available MAT and MAP measurements.
This process is repeated until MAT and MAP for all 50 years was simulated and error
statistics for each simulation calculated (Table 2).

The cross-validation in time demonstrated that MAEs of MAT, created by HASM-OLS,
OK-OLS,IDW-OLS and Spline-OLS, were respectively 0.75 °C, 0.95 °C, 0.79 °C and
0.81 °C. MRE of HASM-OLS was 3 %, 2 % and 2 % lower than OK-OLS, IDW-OLS
and Spline-OLS respectively. MAEs of MAP produced by HASM-GWR-BC, OK-GWR-
BC, IDW-GWR-BC and Spline-GWR-BC are 89.29 mm, 98.08 mm, 93.17 mm and
143.23 mm respectively (Table 2). MRE of HASM-GWR-BC was 6 %, 4 % and 8 %
smaller than OK-GWR-BC, IDW-GWR-BC and Spline-GWR-BC respectively. HASM had
the highest accuracy when compared to the widely used classic methods.

3 Climatic change trend

A zoning system dividing the land mass of China into 9 regions with similar temperature,
precipitation and soil regimes was adopted to make it easier to analyze changes in precip-
itation and temperature from one place to another (Zhou et al. 1981). The 9 regions are
respectively termed as Ri, i=1, 2, …, 9 (Fig. 1).

Table 1 Cross-validation in space

Mean annual temperature (°C) Mean annual precipitation (mm)

Method MAE (°C) MRE (%) Methods MAE (mm) MRE (%)

HASM-OLS 0.73 6 HASM- GWR-BC 48.78 8

OK-OLS 0.81 7 OK- GWR-BC 65.29 11

IDW-OLS 0.82 7 IDW- GWR-BC 65.10 11

SPLINE-OLS 1.18 10 SPLINE- GWR-BC 124.14 17

IDW (Pan et al. 2004) 1.51 13 IDW (Shang et al. 2001) 102.23 14

Table 2 Cross-validation in time

Mean annual temperature (°C) Mean annual precipitation (mm)

Method MAE (°C) MRE (%) Methods MAE (mm) MRE (%)

HASM-OLS 0.75 6 HASM- GWR-BC 89.29 14

OK-OLS 0.95 9 OK- GWR-BC 98.08 20

IDW-OLS 0.79 8 IDW- GWR-BC 93.17 18

SPLINE-OLS 0.81 8 SPLINE- GWR-BC 143.23 22
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3.1 Mean annual temperature

Annual temperature on average (ATOA) has generally shown an increasing trend in China
from 1961 to 2010 (Fig. 2) with an average decadal increasing rate of 0.33 °C. The linear
regression equation of the entire time series of ATOA, with correlation coefficient of 0.85
and significance level of 0.001, can be expressed as,

Tem tð Þ ¼ 0:033t−58:33 ð5Þ
where Tem(t) is ATOA at the time of t; t=1, 2,…, 49, 50 represents the year of 1961, 1962,
…, 2009 and 2010 respectively.

The significance level of 0.001 implies that there’s only one chance in a thousand this
could have happened by coincidence. The lower the significance level chosen, the stronger
the evidence required. Smaller levels of significance level increase confidence in the
determination of significance.

The period from 1961 to 2010 can be divided into 5 sub-periods: C1 (from1961 to 1970), C2

(from 1971 to 1980), C3 (from 1981 to 1990), C4 (from 1991 to 2000) and C5 (from 2001 to
2010). MATs during the sub-periods of C1, C2, C3, C4 and C5 are respectively 6.91 °C, 7.15 °C,
7.33 °C, 7.82 °C and 8.35 °C. The changes of MATs are summarized in Table 3 where ΔC21
represents the result of subtracting the value of MAT in C1 from the value of the MAT in C2,
ΔC32 represents the result of subtracting the value of the MAT in C2 from the one in C3, and so
on.ΔC21,ΔC32,ΔC43 andΔC54 are respectively 0.25 °C, 0.18 °C, 0.47 °C and 0.53 °C for
all of China. Their increasing rates are respectively 4 %, 3 %, 6 % and 7 %.

Fig. 1 Digital elevation model and 9 regions of China
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The simulation results in terms of HASM-OLS indicate that on a cell-by-cell basis, each
sub-period showed either warming or cooling. During the period from C1 to C2, the
percentage of 1 km grid cells that had an increasing trend of MAT (PGCIT) was 75 % for
the entire landmass of China. On a regional basis, all 9 regions had warming trends except
for R9 which had a cooling trend. R4 had the biggest PGCIT of 95 %, while R9 had the
smallest PGCIT of 18 %. R5 had the biggest increase of MAT from C1 to C2 on average
(Fig. 3). From C2 to C3, PGCIT was 77 % and MAT increased an average of 0.18 °C for the
entire landmass of China. The increasing rate was 3 %. Except for a cooling trend in R6 for
this period, all other regions had a warming trend. The highest warming rate was in R3. From
C3 to C4, PGCITwas 94 %; the rise in MATwas 0.47 °C across China, with a rate of increase
of 6 %. R1 had the largest PGCIT and the highest rise in MAT; R6 had the smallest PGCIT
and the lowest rise in MAT. From C4 to C5, PGCIT was 88 %; MAT rose 0.53 °C with an
average warming rate of 7 % across China. R9 had the largest PGCIT and R5 had the highest
increase in MAT.

Except the cooling trend in the sub-period from C1 to C2 in R9 and from C2 to C3 in R6,
all other regions in China for all other sub-periods had a warming trend. Especially in R5,
Qinghai-Xizang plateau, MAT increased by 1.91 °C with a warming rate of 443 % in last
50 years. MAT in regions of R1, R2, R3 and R4 increased by 1.61, 1.68, 1.37 and 1.27 °C
with rising rates of 42 %, 27 %, 79 % and 14 % respectively, while there were lower
warming rates in the regions of R6, R7, R8 and R9. MAT in these regions were higher 0.73,
0.77, 0.98 and 0.92 °C in the last 50 years, with warming rates of 5 %, 4 %, 7 % and 5 %
respectively.

3.2 Mean annual precipitation

MAP averaged 583.78, 585.16, 591.08, 593.03 and 585.78 mm for the decadal sub-periods of
C1, C2, C3, C4 and C5 respectively across China. MAP increased by 1.39, 5.93 and 1.93 mm

Fig. 2 Time series of annual average temperature from 1961 to 2010
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fromC1 to C2, fromC2 to C3 and fromC3 to C4 respectively, while decreasing by 7.25mm from
C4 to C5. In Table 4,ΔC21 represents the result of subtracting the value of MAP in C1 from the
value of the MAP in C2,ΔC32 represents the result of subtracting the value of the MAP in C2

from the one in C3, and so on.
Simulation results of HASM-GWR-BC indicate that portions of all 9 regions and all 5 sub-

periods showed both increased and decreased precipitation. From C1 to C2, 55 % of China
showed an increasing trend in MAP (PGCIP); MAP increased by 1.39 mm across China on
average and the increasing rate approached to 0. R5 had the largest PGCIP and the highest
increasing rate. R4 the smallest PGCIP and the highest decrease in MAP. R7 had the highest
increase in MAP (Fig. 4). From C2 to C3, PGCIP was 59 % and MAP increased by 5.93 mm at
an average rate of 1% across China. R3 had the biggest PGCIP, the highest increase inMAP and
the largest increasing rate. R8 exhibited the smallest PGCIP, the largest decrease of MAP and
the biggest decreasing rate. From C3 to C4, PGCIP was 53 %; MAP increased by 1.93 mmwith
an average rate approaching 0 across China. R9 had the biggest PGCIP and the highest rise in
MAP. R2 had the largest increasing rate. The smallest PGCIP appeared in R4. R4 exhibited the
deepest drop in MAP and the largest decreasing rate. From C4 to C5, PGCIP was 53 % and
MAP decreased by −7.25 mm, at a rate of −1%, across China. R4 had the largest PGCIP. R8 had

Fig. 3 Changes in MAT from 1960s to 2000s
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the biggest increase in MAP. R1 had the smallest PGCIP and the deepest dropping rate. R9 had
the deepest drop in MAP.

Since 1960s, MAP in R5 and R2 has had a continuously increasing trend; MAP increased
by 52.55 and 20.86 mm with the increasing rates of 13 % and 17 % in recent 50 years
respectively. In other 7 regions, MAP has been variably changed and increasing MAP
alternated with decreasing MAP. On average, MAP in the regions of R1, R4, R6 and R8

decreased by 41.78, 58.14, 62.05 and 20.68 mm, with changing rates of −12 %, −11 %,
−6 % and −3 % respectively, in recent 50 years; in R3, R7 and R9, MAP increased by 4.5,
25.83 and 0.61 mm, with rising rates of 2 %, 1 % and 0.

4 Maximum differences among different regions and periods

4.1 MAT

In order to discuss the maximum differences of MAT among different regions and periods, we
introduce the following indexes for maximum warming rate (MWR), maximum warming

Fig. 4 Changes in MAP from 1960s to 2000s
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amplitude (MWA), maximum cooling rate (MCR) and maximum cooling amplitude
(MCA) as follows,

MWR Ri;Ctð Þ ¼ max
j;kð Þ∈Ri

MAT j;k Ri;Ctþ1ð Þ−MAT j;k Ri;Ctð Þ
MAT j;k Ri;Ctð Þ � 100%

� �
ð6Þ

MWA Ri;Ctð Þ ¼ max
j;kð Þ∈Ri

MAT j;k Ri;Ctþ1ð Þ−MAT j;k Ri;Ctð Þ� � ð7Þ

MCR Ri;Ctð Þ ¼ max
j;kð Þ∈Ri

MAT j;k Ri;Ctð Þ−MAT j;k Ri;Ctþ1ð Þ
MAT j;k Ri;Ctð Þ � 100%

� �
ð8Þ

MCA Ri;Ctð Þ ¼ max
j;kð Þ∈Ri

MAT j;k Ri;Ctð Þ−MAT j;k Ri;Ctþ1ð Þ� � ð9Þ

where (j, k)∈ Ri means that (j, k) is any grid cell in the region of Ri, i=1,2,…,9; MATj,k (Ri,
Ct) represents the mean annual temperature at grid cell (j, k) in the sub-period Ct, t=1,2,3,4.

In light of changing rates (Table 5), from C1 to C2, the MWRs greater than 300 %
appeared in northeastern R2 and western R5, respectively with MWRs of 447 % and 337 %
as well as MWAs of 5.01 °C and 3.64 °C; the biggest MCR, 66 %, happened in northern R3,
with a MCA of 1.22 °C. From C2 to C3, the biggest MWR was 136 %, appearing in
southeastern R3 with a MWA of 1.74 °C; the biggest MCR of 223 %, with a MCA of
1.58 °C, was in the eastern R5. From C3 to C4, the biggest MWR was 340 % in western R2,

Table 5 Maximum differences of MAT among different regions and periods

Region R1 R2 R3 R4 R5 R6 R7 R8 R9

From C1 to C2 MWA (°C) 0.88 5.01 0.67 0.77 3.64 0.7 0.46 1.21 0.38

MWR (%) 19 447 46 10 337 12 4 15 3

MCA (°C) 0.66 0.63 1.22 0.67 3.33 2.03 0.78 0.85 1.86

MCR (%) 8 5 66 8 50 13 3 11 13

From C2 to C3 MWA (°C) 1.44 1.28 1.74 1.46 1.77 1.02 1.47 1.18 0.84

MWR (%) 66 66 136 25 25 8 8 14 6

MCA (°C) 0.6 0.46 0.18 0.62 1.58 0.94 1.32 0.47 0.36

MCR (%) 8 4 5 8 223 6 11 3 3

From C3 to C4 MWA (°C) 3.09 2.45 4.5 3.09 2.31 1.93 2.53 2.11 2.27

MWR (%) 140 340 276 46 120 13 20 26 15

MCA (°C) 0.04 0.51 0.66 0.95 1.59 1.02 1.52 0.45 0.28

MCR (%) 1 6 10 7 20 7 7 3 2

From C4 to C5 MWA (°C) 1.79 3.5 4.7 1.76 3.81 4.98 3.76 1.49 2.22

MWR (%) 30 37 101 14 57 30 16 11 15

MCA (°C) 0.92 2.47 1.58 2.43 1.67 2.54 1.74 2.58 1.46

MCR (%) 103 229 27 38 43 22 9 24 8
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with a MWA of 2.45 °C, and the largest MCAwas 1.59 °C, with the biggest MCR of 20 % in
southeastern R5. From C4 to C5, the biggest MWR, 101 %, was found in southeastern R3,
with a MWA of 4.7 °C; the largest MCR, 229 %, happened in western R2 and the MCAwas
2.47 °C.

In terms of changing amplitudes of MAT, the biggest MWAs were 5.01 °C in
northeastern R2, 1.77 °C in southeastern R5, 4.5 °C in southeastern R3, and 4.98 °C
in southeastern R6 respectively in the sub-periods from C1 to C2, from C2 to C3, from
C3 to C4 and from C4 to C5. The highest MCAs were 3.33 °C in southeastern R5,
1.58 °C in eastern R5, 1.59 °C in southeastern R5, and 2.58 °C in the middle of R8 in
the same sub-periods.

4.2 MAP

Indexes of maximum wetter rate (MWER), maximum wetter amplitude (MWEA), maximum
drier rate (MDR) and maximum drier amplitude (MDA) are formulated as follows,

MWER Ri;Ctð Þ ¼ max
j;kð Þ∈Ri

MAP j;k Ri;Ctþ1ð Þ−MAPj;k Ri;Ctð Þ
MAPj;k Ri;Ctð Þ � 100%

� �
ð10Þ

MWEA Ri;Ctð Þ ¼ max
j;kð Þ∈Ri

MAP j;k Ri;Ctþ1ð Þ−MAPj;k Ri;Ctð Þ� � ð11Þ

MDR Ri;Ctð Þ ¼ max
j;kð Þ∈Ri

MAP j;k Ri;Ctð Þ−MAT j;k Ri;Ctþ1ð Þ
MAPj;k Ri;Ctð Þ � 100%

� �
ð12Þ

MDA Ri;Ctð Þ ¼ max
j;kð Þ∈Ri

MAP j;k Ri;Ctð Þ−MAPj;k Ri;Ctþ1ð Þ� � ð13Þ

where (j, k)∈Ri means that (j, k) is any grid cell in the region of Ri, i=1,2,…,9;MAPj,k (Ri, Ct)
represents the mean annual precipitation at grid cell (j, k) in the sub-period Ct, t=1,2,3,4.

The biggest value of MWER was 47 % in the sub-period from C1 to C2 and happened in
southwestern R5, 47 % from C2 to C3 in southern R2, 48 % from C3 to C4 in southwestern
R2, and 89 % from C4 to C5 in southwestern R3. From C1 to C2, the largest MDR was 32 %,
which was found in western R2; from C2 to C3, it was 18 % in southwestern R8; from C3 to
C4, it was 82 % in southwestern R3; from C4 to C5, the highest MDR appeared in the middle
of R1 (Table 6).

The biggest WMEAs were 276.69 mm in the sub-period from C1 to C2 appearing
in southern Hainan province of R7, 177.71 mm from C2 to C3 in southeastern R3;
335.66 mm from C3 to C4 in southeastern R9, and 762.00 mm from C3 to C4 in the
middle of R6. The highest MDAwas 145.98 mm in the southeastern Hainan province of R7,
253.20 mm in southwestern R7, 723.98 mm in southwestern R6 and 474.91 mm in southeastern
R9 in the sub-periods from C1 to C2, from C2 to C3, from C3 to C4 and from C4 to C5

respectively.
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5 Conclusions

Topography of land in China from Qinghai-Xizang plateau eastward, is broadly
arranged into three great steps (Zhao 1986). The first step is Qinghai-Xizang plateau,
with mean elevation above 4,000 m; the second step is from the eastern margin of
Qinghai-Xizang plateau eastward up to Da Hinggan-Taihang-Wushan mountains line,
with elevations from 2,000 to 1,000 m; the third step is from the above-mentioned
line eastward up to the coast, below 500 m in elevation (Fig. 1). The warming rates
increase from south to north in the second and third steps of China. In particular, the
2,100 °C d contour line of annual accumulated temperature (AAT) of ≥10 °C in
Heilongjiang province of R3 shifted northwestward 255 km since the 1960s
(Supplement 4). Areas suitable for planting early rice expanded about 3.8 million
hectares because of the AAT change. The 2,400 °C d contour line of ≥10 °C AAT
moved northward at least 167 km since 1960, which made the area suitable for
planting early maize increase by about 5.5 million hectares in Heilongjiang province.

MAT had an increasing trend during the period from 1960 to 2010 in China, with an
especially accelerating increase trend since the 1980s. MAT was respectively 6.91 °C,
7.15 °C、7.33 °C, 7.82 °C and 8.35 °C during the sub-periods of C1, C2, C3, C4 and C5. The
increasing rates of MAT were respectively 4 %, 3 %, 6 % and 7 % during the sub-
periods from C1 to C2, from C2 to C3, from C3 to C4 and from C4 to C5. The
biggest values of MWRs and MCRs appeared in the regions of R1, R2, R3 and R5 in
the four sub-periods. According to both changing rates and amplitudes, Qinghai-
Xizang Plateau and Northern China had more extremes of temperature than Southern
China since the 1960s.

Table 6 Maximum differences of MAP among different regions and periods

Region R1 R2 R3 R4 R5 R6 R7 R8 R9

From C1 to C2 MWEA
(mm)

39.92 43.69 61.84 37.13 149.23 53.21 276.69 40.77 157.35

MWER (%) 13 23 18 7 47 8 19 5 11

MDA (mm) 69.34 66.23 91.70 80.84 42.94 100.74 145.98 73.22 109.09

MDR (%) 19 32 10 16 13 9 8 9 7

From C2 to C3 MWEA
(mm)

72.21 39.92 177.71 95.68 57.68 116.63 119.46 94.96 112.26

MWER (%) 19 47 9 14 7 16 7 10 10

MDA (mm) 42.47 45.39 65.33 33.12 63.44 176.92 253.20 131.92 228.03

MDR (%) 8 15 10 10 16 14 14 18 11

From C3 to C4 MWEA
(mm)

71.01 140.25 72.66 46.32 153.84 288.31 238.95 159.18 335.66

MWER (%) 13 48 15 12 24 22 14 24 20

MDA (mm) 135.82 43.44 693.91 176.27 229.67 723.98 254.67 160.87 493.48

MDR (%) 40 17 82 22 47 63 13 18 28

From C4 to C5 MWEA
(mm)

58.01 66.81 650.66 128.23 289.52 762.00 158.34 305.71 476.73

MWER (%) 16 32 89 21 36 69 9 60 26

MDA (mm) 116.52 47.8 130.95 47.45 118.92 301.44 230.99 202.45 474.91

MDR (%) 36 14 28 9 23 20 12 21 29

150 Climatic Change (2013) 120:137–151



MAP was 583.78 mm in C1, 585.16 mm in C2, 591.08 mm in C3, 593.03 mm in C4 and
585.78 mm in C5. MAP increased by 1.39 mm from C1 to C2, by 5.93 mm from C2 to C3, and
by 1.93 mm from C3 to C4, while MAP decreased by 7.254 mm from C4 to C5. On average,
China became wetter during the period from 1960s to 1990s, but much drier from 1990s to
2000s. Since the 1960s, MAP in Qinghai-Xizang plateau and in arid region has had a
continuously increasing trend, with the increasing rates of 13 % and 17 % in recent 50 years
respectively. In other regions, increasing MAP alternated with decreasing MAP decade by
decade.

In terms of changing rates, north China and Qinghai-Xizang plateau had more extremes
of precipitation in the last five decades. According to changing amplitudes, South China and
Sichuan basin had more extremes of precipitation.
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