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Abstract The approach of conditional nonlinear optimal perturbation related to parameter
(CNOP-P) is employed to provide a possible climate scenario and to study the impact of climate
change on the simulated net primary production (NPP) in China within a state-of-the-art Lund-
Potsdam-Jena dynamic global vegetation model (LPJ DGVM). The CNOP-P, as a type of
climate perturbation to bring variation in climatology and climate variability of the reference
climate condition, causes the maximal impact on the simulated NPP in China. A linear climate
perturbation that induces variation in climatology, as another possible climate scenario, is also
applied to explore the role of variation in climate variability in the simulated NPP. It is shown
that NPP decreases in northern China and increases in northeastern and southern China when
the temperature changes as a result of a CNOP-P-type temperature change scenario. A similar
magnitude of change in the spatial pattern variations of NPP is caused by the CNOP-P-type and
the linear temperature change scenarios in northern and northeastern China, but not in southern
China. The impact of the CNOP-P-type temperature change scenario on magnitude of change
of NPP is more intense than that of the linear temperature change scenario. The numerical
results also show that in southern China, the change in NPP caused by the CNOP-P-type
temperature change scenario compared with the reference simulated NPP is sensitive. However,
this sensitivity is not observed under the linear temperature change scenario. The seasonal
simulations indicate that the differences between the variations in NPP due to the two types of
temperature change scenarios principally stem from the variations in summer and autumn in
southern China under the LPJ model. These numerical results imply that NPP is sensitive to the
variation in temperature variability. The results influenced by the CNOP-P-type precipitation
change scenario are similar to those under the linear precipitation change scenario, which cause
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the increasing NPP in arid and semi-arid regions of the northern China. The above findings
indicate that the CNOP-P approach is a useful tool for exploring the nonlinear response of NPP
to climate variability.

1 Introduction

The global climate system will undergo change in the future due to human activities and fossil
fuel use (Cao and Woodward 1998; Cramer et al. 2001; Gerber et al. 2004). The
Intergovernmental Panel on Climate Change (IPCC) has suggested that the global or regional
temperature will increase by 1.4o to 5.8 o over the twenty-first century (Notaro et al. 2007; IPCC
2007; Wolf et al. 2008; Zeng et al. 2008). The climate system is being induced to change not
only in terms of mean climate values, but in climate variability. Observational evidence has
shown that there has been be clear variations in climate variability in the past. The IPCC report
noted that it was very likely that hot temperature extremes, heat waves and heavy precipitation
events would become more frequent in the future. Thus, climate variability (Zwiers and Kharin
1998; Kharin and Zwiers 2000) will also experience variation due to extreme events.

Climate change is a key factor influencing the structure of the terrestrial ecosystem and its
carbon cycle. Observational evidence has shown that the terrestrial ecosystem is intensely
sensitive to perturbations in temperature and precipitation (Braswell et al. 1997; Lotsch et al.
2003). Simulation results have revealed the response of the terrestrial ecosystem to changes
in climatology (Gao et al. 2000). Recently, many studies have found that climate variability
plays a key role in the variation observed in terrestrial ecosystems (Cao et al. 2002; Fay et al.
2008). For example, Botta and Foley (2002) demonstrated that climate variability results in
the changes in ecosystem structure, soil carbon and vegetation carbon. Mitchell and Csillag
(2001) also emphasized that climate variability can influence the stability of the grasslands,
and result in high uncertainty in estimating the net primary production (NPP) of grasslands.

China is situated in the Asian Monsoon region, and the climate conditions in China have
changed due to human activities and fossil fuel use (IPCC 2007; Wu et al. 2010). It is important
to explore the impacts of climate change on terrestrial ecosystems. There are many investiga-
tions addressing these impacts using climate data simulated by general circulation models
(GCMs, Ni et al. 2000; Wu et al. 2010) or sensitivity experiments. However, some studies have
indicated that the climate data simulated by GCMs are uncertain (Hu et al. 2003; Collins et al.
2006; Kharin et al. 2007). There are many reports that discuss the estimations arising from the
simulation of terrestrial ecosystems using these future climate data, which have indicated that
these estimations are uncertain (Berthelot et al. 2005; Wu et al. 2007; Ji et al. 2008). Although
GCMs produce multiple climate scenarios, the maximal extent of uncertainty in the simulated
terrestrial ecosystem caused by these outputs cannot be measured. Furthermore, discussions
regarding the maximal variations in the terrestrial ecosystem that will be caused by the climate
change, including those related to climatology and climate variability, are scarce in China.

The approach of conditional nonlinear optimal perturbation (CNOP, Mu et al. 2003) is a
nonlinear optimization method. This approach is employed to find the optimal initial
perturbation under a given constraint and has been applied to investigate the dynamics of
ENSO predictability (Mu et al. 2007a), adaptive observation (Mu et al. 2007b) and grassland
ecosystems (Mu and Wang 2007; Sun and Mu 2009). Mu et al. (2010) extended the
approach to search for the optimal integrated mode of initial perturbations using model
parameter perturbations according to the types of predictability. The CNOP approach related
to initial perturbations is referred to as the CNOP-I approach, while that related to model
parameter perturbations is designated as CNOP-P approach. The CNOP-P approach has
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been applied to discuss ENSO predictability (Mu et al. 2010) and grassland ecosystem
stability (Sun and Mu 2011). All of these applications illustrate that the CNOP approach is a
useful tool for studying nonlinear systems and indicate that it may be similarly effective for
exploring the response of the terrestrial ecosystem to climate change. The CNOP approach
has previously been applied to discuss the impact of climate change on soil carbon in China
(Sun and Mu 2012).

In this study, our aims were to supply a possible climate scenario; to explore the maximal
response of NPP in China to climate change, including climatology and climate variability;
and to assess differences between the responses of NPP to two possible climate scenarios
using the CNOP-P approach within the state-of-the-art Lund-Potsdam-Jena dynamic global
vegetation model (LPJ DGVM, Sitch et al. 2003).

2 The model and methods

2.1 The LPJ model

The DGVM is an effective way to discuss the impact of climate change on terrestrial
ecosystems (Cramer et al. 2001; Bonan et al. 2002). The LPJ DGVM is employed in this
study due to its broad applicability regarding terrestrial carbon cycles and hydrological
cycles (Beer et al. 2007). This model, which originates from the biome model family
(Prentice et al. 1992), can simulate the distribution of plant functional types and combine
process-based representations of terrestrial vegetation dynamics and land atmosphere carbon
and water exchanges. The LPJ DGVM explicitly considers processes, such as photosynthe-
sis, mortality, fire disturbances and soil heterotrophic respiration (Sitch et al. 2003). NPP is
the difference between photosynthesis, or gross primary production productivity (GPP)
computed based on a coupled photosynthesis–water balance scheme, and autotrophic
respiration (Ra). The NPP embodies the production ability of plants under climatic condi-
tions and plays a key role in the terrestrial carbon cycle (Field et al. 1998). The main factors
controlling NPP are temperature and precipitation. The remaining carbon is allocated to
three pools to produce new tissue. Carbon from dead leaves and roots enters litter; decom-
position of litter and soil organic matter is driven by soil temperature and water content.
Above-ground litter decomposition depends on air temperature whereas below-ground litter
and soil organic matter decomposition are calculated using soil temperature and a modified
Arrhenius formulation which implies a realistic decline in apparent Q10 values with
temperature, and soil water (Schaphoff et al. 2006).

The input data are information on the monthly precipitation, temperature, wet frequency and
cloud cover from the Climatic Research Unit (CRU) from 1901 to 1998 (Mitchell and Jones
2005). The data were generated based on climate data and are fairly credible, especially for
some regions where there is a lack of observational data. A dataset of global atmospheric CO2

concentrations was obtained from a carbon cycle model, also including icecore measurements
and atmospheric observations (Kicklighter et al. 1999). The applied soil texture data were based
on the Food and Agriculture Organization (FAO) soil data dataset (Zobler 1986).

2.2 Conditional nonlinear optimal perturbation related to parameter (CNOP-P)

In a report by Mu et al. (2010), the CNOP-P approach was proposed according to types of
predictability and was applied to study ENSO predictability. The CNOP-P is the parameter
perturbation with which the cost function attains its maximal value at the final time. Here,
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we will review the derivation of this approach for readers' convenience. Let the nonlinear
differential equations be as follows:

∂U
∂t

¼ F U ;Pð Þ U∈Rn; t∈½0; T �
U j t¼0

¼ U0

(
ð1Þ

where F is a nonlinear continuous operator and means some combination of U and P, P is a
parameter vector, including forcing parameters precipitation and temperature, U is the state
variable, and U0 is an initial value of the state variable. Let Mt be the propagator of the
nonlinear differential equations from the initial time 0 to t. ut is a solution of the nonlinear
equations at time t and satisfies u (t) = Mt (u0, p).

Let U(T; U0, P) and U(T; U0, P) + u(T; U0, p) be the solutions of the nonlinear differential
Eq. (1) for P and P + p, respectively, where P and p are parameter vectors. u(T; U0, p)
describes the departure from the reference state U(T; U0, P) caused by p. The solutions
satisfy the following equations:

U T ;U0;Pð Þ ¼ MT U 0;Pð Þ
U T ;U0;Pð Þ þ u T ;U0; pð Þ ¼ MT U0;P þ pð Þ

�
:

For a proper norm, ‖‖, a parameter perturbation, pδ, is called a CNOP-P if and only if

J pδð Þ ¼ max
p∈Ω

J pð Þ; ð2Þ

where

J pð Þ ¼ MT U0;P þ pð Þ−MT U0;Pð Þk k ð3Þ
P is a reference state of parameter, and represents the standard value in the model. p is the

perturbation of the reference state, and represents the parameter errors. p∈Ω is a constraint
condition. The CNOP-P is the parameter perturbation whose nonlinear evolution attains the
maximum value of the cost function, J, at time T.

2.3 Experimental design

The impacts of climate change on terrestrial ecosystems have been discussed in previous
works (Gao et al. 2000; Gerber et al. 2004; Matthews et al. 2005). Their experimental
designs were as follows:

X
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j¼1

12
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� �
12� n

¼
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� �
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12
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where δtem or δpre represents the perturbation and the extent of the increase in temperature or
precipitation climatology. Ptem is the forcing parameters related to the temperature, and Ppre

is the forcing parameters related to the precipitation. i and j represent year and month,
respectively. The approach only considers the variation in mean state of temperature or
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precipitation, and did not consider the variation in temperature or precipitation variability
denoted by the standard deviation in comparison with the reference temperature or precip-
itation variability. The above method supplies a possible climate scenario in which the
temperature or precipitation series is superimposed on a constant. We refer to it as a linear
climate scenario because the precipitation climatology changes, but the precipitation vari-
ability is similar to the reference climate condition from 1961–1970. Considering different
perturbations of temperature or precipitation series in every year, we designed a new
experiment as follows.

The precipitation or temperature, as the forcing input, is time-dependent. In our study, the
monthly precipitation or temperature is considered as a parameter. The temperature or
precipitation perturbation, ptem,i or ppre,i, as a parameter in the input forcing and time
dependent, satisfies the following equations:

X
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j¼1

12
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� �
12� n

¼
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n
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0≤ptem;i≤σtem ð6:1Þ

0≤ppre;i≤σpre ð6:2Þ
The Eqs (5.1) and (5.2) cause variation not only in the temperature or precipitation mean

state similar to Eqs (4.1) and (4.2), but probably in the temperature or precipitation variability
due to the perturbation in every year. The monthly temperature or precipitation perturbation in a
year is the same.Moreover, the perturbation in temperature or precipitation is bounded, which is
represented by σtem or σpre in Eqs (6.1) and (6.2), indicating themaximum increase in the annual
temperature and precipitation. Apparently, the above formulae (Eqs. (5.1), (5.2), (6.1) and (6.2))
also supply a possible climate scenario in which the temperature or precipitation series is
superimposed on a nonlinear perturbation series, which we could refer to as a nonlinear climate
scenario or CNOP-P-type climate scenario. Although the CNOP-P approach is related to the
parameters in the model, the method is employed to explore the response of NPP to climate
change, including changes in climatology and climate variability for two reasons. First, the
input climate conditions could be regarded as the forcing parameters, which are not similar to state
variables in the model but are similar to the physical parameters in the model. Second, the CNOP-
P-type temperature or precipitation perturbation is added to the reference temperature or precip-
itation condition. Based on Eqs. (5.1) and (5.2), the CNOP-P-type perturbation might alter not
only the climatology, but the climate variability compared with the reference climate condition.

In the present study, NPP is considered as a variable in the cost function, and temperature
and precipitation series are considered as parameter vectors. Based on the spatial distribution of
NPP in China, the region corresponding to 103oE-120oE, 24oN-45oN and 120oE-135oE, 40oN-
54oN is chosen, where the main plant functional types (PFTs) and NPP are dispersed. n is equal
to 10, as in 10 years. The study period was from 1961 to 1970, during which the data are
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creditable as the reference climate condition. Because of the climate change occurring in China
due to increasing CO2 concentrations and the findings of other studies, we choose (1) an
increase in themean temperature state of 2o (δtem = 2) over 10 years, with its perturbation in each
year not exceeding 3o (σtem = 3); and (2) an increase in the precipitation mean state of 20 %

(δpre¼
∑
i¼1

n

∑
j¼1

12

Ppre;i; j

n �20%Þ over 10 years, with its perturbation in each year not exceeding 20 %

ðσpre ¼ max
i¼1;n

f ∑
j¼1

12
Ppre;i; jg�20%Þ of the maximum precipitation.

Similar to other studies, the LPJ model was run using the CRU data from 1901 to 1930
repeatedly for 1000 model years to achieve an approximate equilibrium in terms of carbon
pools and vegetation cover as the initial condition.

Because the cost function may be non-differentiable, some evolutionary algorithms may
serve a powerful tool for obtaining the optimal value of the cost function. The evolutionary
algorithms were applied to investigate the parameter estimates and the uncertainty of the land
surface scheme and extreme events with the MM5 model, or data assimilation (Duan et al.
1992; Kruger 1993; Zhang et al. 2000). In our analyses, the gradients of the cost function about
the variables do not exist. Therefore, to obtain the maximum value of cost function, an
evolutionary algorithm (differential evolution, DE, Storn and Price 1997) is employed. The
advantage of DE lies in obtaining the optimal value of (2) without a gradient. This algorithm has
been applied to tune hydrographic model parameters (Chakraborty 2008; Zhang et al. 2009). To
effectively obtain the CNOP-P, 200 random initial guess values were chosen. The final
optimization was also checked using the DE algorithm again.

3 Numerical results

3.1 Response of NPP to the CNOP-P-type temperature change scenario

3.1.1 Impacts of the temperature change scenario on NPP

To investigate the impact of the temperature change scenario on NPP in China, the LPJ model
was driven by the temperature series superimposed with the CNOP-P (Fig. 1a). Compared with
the reference state simulated by the LPJ model from 1961 to 1970, NPP is reduced in northern
China, while it is increased in northeastern and southern China (Fig. 2a). The numerical results
suggest that the greater sensitivity of NPP to the CNOP-P-type temperature change scenario
occurs not only in northern China, but in southern China.

3.1.2 Comparison of the impacts of the nonlinear and linear temperature change scenarios
on NPP

To analyze the different responses of NPP in China to different types of temperature change
scenarios, we compared the NPP influenced by increasing by a 2o increase in temperature in
every year from 1961 to 1970, as a linear temperature change scenario, with the NPP affected
by the CNOP-P-type temperature change scenario. NPP decreases in northern China, and
increases in northeastern China due to the linear temperature change scenario. Though the
spatial variation in the two regions is similar for the two types of temperature change scenarios,
the extent of variation under the linear temperature change scenario is clearly lower than that
under the CNOP-P-type temperature change scenario. The highest diversity occurs in southern
China for both types of temperature change scenarios. NPP responds weakly to the linear
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temperature change scenario, while it is sensitive to the CNOP-P-type temperature change
scenario (Fig. 2 a1 and b1). Regarding the relative change in NPP, the effects are analogous to
the two types of temperature change scenarios in northern China. The result is similar to that
reported by Gao et al. (2000). The numerical results indicate that the southern China may be a
region that is sensitive to nonlinear climate change. However, the character is obscured in
southern China to the linear climate change.

To interpret the reasons underlying the variations in NPP in light of the different types of
temperature change scenarios, we provide the gross primary productivity (GPP) and the
autotrophic respiration (Ra). In the LPJ model, the NPP satisfies the following relationship:

NPP ¼ GPP−Ra:

Figure 2c1 and d1 show that the spatial changes in GPP due to the different types of
temperature change scenarios are similar. In northern China, in which includes arid and
semi-arid regions, GPP decreases. The increase of temperature induces increasing evapo-
transpiration, and the water content decreases in the soil. The above effects and the shortage
of rainfall inhibit photosynthesis, so GPP decreases. In northeastern and southern China,
despite the temperature increases, the rainfall is sufficient to lead to an enhancement of
photosynthesis. In both regions, GPP increases (Fig. 2c1 and d1).

The responses of Ra to the different types of temperature change scenarios are different in
southern China. The CNOP-P-type temperature change scenario results in a reduction of Ra,

Fig. 1 The temporal variations of the regional averages due to the CNOP-P-type and linear type perturbations
for (a): temperature; and (b): precipitation
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Fig. 2 (a1-b1): The spatial and temporal variations in the net primary production (NPP); (c1-d1): gross primary
production (GPP); and (e1-f1): autotrophic respiration (Ra) in comparisonwith the reference state (unit: g Cm−2 year−1)
for the temperature case. (a1, c1, e1): The CNOP-P-type temperature changes; (b1, d1, f1): the linear type temperature
changes. (a2–f2): same as in (a1–f1), but for precipitation case. (a3–f3): same as in (a1–f1), but for the combined
temperature and precipitation scenario. “Reference”means the reference state; “CNOP-Temp”means for temperature
case using the CNOP approach; “CNOP-Prec” means for precipitation case using the CNOP approach; “CNOP-
Comb”means for the combined temperature and precipitation scenario using the CNOP approach. “Linear”means for
linear case
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while the linear temperature change scenario causes an increase of Ra. In other regions, the
impacts of the different types of temperature change scenarios on Ra are similar (Fig. 2e1 and f1).

The difference responses of Ra to the different types of temperature change scenarios
originate from the different response among leaf, sapwood, root and growth respiration. Ra
satisfies the following equation:

Ra ¼ Rlþ Rsþ Rr þ Rg

where Rl represents leaf respiration; Rs represents sapwood respiration; Rr represents root
respiration; and Rg represents growth respiration. Rg is given by the below formula:

Rg ¼ max GPP−Rð Þ � 0:25; 0ð Þ;
where R=Rl+Rs+Rr. Maximum means that the growth respiration is always non-negative.

In southernChina, Rl, Rs andRr decrease due to theCNOP-P-type temperature change scenario
which may occur because the temperature variability restrains respiration in leaves, sapwood and
roots. Rg is increased due to the increasingGPP. The increasing in Rg does not offset the declines in
R, so Ra decreases. However, R increases due to the linear temperature change scenario, and the
extent of the increase in R is lower than for the GPP. These bring to the increases in Rg and Ra. In
northeastern and northern China, the variations in Rl, Rs, Rr and Rg are similar under the two types
of temperature change scenarios. The above results show that the variation in temperature
variability plays an important role in autotrophic respiration in southern China.

Based on the above numerical results, a nonlinear character of the variations in annual NPP
has been shown, and seasonal NPP has been simulated with the LPJ model. Thus, the seasonal
variations are discussed related to the two types of temperature change scenarios. Figure 3a-k
shows that the characteristics of the variations in seasonal NPP due to the two types of the
temperature change scenarios are similar in spring and winter. In summer and autumn, the
variations are analogous in northern and northeastern China. However, the response of NPP to
the CNOP-P-type temperature change scenario is positive, while the response to the linear
temperature change scenario is minor in southern China (Fig. 3a–k). The common features of
the variation in NPP lie in the decreases observed in arid and semi-arid regions in the northern
China in summer and autumn. In terms of GPP (Fig. 3i-p) and Ra (Fig. 3q–x), the main
differences stem from the variations of Ra in southern China in summer and autumn.

3.2 Response of NPP to the CNOP-P-type precipitation change scenario

3.2.1 Impacts of the nonlinear precipitation change scenario on NPP

In this section, the response of NPP to the nonlinear precipitation change scenario is investi-
gated. The numerical results show that total NPP increases. The increase in NPP is visible in
Inner Mongolia and part of northern China, where arid and semi-arid regions are found. In
contrast, in southern and northeastern China, NPP was slightly reduced. In northern China, the
change in NPP was intense (Fig. 2a2 and b2). The above results reveal the variation of NPP is
sensitive to the nonlinear precipitation change scenario in northern China.

3.2.2 Comparison of the impacts of the nonlinear and linear precipitation change scenarios
on NPP

The impact of the linear precipitation change scenario on NPP is also discussed in compar-
ison with that of the CNOP-P-type precipitation change scenario. It as shown that the

Climatic Change



Fig. 3 The variation in NPP, GPP and Ra in comparison with the reference state in the different seasons (unit:
g C m−2 year−1). (a), (b), (c), (d), (i), (j), (k), (l), (q), (r), (s) and (t): the CNOP-P-type temperature changes;
(e), (f), (g), (h), (m), (n), (o), (p), (u), (v), (w) and (x): the linear type temperature changes.Winter (December, January,
February); spring (March, April, May); summer (June, July, August); autumn (September, October, November)
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impacts of the two types of precipitation change scenarios were analogous. NPP increased in
Inner Mongolia and part of northern China, while decreased in southern and northeastern
China. The range of variation in response to the nonlinear precipitation change scenario was
greater compared to the linear precipitation change scenario. The relative changes in NPP
were also semblable. In northern China, the increase in precipitation leads to plant growth.
The sensitivity of NPP in northern China is strong, which is in accord with the previous
studies (Gao et al. 2000).

GPP and Ra were also examined to analyze the causes of the variation in NPP.
Figure 2c2-f2 shows that the spatial variations in GPP and Ra were similar. In northern
China, the increase in precipitation accelerates photosynthesis, especially in arid and semi-
arid regions. In southern and northeastern China, the increase of precipitation causes a
decrease in GPP and restrains the photosynthesis. In most of China, the increase of
precipitation accelerates respiration.

3.3 Response of NPP to the combined temperature and precipitation change scenario

To discuss the response of NPP to combined temperature and precipitation scenarios, the
LPJ model is run with combined CNOP-P-type temperature and CNOP-P-type precipitation
scenarios. The two scenarios are obtained in Section 3.1 and 3.2. Figure 2a3-f3 shows that
the variation in NPP is complex. In general, NPP increased in northeastern China and
southern China, though it decreased slightly in parts of two regions. In northern China,
the increase in NPP was clear, but reduced NPP was also visible. The response to the
combined temperature and precipitation scenarios as different compared to temperature or
precipitation alone. In northeastern China, the positive feedback of NPP in response to a
temperature or precipitation scenario alone led to increased NPP compared to the combined
temperature and precipitation scenarios. However, the positive feedback of NPP to precip-
itation scenarios and the negative feedback of NPP to temperature scenarios led to reduced
NPP. The magnitude of reduced NPP in response to the combined temperature and precip-
itation scenario was lower compared to the temperature scenario alone. This implies that the
positive response of NPP to precipitation could offset the loss of NPP due to the increasing
temperature. This characteristic was also observed in southern China. However, in the arid
and semi-arid regions of northern China, there were different results observed. In some
regions, the positive impact on NPP due to the increased precipitation and the negative
impact on NPP because of the increased temperature induced a positive response of NPP to
the combined temperature and precipitation scenarios. These numerical results reveal that
precipitation has a key modulation effect on the variation of NPP in the arid and semi-arid
regions of northern China.

The annual NPP also is shown to allow discussion of the different responses to the different
scenarios (Fig. 2g–i). The annual NPP due to the CNOP-P-type or linear type precipitation
scenario was higher than the reference NPP, whereas the annual NPP under the linear type
temperature scenario was lower than the reference NPP. However, the NPP under the CNOP-P-
type temperature scenario was lower than the reference NPP before 1967. After 1967, the NPP
associated with the CNOP-P-type temperature scenario was higher than the reference NPP as a
result of gradually increasing temperature. The timing of the positive response to the combined
CNOP-P-type temperature and precipitation scenarios was advanced due to the positive
response of NPP to precipitation. The annual GPP decreased due to the temperature scenarios,
whereas it increased under the precipitation scenario and the combined temperature and
precipitation scenarios. The precipitation scenario and the combined temperature and precipi-
tation scenarios also accelerated the autotrophic respiration. However, before 1964, the
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temperature scenario accelerated autotrophic respiration. After 1964, the temperature scenario
restrained autotrophic respiration.

4 Summary and discussion

Our objective was to consider the nonlinear response of NPP in China to climate change
scenarios using the CNOP-P approach. Our main conclusions were as follows:

(1) The temperature variability fluctuates under the CNOP-P-type perturbation. The
CNOP-P-type temperature change scenario causes a reduction of NPP in northern
China, but increases in northeastern and southern China. The linear temperature change
scenario has a similar effect. The greatest difference between the variations caused by
the nonlinear and linear change scenarios occurs in southern China. The impacts of the
CNOP-P-type temperature change scenario on NPP and its relative variation are larger
than those of the linear temperature change scenario. The seasonal analysis reveals that
NPP will decrease in summer and autumn in the arid and semi-arid regions of northern
China due to climate warming. In southern China, the variation of NPP in summer and
autumn is intense under the nonlinear temperature change scenario.

(2) The variability in precipitation also varies under the CNOP-P-type perturbation. The two
types of precipitation change scenarios cause an increase of NPP in Inner Mongolia and
part of northern China, and a reduction in northeastern and southern China.

We found that there are large differences about the variations of NPP due to two types of
temperature change scenarios in southern China. Thus, the both temperature change scenarios
are analyzed in southern China. In southern China, NPP increases due to the CNOP-P-type
temperature change scenario. However, the variation in NPP is slight due to the linear type
temperature change scenario. The average temperature in the regions is calculated. We find that
the frequency of cold events due to the CNOP-P-type temperature change scenario is higher
than due to the linear type temperature change scenario. For example, the temperature decreases
by 0.41, 0.77 and 1.07 °C in the second year, and the late two years, respectively, due to the
CNOP-P-type change scenario, while it increases by 0.06 in the second year and decreases by
0.71 and 0.31 in the last two years due to the linear type change scenario. The CNOP-P-type
temperature change leads to increasing temperature variability and an increasing frequency of
cold events. The increasing frequency of cold event restrains plant respiration, so the respiration
of leaves, stems and roots decreases. Finally, Ra decreases, and NPP increases.

In this study, our aim was to search for a type of climate scenario that causes the maximal
impact on NPP under global warming. The LPJ model is able to reproduce inter-annual
variability of NPP (Sun 2009). Gao and Zhang (1997) and Gao and Yu (1998) also generated
several different simple climate scenarios and explored their impacts on the vegetation
dynamics in a Northeast China Transect (NECT), which was similar to, but smaller than
our study region. Their research indicated that NPP decreased by 41.8 % and 34.5 % when
the temperature increased by 4 °C, and NPP increased by 14.3 % and 11.5 % when the
precipitation increased by 20 %. These results are similar to those of the present study
obtained using a linear climate scenario. In our study, NPP was found to decrease by 1 %
when the temperature increased by 2 °C and to increase by 2.3 % when precipitation
increased by 20 %. The extent of variation in NPP between our study and previous studies
is different because the study region and the vegetation model examined are different.
However, the variation in NPP shows a large discrepancy under the CNOP-P-type
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temperature scenario. NPP increases by 5.4 % due to the CNOP-P-type temperature scenar-
io. These numerical results are similar to observational findings. Peng et al. (2010) stated
that NPP shows a significant positive correlation with air temperature and precipitation in most
of southeastern China based on moderate-resolution imaging spectroradiometer data (Fik and
Mulligan 1998; Tian et al. 1998). In this region, our numerical results were similar to these
previous findings, though some differences were observed. In our analyses, NPP was found to
decrease due to increasing temperatures in the northeast part of southeastern China, which may
be due to temperature variability restraining photosynthesis. In the southern part of southeastern
China, NPP decreases due to increasing precipitation. The possible reasons for this result are an
acceleration of autotrophic respiration due to precipitation variability, which is similar to what
was proposed byMohamed et al. (2004) who suggested that increasing precipitation variability
will induce greater declines of NPP among tropical plants. In fact, the GCMoutput also supplies
a possible climate scenario that generates variation in NPP. The effect of climate change onNPP
is a combined effect of precipitation, temperature and other environmental factors. There are
many studies addressing the response of terrestrial ecosystems to the combined effects of
precipitation, temperature and other environmental factors (Wu et al. 2010). Medvigy et al.
(2010) indicated that changes in precipitation play a key role in carbon storage and ecosystem
structure, whereas temperature variability has minor influence by comparison. In contrast to
these studies, our numerical results emphasize that temperature variability has a greater impact
on terrestrial ecosystems than precipitation variability. A prominent trait of the CNOP-P
approach is its ability to find the maximal response of terrestrial ecosystems to changes in the
temperature or precipitation variability (Knapp and Smith 2001). Therefore, the changes in
temperature variability observed in these previous studies and our analyses are different. The
CNOP-P approach supplies a possible climate scenario that leads to the maximal impact on
terrestrial ecosystems. In the previous study, the responses of NPP to temperature or precipi-
tation changes were found to be individual. Although new variation characteristics were found,
the combined effect due to environmental factors will be discussed in future works. Here, our
goal is to discuss the response of NPP to climate change using a nonlinear optimization
approach. We obtained the maximum value without gradients of the cost function. To calculate
the optimal value, many initial values obtained through guessing were applied. The optimal
valuewas also checked to obtain themaximal value for the cost function. Therefore, we confirm
the veracity of the optimal value. Based on the above two factors, it is difficult to obtain an
optimal value due to a high-dimensional optimization problem. In the present study, only the
period from 1961–1970 was considered in discussing the impact of climate change on NPP. In
the future, the period from 1971–2000 will be considered.
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