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PM10 Source Apportionment in Ahvaz, Iran, Using
Positive Matrix Factorization

Source apportionment of particulate matter <10 mm in diameter (PM10), having

considerable impacts on human health and the environment, is of high priority in

air quality management. The present study, therefore, aimed at identifying the

potential sources of PM10 in an arid area of Ahvaz located in southwest of Iran.

For this purpose, we collected 24-h PM10 samples by a high volume air sampler. The

samples were then analyzed for their elemental (Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe,

Hg, K, Mg, Mn, Na, Ni, Pb, Se, Si, Sn, Sr, Li, Ti, V, Zn, Mo, and Sb) and ionic (NH4
þ, Cl�,

NO3
�, and SO4

2�) components using inductively coupled plasma optical emission

spectrometry and ion chromatography instruments, respectively. Eight factors were

identified by positive matrix factorization: crustal dust (41.5%), road dust (5.5%),

motor vehicles (11.5%), marine aerosol (8.0%), secondary aerosol (9.5%), metallurgical

plants (6.0%), petrochemical industries and fossil fuel combustion (13.0%), and veg-

etative burning (5.0%). Result of this study suggested that the natural sources contribute

most to PM10 particles in the area, followed closely by the anthropogenic sources.
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1 Introduction

Sources of particulate matter are broadly categorized as natural (such

as wind-blown dust, marine aerosol, forest fires, volcanic ash, etc.) and

anthropogenic (such as industries, motor vehicles, biomass burning,

fossil fuel combustion, etc.). While the former has had a constant role

in global air pollution, the latter has become an increasing concern

due to the rapid pace of urbanization and industrialization during the

past century [1]. Particulate matter with aerodynamic diameter

<10 mm (PM10) plays a distinct role in air pollution, mainly because

of its noticeable respiratory and cardiovascular health effects [2], and

that it can be the potential carrier of harmful heavy metals such as As,

Cd, Pb, and Zn [3]. Environmental impacts, such as changes in the

radiation budget of the earth, the atmosphere’s thermal structure, and

the troposphere’s chemical composition, have also been associated

with enhanced levels of PM10 [4–6]. Some authors believe that these

impacts depend mainly on the geographic location [7] and the com-

position of the potential sources in that area [8], making it necessary to

fully identify the sources to explore the possible mechanisms of the

mentioned impacts and to be capable of efficiently managing and

mitigating the air pollution [9].

Positive matrix factorization (PMF) is a receptor model which has

been recently used for identifying the sources of air pollutants that

can be chemically or physically speciated and analyzed [10]. The

advantages of PMF over other statistical multivariate methods, such

as principal component analysis (PCA) which were previously in use

for this purpose, are improved capability to properly handle uncer-

tainties, ability to deal with noisy data sets, and no need for detailed

prior knowledge of the existing sources in the area [11–13]. In the

past decade, therefore, PMF has been used to identify the potential

sources of different size ranges of particulate matter in different

areas of the world [8, 9, 11, 14, 15].

In the latest report of the World Health Organization

(www.who.int/phe) [16], Ahvaz, located in an arid area in southwest

of Iran, was identified as the most polluted city in the world

regarding atmospheric PM10 pollution. This is thought to be mainly

due to the occurrence of the Middle Eastern dust (MED) storms,

caused primarily by the Shamal wind carrying large amounts of

dust particles from Iraqi deserts to the area [16–18]. As a con-

sequence, daily mean PM10 concentrations of up to 5012.7 mg/m3

have been recorded in the area [19]. The main objective of the

present study was, therefore, to identify the potential sources of

PM10 and their relative contributions to the total mass of PM10 in

Ahvaz by using the PMF receptor model. For this purpose, PM10

data were collected over the period from April 2010 through

March 2011, and were then chemically analyzed for their elemental

composition, including Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K,

Mg, Mn, Na, Ni, Pb, Se, Si, Sn, Sr, Li, Ti, V, Zn, Mo, and Sb, and ionic

components, including NH4
þ, Cl�, NO3

�, and SO4
2�. We also applied

conditional probability function (CPF) and some elemental ratios

in order to further explore the validity of the outputs of the PMF

model.
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Abbreviations: CPF, conditional probability function; ICP-OES, inductively
coupled plasma optical emission spectrometry; MDL, method detection
limit; PCA, principal component analysis; PM10, particulate matter with
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signal to noise
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2 Material and methods

2.1 Sampling

Ahvaz, the most polluted city of the world with respect to atmo-

spheric PM10 pollution, is the capital of Khuzestan Province, Iran,

with a total population of 1.3 million. It is an arid area located in a

highly gas- and oil-rich region in southwestern Iran (a latitude of

318200N and a longitude of 488400E). Therefore, a variety of oil-related

industries, such as oil extraction and refining as well as petro-

chemistry, exist in the area. In addition, low vegetation cover, highly

humid weather (with a maximum seasonal average of 57% in

summer), considerably high air temperatures (with a maximum

seasonal average of 378C in summer), and strong surface winds

are the main characteristics of the area. This, in combination with

close proximity to southern Iraqi deserts (the leading origin of

mineral dusts in the region [16]) have caused severe dust storms

that highly deteriorate the air quality in the study area [18, 19].

Motor vehicles and seasonal vegetative burning (mostly reed beds)

are known to be other types of air pollutant sources in the area.

Figure 1 illustrates the location of the study area with respect to the

nearby sources.

The sampling was systematically carried out every six days over

the period from April 2010 to March 2011. PM10 samples were

collected on 20 cm� 25 cm glass-fiber filters by using a high volume

air sampler (Model: Anderson). The sampler was installed at a height

of 10 m above the ground on the roof top of the Health Research

Center and operated at a flow rate of 1 m3/min. The installation

height of 10 m was selected because it minimizes the undesirable

effects of local traffic emissions as well as both natural and anthro-

pogenic obstacles on the air trajectory, which can in turn affect the

PM10 concentrations [11].

Before the sampling, the filters were washed with distilled-deion-

ized water to remove impurities, and were then put into an oven

operating at 508C for 10 h [20]. Afterwards, the filters were kept at

constant temperature (20� 18C) and relative humidity (40� 5%)

for 24 h before being weighed by an analytical balance (Model:

Sartorius 2004 MP) which had a reading precision of 10 mg. After

the sampling, the filters were again kept at constant temperature

and relative humidity (20� 18C and 40� 5%) before being weighed

for the second time. Finally, after calculating the PM10 concen-

trations by the above-mentioned gravimetric method, the filters

were kept in plastic bags in a refrigerator at 48C until they were

chemically analyzed [21–23].

2.2 Chemical analysis of water-soluble ions and

trace elements

One-fourth of each filter paper was used to determine the concen-

trations of four water-soluble ions, namely, NH4
þ, Cl�, NO3

�, and

SO4
2�, in PM10. This part of the filter paper was cut and shredded

before being put into a 100 mL vial containing 50 mL of distilled-

deionized water which had a resistivity of 18 MV cm. To extract the

ionic components from the filter paper, the vial was shaken for 2 h.

After being filtered through a membrane which had a pore size of

0.2 mm (Schleicher & Schuell), the extracts were poured into a plastic

vial and kept at 48C [24, 25]. We then used an ion chromatography

(Model: Metrohm 850 Professional IC, Switzerland) to obtain the

concentrations of the ionic components in PM10. The flow rate of

the instrument was adjusted at 0.7 mL/min. The cationic solvent

contained nitric acid 3.2 mM, while the anionic solvent consisted

of a combination of sodium bicarbonate 1.7 mM and sodium carbon-

ate 1.8 mM. The injection rate of the cationic solvent (10 mL) differed

from that of the anionic solvent (20 mL). The recovery rates ranged

80–120% for the ionic components.

To obtain the concentrations of the trace elements (including

crustal elements and heavy metals), another one-fourth of each filter

paper was digested by an acid mixture, consisting of 3 mL HNO3,

1 mL HCl, and 1 mL HF, at 1708C for 4 h. The digestion process was

done in a Teflon digestion vessel since high pressures were applied.

Having cooled and dried the extracts, they were diluted to 10 mL of

distilled-deionized water which had a resistivity of 18 MV cm [26].

Finally, we applied an inductively coupled plasma optical emission

spectrometry (ICP-OES) to determine the concentrations of 28

elemental components of PM10, including Al, As, B, Ba, Be, Ca, Cd,

Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, Se, Si, Sn, Sr, Li, Ti, V, Zn,

Mo, and Sb.

Figure 1. Location of the sampling station with
respect to the nearby sources.
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2.3 Positive matrix factorization (PMF)

PMF is a receptor model based on multivariate statistical methods

and was first introduced by Paatero and Tapper [27]. PMF is based on

the decomposition of a large, chemically or physically speciated data

set into two smaller matrices, i.e., factor profiles and factor contri-

butions. At the next step, an expert should interpret the matrices to

infer source types taking into account the resolved source profiles,

and with the aid of wind rose analysis as well as emission inventories

[10].

PMF uses the weighted least-squares fits for a dataset. The weights

in the matrix (data set) can be modified by the expert in accordance

with the experimental uncertainties, including uncertainties occur-

ring during the sampling and those due to the analytical errors, for

each entry in the data set. Although it is allowed in PCA, in PMF none

of the factors can have negative contributions to any of the sources.

The main objective of PMF model is to identify a number of potential

sources (p), the profile of species in each source ( f), and the relative

contributions of all of the sources to each of the collected samples,

according to the following equation [28, 29]:

xij ¼
Xp

k¼1

gikfkj þ eij (1)

where xij is the matrix x containing i samples and j species; gik is the

relative contribution of kth factor to the jth samples; fkj is the relative

contribution of jth species to the kth factor; and eij is the residual

concentration of the jth species in the ith samples which is not

resolved by PMF.

Taking into account the uncertainties in the data set, a solution

minimizing the weighted sum of the squared residual function (Q) is

provided by PMF according to the following equation [28, 29]:

Q ¼
Xn

i¼1

Xm

j¼1

xij �
Pp
k¼1

gikfkj

uij

2
664

3
775

2

(2)

where uij is the uncertainty associated with the concentration of xij.

It is noteworthy that the USEPA PMF software (version 3.0) was

used in the present study.

2.4 Data handling

In this work, to estimate the background concentration of each

species over the study area, we chemically analyzed unexposed blank

filters in a regular basis during the study period. According to the

guideline proposed by previous studies [30], the method detection

limit (MDL) for each species was calculated by adding three standard

deviations to the mean values of the chemically analyzed unexposed

blank filters.

We used box plates to explore the existence of outlier data

(both very high and very low concentrations) for each species.

Then we selected the concentrations as high as three times of the

inter-quartile range [11] for illustration on the time-series graph.

These outlier data were discarded from the data set unless they

followed the general temporal trend of the concentrations for

that species.

According to the guideline proposed by Polissar et al. [31], we

replaced the missing values (mainly those discarded from the data-

set) by the geometric mean of that species. This was done primarily

to maintain a sufficient number of samples required for modeling. It

is mentioned by some authors that this action can artificially change

the correlations which exist among the species. To handle this and

to decrease the weight of these values on the model outputs, an

uncertainty of four times as high as the geometric mean was set for

each [8, 11]. Finally, to handle the values below the MDL for each

species, they were replaced by half of the MDL for that species, and

their uncertainties were set as 5/6 of the MDL [31].

The PMF model input uncertainties mainly encompass sampling

(due either to the sampling device or to the operator) and analytical

(likewise, due either to the analytical instruments or to the labora-

tory operator) errors. All of the mentioned types of the uncertainties

are usually reported by the analytical laboratory or the agency in

charge of reporting the data [10].

In case the species concentration is above the MDL, the following

equation is applicable for calculating the uncertainty [10]:

Unc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðerror fraction� concentrationÞ2 þ ðMDLÞ2

q
(3)

2.5 Conditional probability function (CPF)

Meteorological data can be applied to help identify the possible

locations of the nearby sources. For this purpose, we used CPF that

was first introduced by Ashbaugh et al. [32]. A combination of source

contributions and meteorological data (wind speed and direction)

is used in CPF, and the final value is calculated by the following

equation:

CPF ¼ mDu

nDu

(4)

where mDu shows the number of occurrences from the wind sector Du

that are higher than the threshold criterion (that was set as the

25th percentile); and nDu is representative of the total number of

occurrences from that wind sector (Du) overall. Our wind direction

data were divided into 16 sectors, so we set the Du at 22.58. Hours

during which the wind speed was <1 m s�1 were excluded from CPF

calculations. CPF can have values ranging from 0 to 1, with higher

values indicating the likely location of nearby point sources. It

should be noted that according to the study of Kim et al. [33], in

order to match the daily average collected samples to hourly wind

direction and wind speed data, each hour of the day was assumed to

have the same source contribution as that of the day as a whole.

3 Results

Over the entire study period, 72 24-h PM10 samples were collected in

the study area. Table 1 presents some of the most important

parameters for the PMF input data such as missing values, values

below the MDL, and S/N (signal to noise) ratio. S/N ratio is a statistical

variable indicating if the variability of the measured concentrations

is real or it is due to the variability in the noise of the data. This ratio

is calculated by the following equation [10]:

S

Nj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxij � sijÞ2
Pn
i¼1

s2
ij

vuuut (5)

S/N ratio is directly affected by the percent of missing values and

values below the MDL for each species. If the values of these
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parameters are high for a species, it means lack of variability in the

measurements. As a result, that species cannot meaningfully con-

tribute to source identification. For this reason, the PMF model

automatically reduces the weight of such species in the calculations

[10]. As given in Tab. 1, most of the species in our data set had quite

high S/N ratios. However, for some species, like B, Fe, K, Ni, Li, Zn,

and Cl�, the ratio was lower than those of others, due mainly to

high percentage of either missing values or values below the MDL or

both; nonetheless, they were still higher than the desired S/N ratio

of 2 [12].

The PMF model was run several times with different Fpeak

values, extra model uncertainties, and number of factors. After a

thorough evaluation and interpretation of each model run, the

eight-factor solution, with an extra model uncertainty of 15% and

an Fpeak value of 0.1, was found to be the most physically probable

solution.

The residual analysis of the model run for PM10 data is shown in

Fig. 2a. The nearly normal shape of the histogram indicates the

fitness of the model to the input data. Figure 2a also indicates some

underestimations that have been made by the model, which is

possibly due to the presence of considerably high PM10 concen-

trations during dust storms (e.g., the maximum PM10 concentration

of 5012.68 mg/m3) compared to such low values as the minimum

concentration of 28.27 mg/m3 during non-dust, clean days. Figure 2b

illustrates the correlation between predicted and observed values of

PM10. These values are generally well correlated with each other

(R2¼ 0.94), showing that the PM10 data were reasonably modeled by

PMF. The effect of overestimations can also be observed in the

regression line.

Mean relative contributions of each of the resolved factors

for the PM10 data are depicted in Fig. 3. It can be observed that

41.5% of the overall mass concentration of PM10 was attributed to

factor 1 which is attributed to crustal dust, while other factors

had relative contributions in the range of 5–13%. Figure 4a and b

illustrates the species profile for each of the factors resolved by PMF.

The marker species used to identify each source are marked by

darker color.

Figure 5 shows the time-series curves for the temporal variations

of factors 1 and 3, while the seasonal as well as day-of-the-week

box plots for factors 1–3 are illustrated in Fig. 6a–d. These graphs

are not shown for other factors because no distinct trends were

observed for them. Finally, Fig. 7 depicts the conditional probably

function calculated for each factor during the study period.

Figures 5–7 have been used as critical aids in interpreting the factors

resolved by the PMF model.

Table 1. Summary statistics for critical parameters of PMF speciated input

data

Species Missing values
(out of

72 samples)

MDL
(mg/m3)

Values below
the MDL
(out of

72 samples)

S/N
ratio

PM10 0 – 0 98.73
Al 2 0.3 0 48.49
Asa) 5 0.06 1 22.67
B 12 5 11 8.72
Ba 0 0.1 1 29.33
Be 1 0.01 1 23.64
Ca 1 5 0 20.10
Cda) 2 0.065 0 47.92
Coa) 0 0.01 0 32.17
Cra) 0 0.15 0 45.78
Cua) 0 0.011 0 32.33
Fe 7 1.615 17 9.34
Hga) 0 0.26 0 41.24
K 6 3 0 7.44
Mg 3 1 0 16.23
Mna) 0 0.39 3 42.73
Na 0 0.252 0 89.23
Nia) 16 0.99 28 4.95
P 2 0.01 0 35.78
Pba) 0 0.01 0 33.48
Sea) 0 0.05 0 29.09
Si 0 0.051 0 32.33
Sna) 1 0.014 0 31.25
Sra) 0 0.02 0 32.28
Li 13 0.025 5 6.12
Tia) 0 0.08 0 45.15
Va) 0 0.1 0 36.73
Zna) 0 0.15 0 38.80
Moa) 9 0.1 27 7.93
Sb 0 0.0105 0 21.71
NH4

þ 0 0.0001 15 32.33
Cl� 13 0.00005 30 9.00
NO3

� 10 0.00005 21 10.11
SO4

2� 8 0.00005 12 11.50

a) The MDL of the elements market by the asterisk are shown in
ng/m3.

Figure 2. Residual analysis (a) and regression line between measured and
predicted concentrations of PM10 (b).
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4 Discussion

4.1 Factor identification

4.1.1 Factor 1

The first factor, having the highest contribution (41.5%), was found

to be ‘‘crustal dust’’ since it is prevailed by well-known crustal soil

markers such as Al (52.6%), Ca (45.5%), Fe (23%), Si (47.8%), K (9.0%),

Mg (6.4%), and Mn (32.5%) [9, 11, 14]. This can be further supported

by the temporal trend of this factor, which indicates significantly

higher values during spring and summer in comparison with those

observed during fall and winter (Figs. 5 and 6a). It was found by the

previous studies that dust storms most frequently happen during

the same time period [18, 19]. During some days in spring and

summer, such as May 26, 2010, the relative contribution of this

factor sharply increased up to 80%. These days temporally matched

the dust storm days with significantly high PM10 concentrations

during the study period (in the case of May 26, the maximum

Figure 3. Mean relative contributions of the eight factors resolved by PMF.

Figure 4. Species profiles of each factor resolved by PMF; (a) factors 1–4; (b) factors 5–8 (solid circles are representative of the relative contribution
of each species in percent; bar diagrams indicate the relative contributions in mg/m3; the relative contributions of the species marked by asterisk are
presented in ng/m3).

PM10 Source Apportionment in Ahvaz Using PMF 5
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concentration of 5012.68 mg/m3 was observed). In addition, the CPF

graph (Fig. 7) indicates that this factor mainly originates from west-

ern and southwestern areas. This is also in agreement with our

interpretation, because it was reported by the previously conducted

studies in the area that the occurrence of dust storms is most likely

during spring and summer due primarily to the Shamal wind which

blows from west and transports huge amounts of dust particles from

Iraqi deserts to the study area [16, 17].

4.1.2 Factor 2

The second factor contributes to only 5.5% of the total mass of PM10.

It is believed that this factor best suits the ‘‘road dust’’ source

category since it is dominated by a variety of crustal elements, such

as Al (19.7%), Fe (12.1%), K (17.2%), and Si (21.2%), and a number

of anthropogenic elements, including Ba (19.4%), Cu (24.6%),

Pb (13.6%), Se (9.7%), and Zn (18.9%) [34]. According to Lim et al.

[9], this source category originates primarily from the transportation

of motor vehicles in paved and non-paved roads. As a result, a

combination of road dust deposited on the roads and vehicular

emissions (including exhaust emissions and abrasion of tires) can

be released from this source category [35]. This interpretation can

be validated by the day-of-the-week box plot presented for this factor

(Fig. 6d). It is shown in the figure that this factor has higher contri-

butions during weekdays compared to weekends. CPF calculations

indicated no distinct wind sector for this factor, although there was

a slightly higher frequency with southwesterly winds. Lack of a

distinct wind pattern can also imply the impact of motor vehicles

on this factor, as with the third factor (motor vehicles).

4.1.3 Factor 3

The third factor is mainly dominated by Ba (26.8%), Cd (42.5%), Cu

(4.3%), Pb (39.6%), Zn (32%), Sb (18.8%), and Cl� (17.8%), which are

known as the tracers of ‘‘motor vehicles’’ source category [9, 36, 37].

Motor vehicles contributed to 11.5% of the total mass of PM10. In

contrast with crustal dust category, higher relative contributions

were observed for this factor in fall and winter compared to spring

and summer (Figs. 5 and 6b). This could be attributed to the fact that

the transformation of exhaust emissions into solid particles is highly

Figure 4. (Continued)
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facilitated in low atmospheric temperatures [38]. In addition, atmo-

spheric stability and the following thermal inversions can intensify

the effect of vehicular emissions during fall and winter. The day-of-

the-week box plot, indicating higher contributions of this factor in

weekdays than those observed in weekends, further supports the

hypothesis that this factor is mainly affected by motor vehicles.

According to CPF calculations (Fig. 7), there was no highly distinct

wind sector for this factor since vehicular emission are not released

from a limited number of large sources; rather, vehicular emissions

are generated by a large number of small sources well distributed

across the city. However, it should be noted that since the sampling

site was located in the southern part of the city, greater CPF values

were observed for northerly wind sectors.

4.1.4 Factor 4

The fourth factor, which accounted for 8% of the total mass of PM10,

is primarily prevailed by Na (48.7%) and Cl� (43%), which are knows

as the most important tracers of ‘‘marine aerosol’’ [37, 39] to marine

aerosol source category [11]. This can be further supported by a

Na/Mg ratio of 7.2, which was introduced as a good indicator of

marine aerosol [40]. The CPF graph for this factor (Fig. 7) clearly

reflects higher relative contributions when the wind came from the

Figure 5. Temporal trends of relative contributions of crustal dust and motor
vehicles to the total mass of PM10.

Figure 6. Seasonal (a and b) and day-of-the-week (c and d) box plots for
the relative contribution of factors 1–3 (the box represents the upper and
lower quartiles; the horizontal line in the box is the median of the date;
whiskers indicate the minimum and maximum values excluding the outliers;
circles represent the outliers; and asterisks are the extreme values).

Figure 7. CPF for the factors resolved by PMF.
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south. Since the Persian Gulf is located south of the city (Fig. 1),

marine aerosol is the most likely source category.

4.1.5 Factor 5

The fifth factor contributed to 9.5% of the total mass of PM10. This

factor most possibly suits ‘‘secondary aerosol’’ source category since

it is dominated by NH4þ (41.3%), NO3
� (32.4%), and SO4

2� (35.8%),

which are believed to be tracers of secondary nitrate and sulfate

aerosols [14, 37, 39]. Precursors of secondary nitrate aerosols mainly

originate from industrial activities and motor vehicles [41].

Secondary sulfate aerosols originate from photochemical processes

at high temperatures and relative humidity in summer [42], and

from combustion of fossil fuels at highly stable atmospheric con-

ditions in winter [43]. The CPF graph for this factor (Fig. 7) indicated

no distinct wind pattern. This is primarily because secondary aero-

sols result from the transformations of primary air pollutants, which

are emitted directly into the atmosphere; hence, finding the exact

location of the possible sources is quite difficult. However, the slight

inclination of this graph towards northern and southern wind

sectors implies the impact of motor vehicles and industrial activi-

ties, respectively.

4.1.6 Factor 6

A variety of metallic elements, including As (42.9%), Cd (15.6%),

Cu (35.6%), Fe (37.8%), K (7.8%), Mn (15.6%), and Pb (15.7%), and

a number of ionic components, such as NH4
þ (8.2%), Cl� (9.2%),

and SO4
2� (9.1%), dominated this factor; therefore, it best suits

‘‘metallurgical plants’’ source category according to previously con-

ducted studies [9, 11, 14, 37]. Metallurgical plants contributed

to 6% of the total mass of PM10. The CPF graph for this factor

(Fig. 7) indicates higher contributions during northeasterly and

southeasterly winds.

4.1.7 Factor 7

The seventh factor, accounting for 13% of the total mass of PM10,

encompasses Ba (29%), Cd (28.5%), Co (71.4%), Cr (54.8%), Ni (39.8%), Se

(14.8%), V (19.5%), Zn (21.5%), NH4
þ (17.9%), and SO4

2� (18.4%). These

species have been introduced as good markers of ‘‘petrochemical

industries’’ and ‘‘combustion of fossil fuels’’ [11, 37, 44]. Another

useful indicator used for identifying this source category is the Ni/Zn

ratio. The ratio of 2.2 observed here is in agreement with that

observed by Allamen et al. [11] (2.34). CPF calculations (Fig. 7)

indicated that the relative contributions were higher during

the southerly winds, where petrochemical industries are mainly

located.

4.1.8 Factor 8

The eighth factor belongs mainly to Ba (17%), K (32.4%), Na (9.8%), Se

(6.2%), V (38.5%), NH4
þ (25%), Cl� (18.3%), NO3

� (19.5%), and SO4
2�

(23%). Al, Si, and K have been linked to the ‘‘combustion of biomass or

vegetation’’ [14, 39]. Na, NH4
þ, Cl�, and SO4

2� have also been known

as good tracers of vegetative burning by other studies [9]. Therefore,

this factor seems to best suit the ‘‘vegetative burning’’ source

category. The presence of this factor was expected due mainly

to the seasonal burning of reed beds near the study area. The CPF

graph (Fig. 7) suggests that these reed beds are most likely located

south of the city. Finally, it is noteworthy that since some industrial

complexes were located in the vicinity of these reed beds and fields,

some of the elements that are commonly linked to the industry

(such as Ba, V, and Se), which are not specific markers of vegetative

burning, have also been considered by the model as the markers of

this source.

4.2 Number of factors

Even though some mathematical criteria have been suggested for

choosing the optimum number of factors, most of the studies

have based this on minimization of the Q values as well as interpre-

tation of the resolved source profiles according to the approximate

knowledge of existing sources in the study area [31]. In the present

study, the same method was applied. Therefore, the model was

run with different number of factors, i.e., between 4 and 10, and

the effects of the changes were evaluated. Fpeak values were also

systematically changed in order to obtain low and relatively con-

stant Q values [45]. Finally, we have also taken into account the value

of extra model uncertainties, which is representative of uncertain-

ties other than those occurring during sampling or chemical

analysis in the laboratory [10]. As mentioned earlier, eight factors,

with an Fpeak value of 0.1 and an extra model uncertainty of 10%,

was found to be the most physically reasonable solution for the

dataset.

5 Conclusions

The present study was conducted with the aim of identifying the

possible sources of PM10 in an arid area in southwestern Iran

by using the PMF receptor model. For this purpose, we used a large

data set consisting of 32 species (28 elements and 4 ions). According

to the results of the PMF model, eight factors were resolved:

crustal dust (41.5%), road dust (5.5%), motor vehicles (11.5%), marine

aerosol (8.0%), secondary aerosol (9.5%), metallurgical plants (6.0%),

petrochemical industries and fossil fuel combustion (13.0%), and

vegetative burning (5.0%). It was found that almost half of the total

mass of PM10 in the area originates from natural sources, while

the other half is released from anthropogenic sources. High

contribution of natural sources was most probably due to the

occurrence of dust storms in the area. These findings can be

considered by policy-makers to effectively design air pollution

mitigation and management schemes.
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