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Soil carbon management and climate change

Rattan Lal* 
World soils, a large reservoir of reactive carbon, moderate the global carbon cycle, atmospheric chemistry, 
radioactive forcing and ecosystem services; as such, soil carbon sequestration is important in limiting global 
warming to 2°C. Among uncertainties are emissions from soils and permafrost, the CO2 fertilization effect, 
silicate weathering, the fate of eroded carbon, the efficiency of natural sinks, the permanence of carbon 
sequestered in soil and measurements of changes in soil carbon over short periods. Adoption of proven 
technologies can sequester carbon at the rate of 500–1000 kg/ha/year in croplands, 50–500 kg/ha/year in 
grazing lands, 500–1000  kg/ha/year in forestlands and 5–10  kg/ha/year of pedogenic carbonates in arid 
lands. Soil carbon is stabilized though deep placement, interaction with clays and the formation of stable 
aggregates. Adoption of recommended practices can be promoted by payments for ecosystems services. 
Researchable priorities include understanding trends of principal drivers, quantifying feedbacks related to 
climate change and impacts on ecosystem services.
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Climate is a system consisting of the atmosphere, 
hydrosphere, lithosphere and the biosphere (Figure 1) 
[1]. Thus, soil moisture (as influenced by infiltration, 
runoff and evaporation), vegetation and glaciers are 
part of the climate system. Whereas melting of the 
glaciers and ice have received considerable attention 
by the scientif ic community and the media, the 
importance of terrestrial ecosystems in general, and 
of world soils in particular, on the long- and short-
term global carbon cycle (GCC) have not received the 
attention they deserve [2–12]. 

Rather than global warming, climate change at a 
rapid pace (while being nonuniform and not benign), 
may be appropriately called ‘global climate disruption’ 
[13]. Some of the feedback processes [14] that moderate the 
effect of GCC on climate change are not well understood 
[15]. The importance of these feedback processes include 
the effects on the marine carbon cycle [16], weathering 
rates [17] and the terrestrial carbon cycle (TCC). The 
TCC comprises of the carbon exchange between pools 
in vegetation and the soil with those in the atmosphere 
and ocean. World soils are a major component of the 

terrestrial carbon pool, and have been a net source of 
GHGs since the beginning of agriculture [18].

Thus, the objective of this article is to describe 
the effects of anthropogenic activities on soil carbon 
dynamics, discuss factors/scenarios that make world 
soils a source or sink of atmospheric CO

2
, CH

4
 and 

N
2
O, deliberate on opportunities and challenges of 

sequestering carbon in soils, and identify research and 
development priorities.

Terrestrial ecosystems & the GCC
Terrestrial carbon plays an unparalleled role in 
all terrestrial life, and strongly impacts numerous 
ecosystems services and human well-being [19]. 
However, the GCC and its related biogeochemistry 
are not well understood [18]. There are two components 
of the GCC; short term and long term. The short-term 
GCC involves the exchange of carbon between the 
atmosphere, biosphere, hydrosphere and pedosphere. 
Carbon is exchanged among these reservoirs over a 
decadal/centennial scale in near surface and shallow 
environments through both biotic and abiotic 
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processes. Principal near-surface 
processes include combustion/
decomposition of biomass, burial of 
carbonaceous sediments, exchange 
of CO

2
 between the ocean and 

the atmosphere, and the exchange 
between the atmosphere and biota 

[20,21]. In contrast, the long-term GCC involves deep 
materials/reservoirs within the Earth that may contain 
more than 90% of the Earth’s total carbon pool [22]. 
The deep processes are not well understood and occur 
at a millennial time scale. Carbon exchange with 
deep processes occurs through volcanic eruption, 
subduction, weathering of silicate minerals, deep 
life, deep hydrocarbon reservoirs, and so on [23]. 
There exists large microbial life in both terrestrial 
and marine environments [24,25]. Pools of carbon in 
various reservoirs involved in the long-term GCC over 

the millennial scale are in orders of magnitude larger 
than those involved in the short-term GCC [20].

Land is a principal component of the TCC, and 
the knowledge of carbon exchange between the 
atmosphere, ocean and land is important [26]. While 
fossil fuel has been an important source of atmospheric 
CO

2
, especially since approximately 1950 [13], land use 

and land-use change have been major sources since 
the dawn of settled agriculture, for 10–12 millennia 
[27], and have also been a major factor since 1850 [28]. 
The fraction of the cumulative human-induced CO

2
 

emission total at present is approximately 25% [28]. The 
carbon pool in forest biomass is considered to be the 
so-called ‘missing carbon sink’ [29], and is important in 
balancing the global carbon budget [30]. There has been 
a net CO

2 
uptake by land (and oceans) for a 50-year 

period between 1960 and 2010 [31]. While the southern 
ocean sink may have stopped growing [32], most land 

Key term

Soil carbon sequestration: The transfer 
of atmospheric CO2 into the soil carbon 
pool as humus or secondary 
carbonates, such that it is preserved in 
the soil for a long time.
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Figure 1. Four components of the climate system and the interactions among them.
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regions (especially in the tropics) are a substantial CO
2
 

sink [33]. Forest carbon storage and its management 
have an important impact on GCC [34]; thus, there are 
global consequences of land use [35,36]. However, there 
are major uncertainties in the terrestrial carbon budget 
associated with land-use change, probably due to a lack 
of precise knowledge about the soil carbon pool and 
its dynamics [37]. The fractional uptake of the annual 
anthropogenic emission of CO

2
 by natural sinks (i.e., 

ocean, forest, soils) has been progressively declining 
between the 1960s and 2011 (Figure 2) [38,301].

Geologic sequestration
Global climate change is perceived by some as an 
engineering problem, and f ixing the planet by 
engineering is a feasible option. Some proposed 
geoengineering techniques (e.g., short-wave climate 
engineering) have a large mitigation potential [39,40] 
but are controversial [41] and expensive [302]. However, 
the strategy of carbon capture and sequestration into 
geological strata is being vigorously pursued as the 
so-called ‘clean coal technology’ to mitigate climate 
change and permit the use of relatively cheap and 
abundant fossil fuel in the form of coal [41–43]. With 
the goal of limiting global warming to a 2°C increase 
in temperature, there is a finite amount of fossil fuel 

that can be burned. The maximum amount of fossil 
fuel that can be burnt to stay within an internationally 
agreed maximum target of 2°C is much less than the 
amount that is known to exist as proven reserves, and 
indeed also less than the amount that business has plans 
for extraction. Assuming that 4 Pg of fossil carbon 
burned raises the atmospheric CO

2 
concentration by 

1 ppmv, the amount of carbon that can be burned 
is 4× (560–390 ppm) = 680 Pg [44]. The size of the 
so-called ‘carbon pie’ is determined by the target of 
the atmospheric CO

2
 concentration stabilization, 

and on the assumption that 4 Pg of emission equals 
1 ppmv of CO

2
. It is widely perceived, however, that 

these assumptions may not be valid [45]. Nonetheless, 
there is a limit to the amount of fossil carbon that 
can be burned. Thus, there are numerous scenarios 
proposed to contain atmospheric CO

2
 [46,47]. Some of 

the wedges proposed by Pacala and Socolow comprise 
of carbon sequestration in the terrestrial biosphere 
through phytosequestration in forest and soil carbon 
sequestration [46].

Carbon sequestration in terrestrial ecosystems
Phytosequestration is a natural process of reducing 
the atmospheric concentration of CO

2
. The annual 

f luxes of carbon between the atmosphere and land, 
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Figure 2. Temporal changes in carbon absorption capacity of natural sink between 1960 and 2011.  
Redrawn from [38,301].
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and atmosphere and oceans, are 123 and 92  Pg, 
respectively [48]. The gross primary productivity (GPP) 
comprises several components:

(Equation 1)

(Equation 2)

(Equation 3)

where Ra is plant respiration, NPP is net primary 
productivity, NEP is net ecosystem productivity, 
Rh is heterotrophic respiration, NBP is net biome 
productivity, and Lc is loss of carbon by harvesting, fire, 
erosion, and so on. The GPP of 123 PgC/yr is reduced 
by 60 PgC/yr as plant respiration (Ra), leaving a net 
primary productivity (NPP) of approximately 63 PgC/
yr. Of this, the net ecosystem productivity (NEP) is 
approximately 10 PgC/yr because of the heterotrophic 
metabolism (Rh) of approximately 53 PgC/yr [48]. The 
magnitude of Rh has been estimated to be as high as 
68  ±  4  PgC/yr [49]. The amount of carbon as NEP 
(10 Pg/yr) can persist in the terrestrial biosphere for 
decades to centuries to millennia [48]. However, NEP 
is further reduced by fire and other disturbances 
(Lc). Therefore, the remaining carbon as net biome 
productivity (NBP) is approximately 3 Pg/yr, with a 
range of 0.3–5  Pg/yr. Thus, management of NEP/
NBP has the potential to offset some anthropogenic 
emissions [50]. Dyson opined that CO

2
 generated by 

burning fossil fuels can theoretically be controlled by 
growing trees [51]. He observed that “ if we control what 
plants do with carbon and can restore the pool in the 
terrestrial biosphere, the fate of CO

2
 in the atmosphere is 

in our hands”. Therefore, the potential carbon storage 
capacity of the terrestrial biosphere using present and 
new techniques has been widely recognized [52,53]. It is 
in this context, therefore, that Hansen et al. proposed 
that while targeting atmospheric CO

2
, humanity should 

aim at sequestering carbon in forestry and soils, which 
have a drawdown potential of 50 ppm by 2150 [54]. 
However, amplification of the hydrological cycle by 
global warming may impact ecosystem water balance 
and adversely affect NBP [55]. Drier summers can cancel 
out CO

2
 uptake, as was the case during 2012 in the USA 

[56]. Temperature is a strong determinant of the growth 
of boreal forests [57], and of dynamics of soil organic 
carbon (SOC) [58].

Soil carbon & the GCC
World soils can be a source or sink of anthropogenic 
CO

2
, which is an important GHG in the atmosphere 

with a strong radiative forcing [59]. The soil carbon pool, 
the largest reactive carbon in terrestrial ecosystems, 

may be as much as approximately 4000 Pg (1015 g) to 
3‑m depth (in view of the revised estimates of carbon 
in the permafrost) [60]. It comprises of two distinct 
components: SOC and soil inorganic carbon (SIC) 
pools. While the important role of the soil carbon 
pool in the GCC is widely acknowledged, there are 
numerous uncertainties that accentuate complexities 
and confound interpretation: 

�� Increased atmospheric CO
2
,
 
which may indirectly

 

accentuate
 
soil emissions of major GHGs (CO

2
, CH

4
, 

N
2
O) [61]; 

�� Alteration in the rate of carbon uptake by the soil and 
vegetation of tropical biomes by the current and 
projected climate change [62]; 

�� Impact of chemical weathering of silicate rocks in 
altering terrestrial sinks and reducing radiative force 
[63]; 

�� Unknown fate of carbon transported by soil erosion, 
which has been a major carbon sink over geologic time 
through the burial of carbon in the ocean and 
depressional sites [64], but may be a major source of 
carbon because of accelerated erosion on 
agroecosystems [65];

�� A possible positive feedback from permafrost, which 
is a carbon sink at present and may become a source 
due to positive feedback [66]; 

�� Decreasing efficiency of natural sinks (Figure 2) [38], 
probably due to soil and land degradation;

�� The transient nature of carbon sequestered in soils 
and incomplete understanding of the mechanisms of 
stabilization of soil organic matter (SOM). 

Some of the complexities and uncertainties, such as 
those caused by black carbon/soot [67] and accelerated 
erosion [64,65], must also be addressed.

Because of its large magnitude (4000 Pg to 3‑m 
depth), changes in the soil carbon budget can have a 
large effect on the GCC. Therefore, understanding the 
properties and dynamics of SOC both under natural and 
managed ecosystems is critical to balancing the GCC. 
However, there are several unknowns and challenges 
that need to be addressed to fully realize the potential 
[68]. A major challenge lies in accurately measuring and 
modeling inputs and losses of carbon from soils, which 
necessitates a thorough understanding of the major 
processes involved and the interaction of these processes 
with soil characteristics. In theory, the rate of change 
in the SOC pool is simply computed as the difference 
between carbon input and loss from the soil. In practice, 
however, these computations are confounded by the 
fact that fluxes related to carbon input and losses are 

GPP NPP Ra= +

[ ]NEP GPP Ra Rh= - +

NBP NEP Lc= -
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extremely large in comparison to the relative change in 
the SOC pool over a short period of 1–2 years. Thus, 
it is extremely difficult to separate the signal from the 
large background noise. However, on a global scale, 
agricultural land use and management can explain 
historic changes in the SOC pool [69]. With careful 
modeling and measurement, however, changes in the 
SOC pool related to the effects of elevated atmospheric 
CO

2
 concentrations can be assessed [70], as can the 

effects of irrigation of desert soil on the SOC pool [71], 
as well as those of land use and soil/crop management.

Mechanisms of stabilization of SOC
Any gains in the SOC pool through adoption of 
restorative land use and recommended management 
practices (RMPs; see ‘Fate of carbon transported 
by erosion’; ‘Soil carbon sequestration in managed 
ecosystems’; ‘Opportunities for enhancing soil carbon 
sinks’; and ‘The challenge of measurement and 
monitoring of soil carbon pool’ sections) must be 
protected against losses by heterotrophic respiration 
(Rh; Equation 2), accelerated soil erosion and leaching. 
Thus, understanding the mechanisms of stabilization of 

the SOC pool is crucial to increasing the mean residence 
time (MRT) and offseting anthropogenic emissions [72].

In addition to the effect on climate, the magnitude 
of the SOC pool also depends on soil texture, clay 
minerals, landscape position, and a range of other 
biotic and abiotic factors [73]. However, there are 
several determinants of stabilization of the SOC pool 
that affect its MRT (Figure 3). Principal mechanisms of 
SOC stabilization have been described by Six et al. [74]. 
Important among these are discussed below.

�  � Physical protection
The SOC pool in the surface layer, the zone of frequent 
managerial manipulations and prone to erosional 
processes, is subject to drastic perturbations in croplands 
compared with shrublands, grasslands and forestlands. 
Thus, physical protection of the surface SOC pool is 
crucial to enhancing its MRT. 

Deep placement
Jobággy and Jackson reported that, relative to the first 
1 m, the percentage of carbon in the top 20-cm layer is 
33% for shrublands, 42% for grasslands and 50% for 
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forests [75]. The amount of SOC in 
the second and third meter relative to 
the first meter is 77% for shrublands, 
56% for forests and 43% for 
grasslands. Sequestration of SOC in 
subsoil horizons, by growing plants 

with a deep root system, can provide physical protection. 
Lorenz and Lal observed that sub-soil below 1‑m depth 
has a large carbon sink capacity [76]. Depth distribution 
or stratification of the SOC pool also influences water 
infiltration rates and structural properties [77]. Thus, there 
is a need for 3D mapping of the SOC pool by developing 
soil-specific depth functions [78].

Clay mineralogy
Both SOC storage and MRT depend on the interaction 
between SOC and the clay fraction in the formation 
of organo–mineral complexes or stable aggregates. In 
tropical soils, Bruun et al. observed that SOC lability 
may be significantly influenced by clay mineralogy but 
not by clay content [79]. Furthermore, the lability of SOC 
may be in the order of smectitic soils > kaolinitic soils > 
allophanis soils = chloritic soils. Bruun and colleagues 
suggested that the validity of predictive models of all 
SOC turnover in tropical soils would be improved by 
the inclusion of soil types and content of Fe and Al 
(hydro) oxides [79]. 

Landscape position
SOC has a low density and is easily transported by water 
and wind. Thus, landscape position strongly affects the 
SOC pool and its vulnerability to erosional processes. In 
soils of northern latitudes, the north-facing slopes may 
contain more SOC than south-facing slopes. In general, 
foot/toe slopes contain more SOC pool than summit or 
side slopes. In a landscape prone to wind erosion (e.g., the 
Loess Plateau in China), wind erosion of the shady slope 
can reduce the SOC pool relative to the sunny slope [80].

Humification & humic fractions
Some humic fractions are stable because of either their 
inherent chemical composition (e.g., polyphenols, 
seubrin) or attained by transformation during 
decomposition through complexation and condensation 
[81,82]. Soil management [83] and cropping systems [84] 
can impact humic fractions and the molecular structure 
of organic matter; however, there exists a growing 
skepticism toward the humification concept [85]. Thus, 
the importance of recalcitration to the stabilization of 
SOC is questionable [86]. Dungait et al. argued that 
the chemical composition of different pools (labile, 
intermediate, passive/recalcitrant) is not predictable 
and proposed that SOM turnover is governed by 
accessibility rather than recalcitrance [87].

Stable aggregates
Encapsulation of carbon within stable microaggregates 
protects SOC against microbial processes. Six et al. 
outlined four historical milestones that enhanced the 
understanding of physical protection of SOC within 
aggregates [74], including: 

�� A model proposed in 1959 depicting soil crumb 
formation from domains [88];

�� The formation of organo–mineral complexes from 
interaction between SOC and polyvalent cations [89];

�� The aggregate hierarchy concept proposed by Tisdall 
and Oades [90];

�� The formation of microaggregates within macro
aggregates [91].

 Arbuscular mycorrhizal fungi and glomalin also 
enhance and stabilize aggregates [92]. The fungal 
colonization of particulate organic matter is crucial 
to the formation of aggregate and SOC dynamics [93]. 
Notwithstanding complexities and uncertainties, a 
Carbon Management Index has been proposed based on 
the degree of oxidation of SOC fractions under diverse 
agroecosystems [94]. 

Fate of carbon transported by erosion
Because the global carbon budget cannot presently be 
balanced, it has been suggested that current estimates of 
agricultural sources and sinks may be erroneous and that 
erosion-induced transport of SOC may be unaccounted 
for [95]. Erosion-induced displacement of SOC can 
be large [65] and is estimated to be 1.6 + 0.1 PgC/yr 
between 1901 and 2100 [96]. Such a large magnitude of 
displacement can strongly affect the GCC [97].

Soil erosion is a four-stage process: detachment, 
dispersion, transportation and redistribution, and 
deposition. The physical process of erosion and 
distribution affect SOC distribution and its vulnerability 
to decomposition by several interactive mechanisms [65]. 
Tillage (plowing) plays an important role in aggravating 
erosional losses and altering SOC distribution [98]. Erosion 
risks in the USA and elsewhere may be aggravated by 
climate change [99]. Important among these are: 

�� Breakdown of aggregates and exposure of SOC to 
microbial processes;

�� Change in soil moisture and temperature regimes, 
leading to increases in decomposition;

�� Anaerobic decomposition under depositional 
conditions, causing emissions of CH

4
 (and N

2
O) with 

high global warming potential;

�� Reduction in NPP on eroded sites because of 
degradation in soil quality. 

Key term

Soil quality: Inherent ability of the soil 
to perform functions relevant to 
pedological, biogeochemical and 
ecological processes.
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Whereas some SOC transported by erosion may be 
buried in aquatic ecosystems [64], it is nonetheless highly 
prudent to minimize erosional losses from agroecosystems 
by the adoption of conservation-effective measures. 
Nonetheless, the relative magnitude of SOC loss from 
agroecosystems by erosion versus mineralization is not 
known for all site-specific situations [100]. Transport 
of SOC to lower landscape positions may also release 
some of it to streams and to the atmosphere [101]. Being 
a dominant factor in altering GCC, erosional impacts on 
the fate of carbon must be studied at a range of spatial 
scales, from aggregate to large watersheds.

Soil carbon sequestration in managed 
ecosystems
Soils in most agroecosystems are depleted of their 
SOC pool because of the negative budget caused by 

erosion, mineralization, leaching, residue removal and 
adoption of extractive farming practices [65]. Therefore, 
conversion to a restorative land use and adoption of 
RMPs on cropland, grazing lands and forestlands 
can restore the SOC pool while also adapting to and 
mitigating climate change.

�  � Croplands
Soil quality is strongly influenced by SOM and its 
dynamics through influences on physical, chemical, 
biological, and agroecological properties and processes 
(Figure 4). However, cropland soils are strongly depleted 
of their SOC pool, and the extent and severity of soil 
degradation depend on the magnitude of SOC depletion. 
The magnitude of depletion is high in soils prone to 
accelerated erosion and those managed by extractive 
farming practices. Thus, degraded and depleted soils 
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have a large unfilled SOC sink capacity. The SOC pool 
of soils of arable lands can be enhanced by the adoption 
of RMPs, which create a positive soil/ecosystem 
carbon budget including no-till (NT) farming or 
conservation agriculture (CA), cover cropping, complex 
crop rotations, agroforestry and integrated nutrient 
management. Applications of manure/compost and 
other biosolids can be useful to enhancing the SOC 
pool, but involve logistical problems of access and 
availability.

CA is a promising technology because of its effectiveness 
in conserving soil and water, reducing diesel consumption 

and improving soil biodiversity 
[102]. Beginning in the early 1960s, 
CA has now been adopted on 
approximately 125 million ha (Mha) 
or approximately 8.5% of global 
cropland area [103]. Of this 125 Mha, 
45% is in South America, 32% in 
North America, 14% in Australia 

and New Zealand, 4% in Asia, 3% 
in Russia and the Ukraine, and only 
1% each in Europe and Africa [103]. 
Thus far, CA has not been adopted by 
small landholders of Asia, Africa and 
elsewhere in developing countries.

In general, conversion of plow 
tillage (PT) to CA enhances the SOC 
pool and improves the properties of 
the surface layer [104–111]. However, 
there have been questions regarding 
any substantial increase by CA in the 
SOC pool in the subsoil [112–114] and 
inconsistent increases in others [115]. 
In addition to differences in depth 
distribution of the SOC pool among 
tillage methods, the SOC pool is 
also affected by the duration of CA. 
Measurable changes in the SOC 
pool, even in the surface layer upon 
conversion from PT to CA, may 
take several years, with a peak rate 
of increase between 5 and 10 years 
and continuation of accretion for 
more than 25  years (Figure  5). In 
Saskatchewan (Canada), Campbell 
et al. reported that the conversion 
of PT to NT increased SOC and 
nitrogen concentrations to 15‑cm 
depth, and that inputs of crop 
residues and other biomass were the 
main factors influencing the SOC 
change [113]. McCarty et al. reported 
changes in SOC and nitrogen pools 

after 3 years of conversion to CA [116]. Their data showed 
that transformation of the soil profile from that typical 
of PT to one characteristic of NT occurred rapidly 
within 3 years. During this period, stratification of SOC 
in the profile progressed along with substantial changes 
in SOC (38%), nitrogen (30%), biomass carbon (33%) 
and biomass nitrogen (87%) in the surface layer of CA, 
but decreases (7, 6, 15 and 35%, respectively) in the 
subsoil. Short-term (15  months) effects of cropping 
systems on potentially mineralizable carbon have been 
reported from a tropical soil in India [117]. In Indiana, 
Gál et  al. assessed tillage-induced differences in the 
SOC pool to 1‑m depth in six depth increments [118]. 
They observed that increases in the SOC pool with 
CA relative to PT were 23 Mg/ha to 30‑cm depth but 
only 10 Mg/ha to 1‑m depth. The depth distribution of 
SOC differed among two tillage systems, with relatively 
higher concentrations in the surface layer of CA and 
substantially more in the sub-soil of PT (Figure 6). The 
bulk density of the surface soil in CA is higher in the 
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Within severely degraded soil, the time to attain steady state decreases with adoption of 
complex rotation, cover cropping and manure application. The rate and time of the maximum 
soil organic carbon concentration (DY/DX) also depend on the severity of degradation and the 
management system. In severely degraded soils, there exists a threshold of 3–5 years before 
any measurable increase in soil organic carbon begins. 
CA: Conservation agriculture; PT: Plow tillage; SOC: Soil organic carbon.

Key term

Soil aggregation: Secondary particles 
formed through flocculation of primary 
clay and silt particles by polyvalent 
cations and cementation of floccules 
into stable structural units by humic 
substances, sesquioxides, fungal 
hyphae and microbial byproducts. 
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surface than in PT. Because of the plow pan, however, 
bulk density is generally higher just beneath the plow 
layer (Figure 6).

Whereas much research has been done in the USA 
and Brazil, relatively little research on SOC dynamics 
under CA has been done elsewhere, especially in 
dry-land farming systems [119]. In Perugia (Italy), 
Perucci et al. reported the positive effects of residue 
incorporation (vs removal) on soil quality and noted 
that SOC concentration was positively correlated with 
key soil practices [120]. In Sweden, Etana et al. reported 
that shallow tillage increased SOC concentrations in the 
surface layer but decreased it in deeper layers [121]. In 
the Mediterranean region of Spain, López-Garrido et al. 
reported on the depth distribution of SOC and other 
properties under two diverse tillage systems [122]. Their 
data showed more accumulation of SOC in the near 
surface under NT and reduced tillage compared with 
traditional tillage, and concluded that analysis of soils 
at depth could be very useful in long-term experiments 
to access the effects of CA. In South Africa, Preez et al. 
reported a decline in SOC as a result of agricultural 
land use and identified land use and management 
practices needed to restore the SOC pool for sustaining 
productivity [123,124].

West and Post synthesized a global database of 67 
long-term agricultural experiments consisting of 276 
paired treatments [125], and Post and Kwon described 
processes and potential by land use change [126]. The 
data indicated that conversion from PT to NT to CA can 
on average sequester 57 ± 14 gC/m2/yr. Furthermore, 
SOC sequestration rates can be expected to peak in 
5–10  years, with SOC reaching a new equilibrium 
in 15–20 rears. A schematic showing a generalized 
sigmoidal response is outlined in Figure 5.

Tillage systems also affect soil aggregation and aggregate 
stabilization. In general, CA systems exhibit increased 
aggregation [127]. Zibilske and Bradford investigated the 
effects of 13 years of diverse tillage systems and observed 
that aggregation in 0–5-cm depth was significantly 
greater under NT than PT systems, and aggregate 
carbon and nitrogen concentrations were 60 and 100% 
greater under NT than PT [128]. Simpson et al. observed 
that microbial-derived SOC is stabilized in NT soils, 
primarily due to a greater fungal-mediated improvement 
of soil structural stability and concurrent deposition of 
fungal-derived carbon in microaggregates contained 
within macroaggregates [129]. In Romania, Moraru and 
Rusu observed that adoption of CA (minimum tillage) 
increased the SOC concentration from 0.8 to 2.2% and 
water-stable aggregation from 1.3 to 13.6% at 0–30-cm 
depths [130]. In Switzerland, Weisskopf et al. observed 
clear quantitative and qualitative differences in structural 
regeneration among management practices [131]. Thus, 

soil quality indices have been developed to characterize 
tillage-induced differences in soil parameters [132].

Because of the differences in soil quality, and in 
the amount of recalcitrance of SOC and its fractions, 
gaseous emissions from soils also differ among tillage 
systems. Soil temperature is the driving factor on 
gaseous emission from soil [133]. While CH

4
 may be 

oxidized under NT/CA, because of favorable structure, 
N

2
O emissions may be more from CA than PT systems 
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Figure 6. Generic trends. (A) Bulk density of soil profile and (B) soil organic 
carbon concentration profile under the conservation agriculture and plow 
tillage system. 
SOC: Soil organic carbon.
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because of surficial characteristics. In addition, soil 
nitrites can also inf luence gaseous emissions and 
affect atmospheric chemistry [134]. The rate of SOC 
sequestration in cropland soils has been estimated at 
120–270 Tg/yr for the USA [135] and 9–120 Tg/yr for 
Europe [136].

The available literature can be summarized as follows:

�� Conversion of PT to CA can enhance the SOC pool 
in the surface layer;

�� Increase in the SOC pool under CA to 1‑m depth is 
variable and may be more under PT in some situations; 

�� Conversion to CA improves aggregation and reduces 
losses by soil erosion;

�� Soils under CA can oxidize CH
4
, but may enhance 

N
2
O emissions;

�� There are savings in fuel use under the CA system, 
thereby favorably affecting the net ecosystem carbon 
budget; 

�� Conversion to CA may also increase adaptation to 
extreme climate events (e.g., 
drought) by conserving water in the 
root zone.

�  � Grazing lands/grasslands
Of the ice-free global land surface, 
grazing lands occupy 25.3% 

of the land area compared with 
12.8% under cropland (Figure  7) 
[137]. The world’s grazing lands 
with a total area of approximately 
3.5  billion ha (Bha) constitute a 
large reservoir of soil carbon and 
play an important role in the GCC 
because grasslands contain 20% of 
the global SOC stocks [138]. Change 
in land use and management can be 
a strategic undertaking to enhance 
SOC sequestration in rangelands 
[139–141]. Preez et al. indicated that 
overgrazing of rangeland has resulted 
in significant losses of SOC, and 
approximately 58% of soils studied 
contain <0.5% SOC and barely 4% 
contain >2% [123,124]. The use of fire 
in rangeland management decreases 
the SOC because litter is destroyed 
by burning. Thus, controlled grazing 
and restricting burning may restore 
degraded rangelands and enhance 
the SOC pool. 

There is a growing interest in the 
effect of climate change on NPP and the SOC pool 
in grasslands. Van Dasselaar and Lantinga developed 
a simulation model of the carbon cycle of grasslands 
(CCGRASS) in Holland to assess the long-term effects 
of different management strategies on SOC sequestration 
[142]. They observed that the rate of increase in the 
amount of SOC is the highest at low-to-moderate rates 
of application of nitrogen, because of the stimulated 
growth of unharvested plant parts (roots and stubble), 
and higher under grazing than under mowing as a result 
of a greater amount of carbon added to the soil. Van 
Dassalaar and Lantinga also observed that increase in 
atmospheric CO

2
 concentration may induce an increases 

in the decomposition rate of the SOC because of a 
simultaneous increase in temperature [142]. Thus, there 
may be 2% less SOC sequestration by grasslands at the 
end of 100 years because of a predicted 3°C increase in 
temperature. A simulation study on grassland responses 
to global environmental changes in California by Shaw 
et al. indicated that elevated CO

2
 may increase NPP, but 

may also suppress root allocation, thereby decreasing the 
positive effects of increased temperature, precipitation 
and nitrogen deposition on NPP [143]. Luo et al. studied 
the effects of artificial warming by 2°C on soil respiration 
in a tall grass prairie ecosystem in the US Great Plains 
[144]. Their data show that the temperature sensitivity of 
soil respiration decreases or acclimatizes under warming, 
and that acclimatization is greater at high temperatures. 
Luo and colleagues concluded that this acclimatization 
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Figure 7. Global land use in 2007. Total land of ice-free Earth surface = 13.01 billion ha. 
Adapted from [137].

Key term

Secondary carbonates: Precipitation of 
dissolved CO2 in the soil air as a weak 
carbonic acid as carbonates of Ca2+, 
Mg2+ and other cations added from 
external sources (e.g., amendments, 
aeolian deposition, water run on).
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of soil respiration to warming may weaken the positive 
feedback. Thus, there are several uncertainties regarding 
the possible effects of predicted climate change on the 
carbon cycle of grasslands. Therefore, long-term field 
experiments are needed to assess the impact of land use 
and management on the SOC pool and its dynamics in 
grassland ecosystems.

A 4-year study conducted in northeast Thailand by 
Noble et al. indicated that the application of nitrogen 
fertilizer on light-textured soils, characterized by 
acidic conditions on the sub-soil, increased the SOC 
pool and caused strong carbon sequestration [145]. 
However, strong acidification can also occur. There is 
a significant impact of root-carbon inputs on the SOC 
pool in grassland ecosystems, which can be as much 
as 50% of NPP. The input of root-derived organic 
carbon many range from 0.1 to 2.8 Mg C/ha/season 
[136]. While quantifying the magnitude of inputs from 
different processes is difficult, separating heterotrophic 
from root respiration is also a major challenge. Several 
studies show that soil respiration may vary from 4 to 
26 Mg C/ha/yr depending on soil type, tillage methods, 
drainage, grazing and manure management [136]. There 
are also compositional relationships between the SOC 
pool and soil drainage [146].

Whereas the carbon footprint of dairy production 
systems can be large [147], there is indeed a vast SOC 
sequestration potential of grassland ecosystems 
[139,148,149]. Follett et al. estimated the total potential of 
US grazing land for carbon sequestration and fossil fuel 
offset at 29.5–110.1 Tg C/yr (mean: 69.8 Tg C/yr) [150]. 
Conant estimated that many management techniques 
intended to increase livestock forage production have the 
potential to increase SOC pools by 54.5–218.2 Tg C/yr 
[138]. Methods of improved management to achieve these 
rates include fertilization, irrigation, intensive grazing 
management, and sowing of more favorable grasses 
and legumes. Nonetheless, the hidden carbon cost of 
most inputs must be considered while assessing the net 
sequestration rate. Emissions of CH

4
 and N

2
O may be 

enhanced by intensive grazing management.
Similar to croplands, soils of grazing lands also have 

a large potential to sequester CO
2
 both as SOC and 

SIC. However, management options are limited and 
primarily involve controlled grazing, managing or 
reducing fire, and improving forage species. Because 
of the large land area (3.5 Bha), grazing lands have a 
large carbon sink capacity. The research information 
is sparse, especially with regards to the dynamics of 
secondary carbonates.

�  � Forest lands
The evolution of forests have played a major role in 
the GCC. The increase in the area under forest cover, 

following the glacial retreat 15–20 millennia ago, 
enhanced the terrestrial carbon pool and reduced the 
atmospheric concentration of CO

2
 [151]. It is also argued 

that early Paleozoic GHGs may have been reduced by 
the evolution of rhizospheres in forest soils [152]. Forests 
ecosystems cover 4.13 Bha or 31.7% of the Earth’s 
ice-free surface. Of this, 0.24 Bha is logged forest and 
0.27 Bha is forest plantation (Figure 7). Together, forest 
vegetation and forest soils contain approximately 1500–
1800 PgC [153]. Of this pool, 37% is in low-latitude 
forests, 14% is in the mid-latitudes and 49% is in 
high-latitude forests. A large proportion of the global 
SOC pool is contained in forest soils and associated 
peat deposits [153]. The proportion of carbon stored in 
soils is increased in the order of tropical, temperate and 
Boreal [154]. Temperate forests cover a total land area of 
0.77 Bha [151]. Soils under temperate forests may contain 
approximately 100 Mg C/ha in the entire profile and 
often more [153]. Under the protective effect of vegetation 
cover, along with that of the detritus material and leaf 
litter, the SOC pool in soil under forest is protected 
against erosion and other perturbations. Harrison et al. 
estimated that soils of the UK contain 22 PgC compared 
with 115 Tg, which is contained in all vegetation [154]. 
However, 96% of all soil carbon in the UK is contained 
in peat (see the following section). 

The carbon pool in the above-ground biomass is 
also recalcitrant because tannins make up a significant 
portion of forest carbon pools, and foliage and bark may 
contain up to 40% of tannins [155]. Being recalcitrant, 
tannins can affect nutrient cycling by hindering 
decomposition rates, complexing proteins and inhibiting 
enzyme activities. The presence of tannins can reduce 
nutrient losses in soils of low inherent fertility, such 
as those of the tropical rainforest (TRF) [155]. In TRF 
ecosystems, the below-ground allocation of carbon in 
deep-rooting forests is large (~19 Mg C/ha/yr) compared 
with that in the detritus material (4.6 Mg C/ha/yr). 
Thus, the presence of live roots influences the carbon 
cycle to below 1-m depth. Trumbore and colleagues 
[156] estimated that up to 15% of the carbon in deep 
soil has turnover times of decades [156]. Furthermore, 
the magnitude of fast-cycling SOC between 1 and 8‑m 
depths (20–30 Mg C/ha out of 170–180 Mg C/ha) is 
large in comparison to the SOC pool in the top 1‑m of 
the soil profile (30–40 Mg C/ha out of 100–110 Mg 
C/ha) (Figure 8). Thus, the SOC pool in sub-soil carbon 
below 1‑m depth must be considered in assessing the 
soil/ecosystem carbon budget. 

Whereas deforestation and conversion of forests to 
agro ecosystems depletes the SOC pool and releases 
approximately 2 Pg C/yr, reforestation of arable lands 
can enhance the SOC/terrestrial carbon pool. In a 
study in South Carolina (USA), Richter et al. observed 
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that of the total carbon absorbed 
in reforested lands, trees accounted 
for 80%, the forest floor 20% and 
mineral soil <1% of the carbon 
accretion [157]. Sequestration of 
carbon in mineral soils is limited 
by rapid decomposition, especially 
in coarse-textured soils containing 

low-activity clay minerals. Nonetheless, conversion of 
lowland (and some upland) croplands to forests can 
result in carbon accretion in soils [154]. In this context, 
plantation forest management can also enhance the 
carbon pool in the soil and biomass [151,158]. 

Soils under forest ecosystems, because of their 
large area and low disturbance, are important to 
SOC sequestration. In addition to afforestation and 
reforestation, avoiding deforestation of TRF is also an 
important strategy. Species with deep root system can 
transfer carbon into the subsoil and increase its MRT.

�  � Peatlands
Peatlands or hydromorphic soils cover a land area 
of 1.74  Bha or approximately 13% of the Earth’s 
land surface. Of these, Histosols cover 0.25 Bha 
or approximately 1.9% of the Earth’s land surface. 
Peatlands have a high carbon density [159,160], and 
may contain 1230–2640 Mg C/ha to 2‑m depth 
[161]. Miller et al. reported a SOC pool in the frigid 
southern Appalachian mountain soils of 112 Mg C/
ha [162]. Cryosols are also a major carbon reservoir and 
may contain 1400–1700 Pg [163]. Northern peatlands 
cover 0.3 Bha or 2.3% of the Earth’s surface area and 
constitute a significant carbon sink and major CH

4
 

source [164]. Estimates of the total carbon reservoirs in 
the world’s peatlands vary widely. The mean value of 
the SOC pool is estimated at 1501 Pg carbon, with a 
range of 963–2057 Pg [66]. It is on this basis that the 
total carbon pool in the world’s soils to 3‑m depth is 
estimated at approximately 4000 Pg (see ‘Soil carbon 
and the global carbon cycle’ section).

Drainage, deforestation and tillage lead to rapid 
depletion of the SOC pool of peatlands. The average rate 
of loss of peatlands by cultivation (drainage, tillage) in 
temperate climates can be 1–2 cm/yr [165,166]. Drainage, 
deforestation and cultivation of tropical peatlands can 
lead to a large carbon debt [156]. Undrained and natural 
peatlands are a small sink for atmospheric CO

2
.

Projected climate change may also thaw cryosols, 
create a positive feedback and drastically impact the 
GCC [167]. Global warming, predicted to be the most 
severe at high latitudes, may impact the SOC pool in 
cryosols of Tundra and Boreal ecosystems. Mack et al. 
conducted long-term fertilization experiments in the 
Alaskan Tundra and observed that increased nutrient 
availability caused a net ecosystems loss of almost 
20  MgC/ha over 20-year period [168]. Therefore, 
restoration of drained peatlands is considered to be an 
important strategy to mitigate climate change. The goal 
of peatland restoration is to regenerate a self-sustaining 
and naturally functioning wetland ecosystem that is 
a carbon sink. Rewetting and raising the water table 
to encourage establishment of wetland vegetation is 
essential to restoring drained peatlands.

Similar to protecting and restoring TRF eco
systems, preservation and restoration of peatlands is 
also important for enhancing terrestrial carbon sinks. 
Drainage and deforestation of peatlands must be 
prohibited. Restoration of wetlands can be promoted 
through payments to land managers for provisioning 
of ecosystem services.

�  � Shrublands/savannas
The world’s savannas cover 20% of the Earth’s land area 
and occupy 20 × 106 km2 in the tropics and 9 × 106 km2 
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Key term

Degraded soils: Soils with a reduced 
ability to perform ecosystem functions 
and services because of accelerated 
erosion, nutrient/elemental depletion 
and imbalance, salt accumulation in the 
root zone, adverse reactions, and so on. 
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in the temperate regions [169]. These ecoregions play a 
major role in the GCC [170]. The soil carbon pool of 
the savannas and grasslands may be 326–480 Pg C to 
1‑m depth, and contain a large amount of black carbon 
or charcoal. Native savannas are a sink of atmospheric 
CO

2
. A large portion of the world’s savannas are being 

converted into agroecosystems (e.g., Cerrados in Brazil 
and Llanos in Colombia). Adoption of NT farming (CA 
systems) on croplands and improved grazing systems on 
pastures can enhance the soil carbon pool. The rate of 
soil carbon sequestration in the Brazilian Cerrados is 
estimated at 0.3–1.15 Mg C/ha/yr through conversion 
to NT farming [171]. Savanna ecosystems, grasslands 
and rangelands have a high technical SOC sink capacity 
[169]. Re-establishments of shrubs on degraded soils of 
croplands and pasturelands can restore some of the 
depleted SOC pool. As a major determinant of soil 
quality, improving the SOC pool is essential for better 
crops and sustainable soil management [172].

�  � Urban ecosystems
Approximately 50% of the world’s population already 
lives in urban centers, and the urban population 
is expected to increase to 60% of the total by 2030 
and 70% by 2050 [173]. Urban ecosystems now cover 
approximately 3% of the terrestrial land area. Thus, 
urban ecosystems affect energy use and have a strong 
impact on the GCC, along with that on nitrogen, 
phosphorous, and water resources and cycling. 
Soils of residential areas have a high SOC density of 
15.5 ± 1.2 kg/m2 [174]. There are numerous options of 
SOC sequestration in urban soils through input of 
biomass carbon, an efficient use of water and nutrients, 
and recycling of biosolids [175–178]. Urban agriculture is 
also gaining prominence, with the goal of producing 
food locally and restoring abandoned lands [179]. Thus, a 
judicious management of urban ecosystems is important 
to choosing numerous options of adaption to and 
mitigating anthropogenic climate change. 

Opportunities for enhancing soil carbon sinks
Managing terrestrial carbon sinks in general, and soil 
carbon sinks in particular, provides an opportunity to 
meet the challenge of limiting global warming below 2°C 
[180]. There exists a vast potential for enhancing terrestrial 
and pedologic soil carbon sinks to mitigate anthropogenic 
climate change [181,182], and to strengthen ecosystem 
services through recarbonization of the biosphere [183]. 
Pedospheric carbon sinks can be enhanced by restoration 
of degraded soils and desertified ecosystems. Despite 
some uncertainties [112], NT farming and CA with 
cover crops and residue mulch is an important option 
to enhance soil carbon sinks in croplands [181,184–186]. 
Management of crop residues is of crucial importance 

in SOC sequestration [187,188], especially during the 
seasons adversely affected by drought (e.g., the 2012 
growing season in the US Corn Belt). Soil application of 
zeolite can improve soil water storage and soil nitrogen 
availability, and thus impacts SOC dynamics [189]. There 
are also opportunities for mitigating N

2
O emissions 

from croplands through management of fertilizers 
[190,191] and forest/rangeland [192]. Some options for 
reducing N

2
O emissions include modification of the 

rate, source, placement and timing of nitrogen fertilizer 
application. There are also opportunities for reducing 
CH

4
 emissions from livestock [193] and biogenic fluxes 

from other agroecosystems [194]. Intermittent drainage of 
rice paddies, and growing aerobic rice using alternative 
water regimes [195] and varieties [196], are among some 
other options [197]. However, these strategies must be 
objectively considered in view of the elevated CO

2
 

concentration in the atmosphere and projected increase 
in global temperatures [198]. A critical examination is 
needed to identify the true and the false [199], as well as 
options for soil management in relation to sustainability 
and ecosystem services [200]. Improving the database on 
the potential soil carbon sinks [201] and promoting RMPs 
are essential to realizing their potential. In this context, 
promoting the sustainable intensification of soils of the 
tropics is strategically important for advancing food 
security and adapting/mitigating to climate change.

Mitigating anthropogenic enrichment of atmospheric 
CO

2
 is a complex issue. There is neither a panacea nor 

a silver bullet. There is a menu of options for reducing 
emissions and sequestering emissions. Soil carbon 
sequestration is only one of those options, and has a small 
carbon sink capacity. Nonetheless, it is an important 
option with numerous co-benefits, and improving 
agronomic productivity and advancing food security 
is the most important. Enhancing the SOC pool to a 
level above the critical threshold is needed to improve 
soil quality and meet the food demands of a growing 
and increasingly affluent population. In addition, it also 
offsets some of the anthropogenic emissions.

The challenge of measurement & monitoring of 
the soil carbon pool
Whereas the global potential of soil carbon sinks is 
large, credible assessments of the sinks and the rate of 
change under diverse land uses and soil/crop/animal 
management systems remains a major challenge. The 
input of carbon into an ecosystem is through NPP, but 
the loss of carbon occurs through decomposition, erosion, 
leaching and fire. Despite the progress in developing 
protocols and standardizing methodology [202], it is 
the lack of credible quantification of these sources and 
sinks that is the basis of uncertainties [203]. Insufficient 
information about soil bulk density [204], lack of data on 
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depth distributions of soil carbon and its measurement in 
the subsoil, unstandardized techniques of measuring the 
pool and flux, problems with scaling up of laboratory/
greenhouse studies, insufficient knowledge about the 
effects of carbon input on reducing SOC concentration 
[205–207], discrepancies in computations of the SOC pool 
based on equal depth or mass basis [208], debate on the 
impact of soil erosion on emissions [65] or sequestration 

[64], questions about the permanence of the SOC pool and 
saturation of SOC sinks [81], and the doubts regarding 
the predictive power of the SOC pool change data from 
agricultural field experiments [209]. There are a lack of 
credible statistics on land area under different managed 
and natural ecosystems, the magnitude and dynamics of 
SOC/SIC pools (Figure 9A), the area and SOC/SIC pools 
under different soil orders (Figure 9A), and on the effect 
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of soil degradation on global SOC/SIC pools (Figure 9C). 
These challenges have exacerbated controversies and 
the debate. Despite significant advances in methods of 
measuring the SOC pool, even bigger challenges await 
in estimating the turnover time of active SOC pool, 
understanding the steady-state carbon input rate and 
the turnover time of SOC, studying the seasonal and 
annual dynamics of the soil carbon cycle and identifying 
the cause of recalcitrance are among the major challenge. 
Monitoring SOC change over large areas remains to be 
among one of the major challenges [210]. Models are 
an important tool in understanding SOC dynamics 
[211]. These are useful to identifying the knowledge 
gaps and providing information about alternative 
scenarios. However, models are not a substitute for 
credible data from long-term experiments. A large 
proportion of the data on rates of SOC depletion and 
sequestration in relation to soil management (tillage, 
rotation, manuring, fertilizer) comes from long-term 
experiments not specifically established to assess the 
rate of change in the SOC pool. Thus, the data from 
paired plot studies often lack baseline information and 
are, at best, an assessment of the comparative values for 
two management scenarios at a specific point in time. 
However, there exists a strong need for establishing long-
term field experiments specifically designed to assess the 
SOC dynamics and rate of change over time under the 
conditions of changing climate, yet there is an urgency 
to completely decarbonize the global energy system by 
2025 or 2030. Despite the challenges listed above, using 
the SOC pool as a significant sink is not an impossible 
task. On the contrary, it is an essential strategy with 
numerous ancillary benefits (see ‘Opportunities for 
enhancing soil carbon sinks’ section). Furthermore, 
carbon sequestration in soils and the terrestrial biosphere 
is a bridge to the future until no-carbon fuel sources 
take effect. 

Well-designed experiments are also needed to assess 
SOC sequestration/depletion under different climate-
change scenarios [212,213]. In this context, the SOC-
based soil quality index is widely considered as a tool to 
assess the impact on biophysical properties [214,215], but 
must be validated under soil/site-specific conditions.

Trading of soil carbon credits
The SOC pool critically influences the soil’s life support 
systems, ecosystems services and human wellbeing [216]. 
Thus, protection and enrichment of the SOC pool is 
as vital to human survival as are air, water and solar 
radiation. Increasing soil water retention by improving 
the SOC pool is important to alleviating the adverse 
effects of agronomic/peodologic droughts [217]. Thus, 
trading SOC credits in a global marketplace offers an 
opportunity to preserve and enhance critical ecosystems 

functions. With a relatively long MRT in soil vis-à-vis 
the atmosphere, increasing the soil carbon sink capacity 
also provides a partial, medium-term strategy to offset 
the anthropogenic emissions of CO

2
 [218]. It is a cost-

effective method of securing CO
2
 to prevent its release 

into the atmosphere [219], and has numerous co-benefits. 
In comparison to the geologic sequestration, albeit 
with a larger technical potential [219], soil-based carbon 
sequestration of even low technical potential is essential 
to numerous co-effects. Therefore, including co-effects 
and associated social costs and benefits can significantly 
change the outcome of cost–benefit effects [220]. Indeed, 
new research (science) is needed that considers the 
full ensemble of processes and feedbacks for a range 
of biophysical and social systems to better manage 
the ecosystems on which humans rely [221]. Lohmann 
outlined ten processes of ignorance creation facilitated by 
the new carbon markets, and queried what the quest for 
climate justice becomes in the context of carbon market 
framework [222]. There are also trade-offs between the 
SOC pool and crop yield. West et al. computed the 
SOC pool versus crop yield on agricultural lands under 
different biomes [223]. West and colleagues estimated 
that for each unit of land cleared, tropical biomes lose 
almost twice as much carbon (120 vs 63 Mg C/ha) and 
produce less than 50% the annual crop yield compared 
with temperate regions (1.7 vs 3.8 Mg/ha/yr). Thus, 
assessment of the soil/ecosystem carbon pool with all its 
co-effects must be objectively considered in developing 
national, regional and global policies. 

Researchable priorities
Until the 1990s, most of the published literature on the 
SOC pool and its impact was focused on soil fertility 
and agronomic production. However, interaction of 
SOC with the GCC and its impact on climate change 
has enhanced the need for understanding processes, 
properties and biotic/abiotic factors that determine the 
SOC pool and its dynamics. Indeed, there has never 
been a greater need for understanding the importance 
of land use and management on the SOC pool, and its 
dynamics in relation to climate change, water quality, 
soil degradation, desertification, biodiversity and species 
extinction, and numerous other processes of interest to 
humans and relevant to nature. Canadell et al. prioritized 
a research agenda in the context of the carbon–climate–
human system [224]. They identified the following 
researchable issues: understanding the variability and 
trends in underlying drivers; assessing the magnitude of 
the carbon–climate feedback; and exploring pathways 
to climate stabilization and their uncertainties, with 
specific reference to the role of SOC. There are also 
critical issues on emissions of CH

4
 and N

2
O from soils, 

and of the biogeochemistry of trace gases in general [225].
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The importance of SOC in 
enhancing resilience of agroeco
systems and their adaptation to 
climate change merits basic and 
site-specific research [303]. Despite 
a long and vigorous debate on the 
existence of a large carbon sink in 
the northern forests, the magnitude, 
mechanisms and temporal variations 

remain elusive [226]. The relative contribution of the soil 
carbon pool to a large terrestrial carbon sink is not yet 
known.

The SOC pool of the terrestrial ecosystems is a 
major force to fight climate change [227]. However, the 
impact of the past (and importantly future) terrestrial 
changes on climate change and vice versa [228,229] are 
not understood. Soil is a source or sink of a range 
of GHGs (CO

2
, CH

4
 and N

2
O) depending on land 

use and management [230]. Therefore, holistic GHG 
management is needed to identify judicious managerial 
interventions [304]. 

There are serious issues regarding changes in the SOC 
pool and composition with regards to organic farming 
[231], drainage of peatlands [232] and the total SOC pool 
in organic soils [60], impact of soil degradation such as 
salinization [233], biofuel feedstock production [234], 
biochar amendment [235], biomass burning [236], and 
black carbon in soils and soot in the atmosphere [67].

With reference to sustainability, there is also a need 
to understand the human dimensions such as land 
ownership and drivers of land-management decisions. 
Decision-making is driven by a variety of economic, 
social and policy factors [237]. However, there is also a 
strong need for in-depth science in support of decision-
making [238].

Desertification is a global issue [239]. Desertification 
control and restoration of dryland can be a large carbon 
sink [240], including that through the formation of 
secondary carbonates. However, restoration of drylands 
can alter albedo and the energy budget with a positive 
feedback. Soils managed by resource-poor farmers in 
the developing world are strongly depleted of their SOC 
pool. These soils have a large carbon sink capacity. 
However, an effective strategy must be developed on 
how to include terrestrial soil carbon in developing 
nations in the overall climate change solution [305] while 
feeding the growing and increasingly aff luent world 
population.

There is also a question of gross versus net soil 
carbon sequestration. Assessment of net carbon 
sequestration involves a complete accounting for 
the hidden carbon cost of farm operations and other 
inputs [241]. Therefore, a complete life cycle analysis 
is needed to assess the net gains in the soil carbon 

pool. Performing life cycle analysis is an important tool 
to evaluate the net amount of carbon that can offset 
anthropogenic emissions.

An accurate prediction of future climate change also 
necessitates a thorough understanding of the dynamics 
of the soil carbon pool and its component fluxes on 
the basis of an integrated methodology including 
measurement and modeling over a range of spatial 
scales [242]. Standardization of soil sampling (1–2 m) 
and monitoring methods are essential. 

Estimating soil carbon sink capacity depends on 
obtaining credible statistics on land area under different 
ecosystems (Figure 9A), soil orders (Figure 9B), degraded 
soils under different land uses and processes (Figure 9C), 
and on the magnitude of the SOC/SIC pool to different 
depths (up to 3 m in peat soils), as well as on the effects 
of degradation on SOC/SIC pools. Most of the available 
statistics are obsolete and obtained by unstandardized 
methodology. There is an urgent need to improve the 
data presented in Figure 9.

Conclusion
Management and sequestration of the SOC pool is 
integral to any strategy of limiting global warming 
below 2°C, advancing global food security and 
improving the environment. In comparison with 
geoengineering and CCD in geological and oceanic 
strata, soil carbon sequestration and management is cost 
effective and natural, and has numerous co-effects [302]. 
Nonetheless, additional research is needed to minimize 
numerous uncertainties and understand principal 
drivers, quantify co-effects and ecosystem services, 
develop protocol for trading soil carbon credits, improve 
techniques of measuring changes in the SOC pool 
over large spatial scales in 1–2 years’ time, and develop 
protocols to facilitate payments to land managers 
for ecosystem services based on the real economic 
worth of the SOC pool [243]. Long-term experiments 
are needed to understand feedbacks and processes of 
soil carbon stabilization, assess soil carbon dynamics 
under different climates and land uses/management 
scenarios, and identify policy interventions to promote 
the adoption of proven technologies. Specific attention 
needs to be paid to the protection and restoration of 
peatlands, stabilization of cryosols and permafrost, the 
preservation and expansion of forest (tropical forests) 
lands, and reclamation of degraded/desertified lands. 
Watershed-level experiments are needed to understand 
the fate of carbon transported by erosional processes 
and the impact of landscape position on gaseous 
fluxes. Understanding the impact of enhancing carbon 
pools in degraded soils on the use efficiency of input 
in agroecosystems and agromic productivity needs 
soil-specific studies on coupled cycling of carbon, 

Key terms

Soil carbon sink capacity: The amount 
of additional carbon that can be stored 
in the soil profile without its release into 
the atmosphere.

Soil carbon farming: Enhancing the soil 
carbon pool with the objective to trade 
(buy and sell) it as a farm commodity.
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nitrogen, phosphorous and water. Land use (e.g., cropland, 
biofuel plantations) and soil-management practices must be 
characterized for their carbon footprint through detailed life 
cycle analysis. 

Future perspective 
Soil carbon management will be an increasingly important 
strategy during the coming decades because of its numerous 
co-benefits as a natural fix to climate change. In addition to being 
a cost-effective option of reducing the net anthropogenic emission 
of CO

2
, restoring the soil carbon pool is also essential to achieving 

global food security, improving renewable freshwater supply and 
quality, and enhancing biodiversity. Food insecurity, affecting 

approximately 1 billion people globally, can be realized through 
enhancing soil quality by restoring the soil carbon pool to above 
the critical level of 1.2–1.5% in the root zone. Soil carbon farming 
(trading carbon credits) will be an important income stream for 
farmers, and a major incentive for adoption of RMPs. Advances 
in the measurement and monitoring of changes in the soil carbon 
pool to 1‑m depth over watershed and landscape scales (Mg C/ha/
yr) are needed to facilitate trading of soil carbon. With increasing 
funding support available from industry and the private sector, 
Earth scientists will enthusiastically pursue research on emerging 
issues relevant to: 

�� Preserving the vulnerable soil carbon pools (e.g., permafrost, 
soils of the tropics, peatlands);

Executive summary

The global context
�� The world’s soils are the largest reservoir of terrestrial carbon, including soil organic carbon (SOC) and inorganic carbon (SIC).
�� Soils are a source or sink of GHGs depending on land use and management.

Soil carbon pool & climate change
�� The soils of agroecosystems have been a source of GHGs for 10–12 millennia.
�� Most soils of agroecosystems are depleted of their SOC pool and the magnitudes of depletion and carbon sink capacity depend on the 

severity of degradation.
Soil quality & ecosystem services

�� The SOC pool is a principal control of soil quality and numerous ecosystem services and functions: net primary production, water quality, 
elemental cycling and biodiversity.

�� The threshold level of the SOC pool at a 0–20-cm layer is 1.2–1.5%, and some severely degraded soils of developing regions have a <0.5% 
SOC pool.

Soil carbon sequestration
�� Soil carbon sequestration involves the transfer of atmospheric CO2 into SOC as humus and SIC pool as secondary carbonates with a long 

mean residence time.
�� Strategies of soil carbon sequestration involve sustainable intensification, restoration of degraded soils and adoption of recommended 

management practices, such as conservation agriculture, cover cropping, complex rotations, integrated nutrient management, use of 
organics (e.g., compost, biochar) and agroforestry for croplands, and controlled grazing, fire management and appropriate forage species 
for grazing lands.

Rate of soil carbon sequestration
�� Rates (kg/ha/yr) of SOC sequestration for 25–50 years range from 500 to 1000 in croplands, 50 to 500 in grazing lands, 500 to 1000 in 

forestlands, 1000 to 3000 in restored wetlands/peat soils, and 500 to 1500 in urban and recreational lands.
�� Rates of SIC sequestration are 5–10 kg/ha/yr.

Magnitude of soil carbon sink capacity
�� World soils may have lost 50–80 Pg carbon (Pg = petagram = 1015 g = 1 billion metric tons) because of historic land use, soil depletion and 

degradation. 
�� Whereas SOC in soils with inherent constraints can be enhanced beyond the level under natural ecosystems, SOC in most soils can be 

refilled up to approximately two-thirds (66%) of the historic loss.

Constraints/uncertainties in soil carbon sequestration
�� Constraints to SOC sequestration include: the slow adoption of recommended practices, a finite carbon sink capacity, and risks of re-

emissions.
�� Major uncertainties include: climate change and an increase in decomposition of the SOC pool, positive feedback by thawing of permafrost 

soils, factors governing the CO2 fertilization effect, and monitoring changes in the SOC pool over a landscape, watershed or region for a 
short period of 1–2 years.

Merits of soil carbon sequestration
�� Enhancing the SOC pool has numerous co-benefits (e.g., advancing global food security, improving water quality, enhancing biodiversity, 

increasing biodiversity).
�� Being a natural and the most cost-effective fix, it is a win–win strategy and a bridge to the future until low-carbon or no-carbon fuel 

sources take effect.
�� Farming carbon and making payments to land managers for provisioning of ecosystem services can create another income stream for 

farmers, alleviate poverty, reduce hunger, empower women and advance Millennium Development Goals.
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�� Restoring degraded and desertified soils;

�� Establishing a link between agronomic productivity 
and the soil carbon pool in the root zone;

�� Understanding mechanisms/processes of preserving 
the soil carbon pool and enhancing carbon sink 
capacity;

�� Conducting research on secondary carbonates;

�� Developing a protocol for the trade of carbon credits 
as well as assessing the societal value of soil  
carbon;

�� Determining the fate of carbon transported by 
erosional processes. 

Trans-disciplinary and inter-institutional research 
teams will conduct basic and applied research to explore 
the ecological, economic and social benefits of this 
emerging discipline of Earth sciences.
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