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a b s t r a c t

Mycorrhizas are worldwide symbiotic associations established between certain soil fungi and most
vascular plants and are fundamental in optimizing plant fitness and soil quality. Mycorrhizal symbioses
improve the resilience of plant communities against environment stresses, including nutrient deficiency,
drought and soil disturbance. Since these stresses are paramount in the degradation of semi-arid
ecosystems in the SE Spain, a series of basic, strategic and applied studies have been made to ascer-
tain how the activity and diversity of mycorrhizal fungi affect plant community composition, structure
and dynamics in this region. These investigations are reviewed here in terms of: (i) analysing the
diversity of mycorrhizal fungi; (ii) assessing the ecological and functional interactions among plant
communities and their associated mycorrhizal fungal populations; and (iii) using mycorrhizal inoculation
technology for the restoration of degraded semi-arid areas in Southeast Spain. Disturbance of the target
semi-arid ecosystems decreases the density and diversity of mycorrhizal fungust populations. Never-
theless, the mycorrhizal propagules do not disappear completely suggesting a certain degree of stress
adaptation, and these remaining, resilient ecotypes are being used as plant inoculants. Numerous field
experiments, using plant species from the natural succession inoculated with a community of indigenous
mycorrhizal fungi, have been carried out in revegetation projects in the semi-arid Iberian Southeast. This
management strategy improved both plant development and soil quality, and is a successful biotech-
nological tool to aid the restoration of self-sustaining ecosystems. However, despite a 20-year history of
this work, we lack a comprehensive view of the mycorrhizal potential to improve the composition,
diversity, structure and functionality of drought-adapted plant communities in the Region.

� 2011 Elsevier Ltd. All rights reserved.
1. Mycorrhizas: general concepts, types and significance in
the soil-plant system

Maintaining the quality and sustainability of soil resources is
a key issue, not only for optimizing the stability and productivity of
natural ecosystems, but also to prevent erosion and minimize
negative environmental stresses (Buscot, 2005). Many chemical,
physical and biological factors are involved in the framework of
interactions involved in ecosystem functioning (Barea et al., 2005a).
The biological components are based on diverse genetic and func-
tional groups of soil microbial populations (Chaudhary et al., 2009).
Soil microbes are responsible for critical ecosystem functions such
as the biogeochemical cycling of nutrients and matter, and the
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maintenance of plant health and soil quality (Avis et al., 2008; Barea
et al., 2005a,b; Richardson et al., 2009). Microbial activities are
particularly relevant at the root-soil interface, the rhizosphere,
where microorganisms interact with plants and soil constituents
(Dessaux et al., 2010; Giri et al., 2005; Lambers et al., 2009).

Among the most influential members of the soil microbiota are
themycorrhizal fungi, responsible for establishingmycorrhizaswith
most vascular plant species on Earth (Barea et al., 2008). Mycor-
rhizas are symbiotic associations established between soil fungi and
most vascular plants, where both partners exchange nutrients and
energy (Brundrett, 2002). It is now universally accepted that
mycorrhizal symbioses are fundamental for goodplantnutritionand
health, and soil quality (Azcón-Aguilar el al., 2009; Smith and Read,
2008). Themycorrhizal fungi colonize the root cortexanddevelopan
extraradical mycelium which permeates the soil surrounding the
plant roots. This mycelium forms a network specialized for the
acquisition of water and mineral nutrients from soil, particularly
those whose ionic forms have poor mobility or are present in low
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concentration in the soil solution, such as phosphate and ammo-
nium (Barea et al., 2005a). Thus, mycorrhizal formation is an adap-
tive strategy which provides the plant with an increased ability for
nutrient capture and cycling in soils with low nutrient availability,
particularly in arid and semi-arid ecosystems (Allen, 2007). In
addition, the mycorrhizal symbiosis improves plant health through
increased protection against environmental stresses, either biotic
(e.g. pathogen attack) or abiotic (e.g. drought, salinity, heavymetals,
organic pollutants), and enhances soil structure through the
formation of hydro-stable aggregates necessary for good soil tilth
(Azcón and Barea, 2010; Barea et al., 2005a,b; Rillig and Mummey,
2006; Ruíz-Lozano et al., 2008).

The two main types of mycorrhizas are ecto- and endomycor-
rhizas, which differ considerably in their structure and physiolog-
ical relationships with symbionts (Barea and Honrubia, 2004;
Smith and Read, 2008). In ectomycorrhizas, the fungus develops
a sheath or mantle around the feeder roots. The mycelium pene-
trates between the cells of the root forming the Hartig net but not
forming intracellular penetrations. About 3% of vascular plants,
mainly forest trees (Fagaceae, Betulaceae, Pinaceae, Eucalyptus, and
some woody legumes) form ectomycorrhizas. In spite of the rela-
tively low number of plant species forming ectomycorrhizas, these
mycorrhizal associations and the tree species involved play a key
role in forest ecosystems and are widely distributed. The fungi
involved are mostly Basidiomycota and Ascomycota. In endomy-
corrhizas, no sheath is formed and the fungi colonize the root
cortex both intercellularly and intracellularly. A few endomycor-
rhizal types are restricted to species in the Ericaceae ("ericoid"
mycorrhiza) or Orchidaceae ("orchid" mycorrhiza), but the arbus-
cular mycorrhizal (AM) type is the commonest being widely
distributed throughout the plant kingdom. This ubiquitous
mycorrhizal type is characterized by the tree-like symbiotic struc-
tures, the arbuscules, which are formed by the fungus within the
root cortical cells. It is here where most of the nutrient exchange
between the fungus and the plant is thought to occur (Smith and
Read, 2008). The AM fungi were formerly included in the Zygo-
mycota, order Glomales (see Redecker et al., 2000b), but they now
form a new phylum, the Glomeromycota (Schüßler et al., 2001).
One further mycorrhizal type, the ectendomycorrhiza, shares
characteristics of both groups and is formed by hardy plant species
in the Ericales, and in the Monotropaceae and Cistaceae. In ecten-
domycorrhizas the fungi form both a sheath and intracellular
penetrations.

The discovery of well-preserved fossil plants in the Early Devo-
nian Rhynie Chert, revealed the existence of mycorrhizal associa-
tions (Kenrick and Crane,1997; Remy et al., 1994; Stubblefield et al.,
1987) in the early evolution of land plants. Fungal structures, such as
hyphae and spores, resembling those of extant AM fungi, were
found in fossil records of small 400-million-year-old plants
(Honrubia, 2009; Kenrick, 2003). Thus AM fungi played a key role
during land colonization by plants (Pirozynski and Malloch, 1975;
Redecker et al., 2000a; Simon et al., 1993). These pioneering
observations were followed by morphological and phylogenetic
(molecular) studies which demonstrated that the primitive roots
developed in association with AM fungi and co-evolved with them
to build up the mycorrhizal root systems of extant vascular plants
(Brundrett, 2002). The other types of mycorrhizal associations
emerged later in evolution (Honrubia, 2009).

2. Purpose of review: prospecting and applying mycorrhizal
fungi to improve functioning of plant communities in the
semi-arid Southeast (SE) Spain

Given their important role in plant evolution, it is now well
accepted that mycorrhizas currently continue to help plants to
develop in stressed environments (Barea et al., 2008; Honrubia,
2009) such as those of the Semi-arid Mediterranean ecosystem in
SE Spain. In this particular region, mycorrhizal fungi have been
shown to help plants to establish and copewith nutrient deficiency,
drought, soil disturbance and other environmental stresses char-
acteristically involved in soil degradation (Barea et al., 2007; Barea
and Honrubia, 2004; Martínez-García, 2010; Martínez-García and
Pugnaire, 2009; Morte et al., 2009; Palenzuela and Barea, 2009).
This ability has promoted investigations of the impact of mycor-
rhizas in maintaining diversity and functioning of plant commu-
nities in arid/semiarid ecosystems in this region.

Appliedmycorrhizal research in the SE of Spain began at the end
of the 1980s, in the framework of the LUCDEME Project (www.
mma.es/portal/secciones/./lucdeme). Many basic, strategic and/
or applied studies have been carried out since aimed to use
mycorrhizal biotechnology to improve the performance of the
regional plant communities. These investigations are reviewed
here in terms of: (i) analysing the diversity of mycorrhizal fungi
(section 3); (ii) assessing the ecological and functional interactions
among plant communities and their associated mycorrhizal fungal
populations (section 4); and (iii) using mycorrhizal inoculation
technology for the restoration of degraded areas in SE Spain
(section 5). Themain conclusions and future trends on this research
will then be outlined.

3. Analyzing the diversity of mycorrhizal fungi in SE Spain
semi-arid ecosystems

Presence and diversity of Basidiomycota, Ascomycota or Glom-
eromycota have been investigated in several surveys (Barea, In
press). Fungal characterization has been done using morpholog-
ical and/or molecular techniques usually used in mycorrhiza
research (Dahlberg et al., 1997; El Karkouri et al., 2005; Gamper
et al., 2010; Hempel et al., 2007; Horton and Bruns, 2001;
Morton, 2009; Oehl et al., 2009; Öpik et al., 2008; Perotto et al.,
2002; Pickles et al., 2009; Sanon et al., 2009). Although molecular
techniques have gained prominence, identification approaches
based on morphological criteria are still important and comple-
ment molecular methods (El Karkouri et al., 2005; Morton, 2009;
Oehl et al., 2009; Taylor, 2002).

Apart from a few surveys involving ectomycorrhizal (Torres and
Honrubia, 1997; Díez et al., 2001) or ectendomycorrhizal (Díez
et al., 2002; Morte et al., 2009) fungi, most diversity studies on
mycorrhizal fungi in the SE Spain have been focused on AM fungi
(Barea, In press). For ecto- and ectendo-mycorrizal fungi, restriction
fragment length polymorphism (RFLP) comparisons and internal
transcribed spacer (ITS) sequencing of the nuclear rDNA have been
used to characterize, for example, morphotypes of the genera Ter-
fezia or Pisolithus. In contrast, the studies of AM fungal communities
diversity in SE Spain have been based on the morphological char-
acterization of their large multinucleate spores or on sequence
analysis of the small-subunit (18S) ribosomal DNA of the spores
and/or the mycelia from these fungi or a combination of both
approaches (Barea, In press). Other surveys have used molecular
tools to identify the AM fungi actually colonizing plant roots.
Table 1 summarizes the surveys of AM fungi associated with plant
communities from semi-arid SE Spain, as a basis for diversity
analysis.

As a result of this analysis, a germ-plasm bank of mono-specific
cultures of Glomeromycota from SE Spain has been established in
the Estación Experimental del Zaidín CSIC, Granada. This comprises
almost 200 cultures of ecotypes from diverse morphotypes within
eleven genera, with Glomus being the most prevalent. Almost all
ecotypes have been sequenced and phylogenetically defined as
operational taxonomic units (OTUs).

http://www.mma.es/portal/secciones/%85/lucdeme
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Table 1
Analyzing the diversity of AM fungi in semi-arid SE Spain ecosystems.

Target AM fungal
propagule

Host plant/region Methodology AM fungal taxa References

Soil-borne spores Several shrub species,
Murcia

Spore morphology Glomus sp., Sclerocystis
sp.and Entrophospora sp.

Diaz and Honrubia (1993)

Retama, Granada Spore morphology Glomus sp. Herrera et al. (1993)
P. lentiscus, R. lycioides,
O. europaea var. sylvestris
and R. sphaerocarpa,
Murcia

Spore morphology Glomus coronatum, Gl.
constrictum, Scutellospora
calospora and
Entrophospora sp.

Azcón-Aguilar et al. (2003)

A. cytisoides, Sierra de los
Filabres, Almería

Spore morphology Glomus sp., Scutelospora
sp., Acaulospora sp.

Requena et al. (1996)

Endangered/endemic flora,
Sierra Nevada National Park,
Granada

Spore morphology Species from Glomus,
Acaulospora, Gigaspora,
Entrophospora, Ambispora,
Scutellospora, Pacispora,
and Diversispora

Azcón-Aguilar et al. (2010)

Asteriscus maritimus (L.)
Less., Ononis talaverae Devesa
& G. López, Medicago marina
L., Ammophila arenaria (L.) Link,
Lotus creticus L.,
Teucrium dunense Sennen,
Erodium chium (L.) Willd.
Cabo de Gata, Almería

Spore morphology Rococetra persica, Glomus
intraradices,
Gl. etunicatum,
Gl. constrictum,
Gl. coronatum,
Gl. geosporum
and Gl. mosseae

Estrada
Personal communication

A P. lentiscus dominated
shrub community,
Murcia

Spore morphology and
genetic characterization by
PCR analysis of the NS31-
AM 1 region of the 18S rDNA

Gl. mosseae, Gl.
claroideum, Gl. viscosum,
Gl. constrictum and
Paraglomus occultum

Ferrol et al. (2004)

Shrub communities from
Sierra de Baza Natural
Park, Granada,including a
dolomitic thyme-shrub, a
rosemary grove, a broom
shrub and a sage shrub

Spore morphology and
genetic characterization by
PCR-TGGE analysis of
the NS31-Glo1 region of
the 18S rDNA gene

26 AM fungal
morphotypes, assigned to
phylogenetical defined as
OTUs.

Palenzuela and Barea,
2006, 2009

A dolomitic shrubland in
Sierra de Baza Natural
Park, Granada

Spore morphology and
genetic characterization by
PCR-TGGE analysis of the
NS31-AM1 region of
the 18S rDNA gene

Otospora bareai
A new species for science

Palenzuela et al. (2008)

Endangered/endemic flora
from Sierra Nevada
National Park, Granada

Spore morphology and
genetic characterization as
above

Entrophospora nevadensis
A new species for science

Palenzuela et al. (2010)

A. maritimus
Cabo de Gata Natural
Park, Almería

Spore morphology and
genetic characterization as
above

Diversispora sp.
Glomus eburneum
Paraglomus occultum

Beltrán
Personal communication

Root colonizing AM
fungi (mycelium)

L. latifolia, T. mastichina,
R. officinalis and
R. sphaerocarpa

TTGE fingerprinting of
PCR-amplified 18S
rDNA fragments

A managed community of
Glomus spp. for testing the
technique

Cornejo et al. (2004)

G. cinerea, L. latifolia,
T. mastichina and T. zygis

Nested PCR, SSCP
fingerprinting of the
NS31-AM1 and NS8-
ARCH1311 regions of
the 18S rDNA

Ten AM fungal phylotypes 8
from Glomeraceae, with a
dominance of Glomus type
sequences, and 2 from
Diversisporaceae

Sanchez-Castro
et al. (2008, 2009)

Phagnalon rupestre L.
DC., Piptatherum
miliaceum L. Coss., Stipa
parviflora Desf., and
Plantago lagopus L., Murcia

SSCP fingerprinting
analysis of PCR-
amplified 18S rDNA
fragments

Nine AM fungal phylotypes
belonging to Glomus groups A
and B

Alguacil et al. (2009a)

Gypsum area in Murcia:
Gypsophila struthium,
Teucrium libanitis,
Ononis tridentata and
Helianthemum
squamatum

SSCP fingerprinting
analysis of PCR-
amplified 18S rDNA
fragments

21 AM phylotypes: 19 Glomus,
1 Diversispora and 1
Scutellospora with Gl.
constrictum, Gl. intraradices,
Gl. clarum, Scutellospora sp.,
and Otospora bareai.

Alguacil et al. (2009b)

Artemisia barrelieri Besser,
Hammada articulata (Moq.)
O. Bolòs & Vigo, Launaea
arborescens (Batt.) Murb.,
Salsola genistoides Juss. ex
Poir. in Lam., Salsola
oppositifolia Desf. and
Thymus hyemalis Lange

T-RFLP fingerprinting
analysis of PCR-
amplified 18S rDNA
fragments

Not identified Martínez-García (2010)
and Martínez-García
et al. (2011)

Taxus baccata L. a
endangered plant species
in Sierra de Baza Natural
Park, Granada

T-RFLP fingerprinting
analysis of PCR-
amplified 18S rDNA
fragments

Glomeraceae,Diversisporaceae,
Acaulosporaceae and
Paraglomaceae.

López-García,
Personal communication
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Recent studies (Sanchez-Castro et al., 2008, 2009; Alguacil et al.,
2009a, 2009b, 2009c) have revealed a hidden diversity, with many
AM fungal sequences detected in plant roots that cannot be related
to known AM taxa present in the surrounding soil as spores, These
cryptic colonists have also been found for other ecosystems in
Europe (Hempel et al., 2007; Öpik et al., 2008). These molecular
studies clearly show that populations of spores in soil do not reflect
completely the fungi present in roots and vice versa. Thus, both
methodological approaches have to be implemented to investigate
the AM populations associated with target plants/communities in
Mediterranean ecosystems in SE Spain.

4. Ecological and functional interactions between plant
communities and their associated mycorrhizal fungal
populations in SE Spain semi-arid ecosystems

The interactions occurring around the plant-mycorrhizal fungus
relationship have been the subject of many studies which investi-
gate linking between biodiversity and ecosystem functioning
(Bever, 1999; van der Heijden and Sanders, 2002). Research con-
cerning the impact of mycorrhizal fungi on plant community
composition and functioning concludes that the diversity and
activity of mycorrhizal fungi is a key mechanism for ecosystem
functioning Hart and Klironomos, 2002; Kennedy et al., 2007;
Martínez-García and Pugnaire, 2009; Read, 1998). Conversely,
diversity and structure of plant cover affects diversity of AM fungal
populations (Bever et al., 2002; Read, 2002; Wolfe et al., 2005). The
nature of the community feedbacks in mycorrhizal associations has
been investigated with special emphasis on the several mecha-
nisms/factors responsible for the ecological interactions involved.
These mechanisms/factors include: (i) the functional specificity of
the different plant-fungus combinations (Klironomos, 2002; van
der Heijden et al., 1998); (ii) the mycorrhizal dependency of the
plant species involved (Hart and Klironomos, 2002; Kennedy et al.,
2007; Read, 1998); and (iii) the structure of the individual plant
species within the community (O’Connor et al., 2002; van der
Heijden, 2002; van der Heijden et al., 2006).

Some key concepts can be drawn from the consolidated
knowledge on these aspects of mycorrhizal ecology:

(i) although specificity sensu strictum does not exist in mycor-
rhizal associations (as almost all plants in a community can be
colonized simultaneously by several species of mycorrhizal
fungi), different mycorrhizal ecotypes are more beneficial to
some plant species than others (Sanders, 2002). It also seems
that not every fungus can colonize every plant in the
community (Barea et al., 2008).

(ii) in addition to its role in carbon allocation, the establishment of
a mycelial web around the roots from the plant community
constitutes a diverse inoculum source for the different plant
species (Read, 1998) and

(iii) the intermingling and extensive extra-radical mycelium
allows amore efficient exploitation of soil nutrients andwater,
thus benefiting the nutrient flow through the soil-fungus-
plant system - particularly relevant in arid ecosystems
(Allen, 2007).

Research investigating these aspects of mycorrhizal ecology and
function in the semi-arid SE Spain is summarised below:

4.1. Impact of mycorrhizas on the dynamics and functioning of
plant communities

Much information on the role of mycorrhizas in SE Spain semi-
arid ecosystems has been generated during the last two decades
(see section 5). However, most studies concern the mycorrhizal
impact on the establishment and development of individual plant
species rather than the functioning of plant communities. However,
some experiments can be considered in this context, and are dis-
cussed here.

The effect of mycorrhizas at the plant community level was
studied by Requena et al. (2001) in a degraded area within the
Sierra de los Filabres in Almería. The existing natural vegetation
was shrubland, where Anthyllis cytisoides L., a drought-tolerant
legume able to form symbioses with both rhizobial and mycor-
rhizal micro-symbionts, was the dominant species. This experi-
ment (further discussed in Subsection 5.2) demonstrated the long-
term benefits of inoculation not only on plant establishment but
also on P acquisition and N2 fixation by the target legume. The
benefits also included increased available P, N and organic matter,
and the number of hydro-stable aggregates in the soil supporting
the community. Studies using the stable isotope 15N evaluated the
amount of N2 fixed by the shrub legume and showed how this
improved N nutrition, via N-transfer to non-N-fixing vegetation
grown in association with the inoculated legume. In addition, the
mycorrhizal, nodulated Anthyllis plants behaved as a source of
mycorrhizal inoculum for the surrounding area, where new seed-
lings flourished and accelerated the natural succession. This study
showed that the introduction of target indigenous plant species,
associated with a managed community of microbial symbionts,
could be a successful biotechnological tool to aid the integral
recovery of degraded ecosystems.

Navarro-Fernández et al. (2011) studied a dolomitic “thyme-
shrub” plant community in Sierra de Baza Natural Park, which
comprised endemic species dominated by Thymus granatensis
Boiss. Efficient functioning of the community was dependent on
a dolomite-adapted AM fungal community, particularly under the
drought stress conditions characteristic of the target area. The
presence of AM fungal ecotypes from the high-dolomite environ-
ment appeared fundamental for the development of the endemic
plant community, as they were involved in the adaptation mech-
anisms that enable the plant to grow.

4.2. Influence of the plant species on the structure and composition
of their associated mycorrhizal fungal populations

The influence of the plant species on production of mycorrhizal
propagules has been investigated in SE Spain. For example, Azcón-
Aguilar et al. (2003) studied typical shrubs from semi-arid areas of
Murcia and found that Olea europaea var. sylvestris (Mill.) Lehr and
Retama sphaerocarpa (L.) Boiss, have a higher capacity to enhance
the development of AM propagules in their rhizospheres than
Pistacia lentiscus L.or Rhamnus lycioides L.

Further studies (Sánchez-Castro et al., 2008) analysed the
genetic diversity of the AM fungal community that colonized the
roots in a shrubland species community (Genista cinerea (Vill) DC.
in Lam. & DC., Lavandula latifolia Medicus, Thymus mastichina L.,
Rosmarinus officialis L. and Thymus zygis L.). The different co-
occurring plant species were colonized by AM fungal communi-
ties of different composition. These findings support the earlier
contention that there is some level of specificity in mycorrhizal
associations. For methodological approaches and results from this
AM fungal diversity analysis see Table 1.The genetic diversity of AM
fungi colonizing the root, the rhizosphere soil and the root-free soil
was investigated (Martínez-García et al., 2011). Differences in AM
fungal communities were found in soils under shrubs and in gaps
among them, whereas no differences were detected among AM
fungal communities colonizing roots. Soil nutrient content drove
most of the spatial variations and genetic diversity in the AM fungal
community. Consequently, it was suggested that different shrub
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species generate resource islands (Allen, 1988), which differ in
nutrient content and, therefore, support different AM fungal
communities, at least in their associated rhizosphere soil. This
increases AM fungal diversity at the landscape level. Using the same
genetic approach Martínez-García (2011) characterized the AM
fungal community colonizing roots of two plant species, Ballota
hirsuta Bentham and Lobularia maritime (L.) Desv., growing under
shrubs and in open areas. Differences between AM fungal genetic
diversity of the communities associated with the two species were
found. These data represent new information on the specificity of
AM fungus-plant interactions in patchy environments, and suggest
a control of AM fungi on plant population and community
dynamics in arid ecosystems.

4.3. Impact of plant cover degradation on mycorrhizal fungal
diversity

Disturbance of natural plant communities, the first symptom of
ecosystem degradation, is often accompanied or preceded by loss of
key physical-chemical and biological soil properties such as soil
structure, plant nutrient availability, organic matter content and
microbial activity (Francis and Thornes, 1990). In particular, plant
community degradation causes disturbance of mycorrhizal inoc-
ulum potential, which is a critical ecological factor to help further
plant development in degraded habitats (Requena et al., 2001). The
impact of plant cover and/or soil degradation onmycorrhizal fungal
diversity has been investigated in SE Spain where drivers of
ecosystem degradation include climatic change, mining activities,
wild fire, flooding and salinity and land abandonment. For example,
in the Sierra de Baza Natural Park, Granada, Palenzuela and Barea
(2006, 2009; see Table 1) selected five plant community plots
where the vegetation cover was optimal and compared these with
plots where diversity and structure of the optimal vegetation cover
were degraded. Rhizosphere samples were taken from all the target
species and AM spores isolated and morphologically characterized.
The main conclusion was that the degradation of the vegetation
cover negatively affected the density (number of spores per 100 g of
soil), richness and diversity of AM fungi.

To assess the impact of drought on AM associations in semi-arid
plant communities from SE Spain, Martínez-García (2010)
measured root length colonization in Stipa tenacissima L. and
A. cytisoides along a natural environmental precipitation gradient,
and in Artemisia barrelieri Besser growing in several plots subjected
to different precipitation regimes. The results showed that the
response of the AM associations to precipitation patterns depended
on the host species. Natural drought stimulated AM colonization,
but artificially-induced drier conditions lowered the AM coloniza-
tion. It was suggested that arid ecosystems caused by climate
change could alter AM interactions in different ways depending
both on the host plant and the intensity of the drought, which
might then lead to changes in plant communities.

In a study by Díaz and Honrubia (1994), sampling sites with
differing degrees of disturbance were established in an area of the
SE coast of Murcia that had been severely degraded by mining
activities and was covered by waste sediments. The mycorrhizal
population level (mycorrhizal root colonization and the number of
spores in the rhizosphere) was adversely affected by soil degrada-
tion. However, mycorrhizal propagules did not disappear
completely, suggesting a certain degree of adaptation to the soil
disturbance suffered by the test area.

The effects of a wild fire on mycorrhizal inoculum potential of
soil were investigated in a Pinus halepensis Mill. forest (Torres and
Honrubia, 1997). For two years after the fire episode, the fruiting
of fungal species, the number of sclerotia in soil, and the percent-
ages and types of ectomycorrhizas present were determined.
Diversity of mycorrhizal fungi was differentially affected in burned
stands: the Ascomycota populations appeared resistant to fire
while the Basidiomycota were strongly reduced.

The influence of flooding and salinity gradients on the AM
fungal spore counts and root colonization levels of Inula crithmoides
L. was studied in a transect spanning a gradient from shoreline to
interior in La Mata lagoon, Alicante. The plots with high salinity
levels and flooding showed decreased spore numbers in soil,
a decrease in the percentage of mycorrhization, and a very low
number of mycorrhizal fungal propagules as measured by the most
probable number test (Roda et al., 2008).

Roldán et al. (1997) studied the AM fungal population in agri-
cultural soils abandoned for different lengths of time (3e45 years)
in a semi-arid area of Murcia and found that agricultural use
reduced soil fertility and lowered AM fungal populations compared
to the soil kept in its natural state. After abandonment, there was
a 5-year period when the soils underwent further degradation of
their AM potential. After that the AM propagules slowly recovered,
reaching values similar to those of the virgin soil after 45 years.

5. Applying mycorrhizal inoculation technology for the
restoration of degraded areas in SE Spain

Loss of mycorrhizal propagules following degradation of vege-
tation cover in Mediterranean ecosystems can inhibit either natural
or artificial processes of revegetation. Augmentation of the inoc-
ulum potential may be needed (Requena et al., 1996). In some cases,
mycorrhiza-inoculated shrubs act as a "resource islands" (Allen,
1988; Palenzuela et al., 2002; Azcón-Aguilar et al., 2003; Caravaca
et al., 2005a), serving as a source of inoculum for the surrounding
area thus stimulating revegetation.

A key strategy for mycorrhizal application in revegetation
strategies is the nursery production of quality native seedlings with
a tailored mycorrhizal status. This is a pre-requisite to help trans-
plant performance, as demonstrated in nursery production of
P. halepensis seedlings mycorrhizal with Pisolithus tinctorius or
Lactarius deliciosus (Díaz et al., 2009, 2010). The biotechnological
procedures followed to produce ectendomycorrhizalHelianthemum
plants with Terfezia species (desert truffles) have also been recently
discussed (Morte et al., 2009). The different ways of producing
mycorrhizal synthesis between desert truffles and the Heli-
anthemum species were analysed, considering the type of fungal
inoculum, plant source (sometimes micropropagated) and culture
conditions. This enabled the formulation of a management protocol
for establishing desert truffle plantations (Morte et al., 2009).
Several companies which produce either AM inoculum or native
woody plants with a tailored AM status, under commercial nursery
conditions, have been established in Spain (Barea, In press).

Here we review several field inoculation experiments carried
out in the semi-arid SE Spain using mycorrhizal inoculation tech-
nology for the restoration (by revegetation) of areas suffering
disturbance of their plant cover.

5.1. The importance of using native plant species

Mycorrhizal inoculation in revegetation strategies for degraded
areas from SE Spain was first investigated in a semi-arid desertifi-
cation-threatened environment south of the Sierra Nevada, Gran-
ada (Herrera et al., 1993). This assay used woody legumes as plant
species symbiotic with both N2-fixing rhizobial bacteria and AM
fungi, associations which enable the plant to develop in water-
deficient and low nutrient environments (Azcón and Barea, 2010).
The target legumes included two native shrubs (A. cytisoides and
Spartium junceum L.), and four non-native tree legumes (Robinia
pseudoacacia L., Acacia caven (Mol.) Mol. and Prosopis chilensis
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(Mol.) Stuntz.andMedicago arborea L.). The results of this four-year-
old trial showed that: (i) only the native shrub legumeswere able to
establish and develop under the local environmental conditions;
(ii) the biotechnological manipulation of the seedlings, by inocu-
lation with selected rhizobia and mycorrhizal fungi, improved
outplanting performance, plant survival, and biomass production. A
revegetation strategy based on plant species was proposed,
selecting A. cytisoides, a particularly drought-tolerant, highly
mycotrophic legume species, for the next stage in development. A
technique for accelerating the process of natural revegetation was
proposed by replanting randomly-spaced groups of mycorrhizal
shrubs following the natural pattern and structure of the undis-
turbed ecosystem (Francis and Thornes, 1990). The results are
described in Subsection 5.2.

For revegetation programmes in the water-stressed regions, it is
important to evaluate the influence of mycorrhizal inoculation on
the water use efficiency (WUE) of the target native plant species.
Querejeta et al. (2003) used O. europaea var. sylvestris and
R. lycioides to evaluate whether two eco-physiological response
variables (foliar carbon isotope ratios (d13C) and leaf gas exchange)
were affected by inoculation with Glomus intraradices. They found
that the WUE was enhanced under drought conditions by inocu-
lation in O. europaea but not in R. lycioides. O. europaea plants are
long-lived, slow-growing evergreen trees with a conservative
strategy for water use, while R. lycioides is a drought-deciduous
shrub with a shorter lifespan. These differences may explain their
dissimilar patterns of response to inoculation with the same AM
fungus. The results suggested that some of the interspecific vari-
ability in d13C observed for arid land plant communities may be due
to different physiological responses to mycorrhization.

Additional examples referring to inoculation with ectomycor-
rhizas and ectendomycorrhizas are given by Honrubia et al. (1992);
Barea and Honrubia, (2004); Morte et al. (2009). The information
reviewed in these publications emphasizes the importance of using
plants from the natural succession in revegetation strategies.

5.2. Comparing the use of autochthonous vs. non-native
mycorrhizal fungi as inoculants

Several field experiments have compared the use of autoch-
thonous vs. exotic (and generalist) mycorrhizal fungi for revegeta-
tion programmes in the Region. For example, Requena et al. (2001)
tested two mycorrhizal inoculation protocols for rhizobium-
inoculated A. cytisoides seedlings that were to be transplanted to
a degraded area: (i) an exotic mycorrhizal fungus (Glomus intra-
radices), (ii) a mixture of five taxa of indigenous mycorrhizal fungi
representing the natural abundance and diversity in the target site
(Sierra de los Filabres, Almería). A long-term improvement of both
plant performance and the physicochemical properties in the soil
around A. cytisoides plants inoculated with indigenous AM taxawas
evidenced over a 5-year period, while the exotic fungi were effec-
tive only during the first year after transplanting.

The effectiveness of mycorrhizal inoculation with either
a mixture of native AM fungi or an exotic AM fungus (Glomus
claroideum) was tested in a degraded area in Murcia province
(Alguacil et al., 2005) using O. europaea subsp. sylvestris and
R. sphaerocarpa as the test plants. Eighteen months after planting,
themixture of native AM fungi was themost effective treatment for
stimulating the growth of both plants and for increasing the
aggregate stability in the rhizosphere soil of R. sphaerocarpa.
Increases in enzyme activities (dehydrogenase, urease, protease-
BAA, acid phosphatase and P-glucosidase) were recorded in the
rhizosphere of both shrub species colonised by indigenous AM
fungi. In further experiments, Caravaca et al. (2003b, 2005a)
compared the effectiveness of inoculation with similar
combinations of fungi in increasing growth and nutrient acquisi-
tion of target shrub species, and in improving soil structural
stability. The mixture of native endophytes was more effective than
G.claroideum for enhancing growth and foliar NPK contents of
O. europaea var. sylvestris, R. sphaerocarpa and R. lycioides, and in
improving soil structural stability. Thus it appears that native,
drought-adapted AM fungi often improve host-plant performance
to a greater extent in the target dry environments than non-native
AM fungi.

Little is known, however, about the physiological basis for the
differential plant responses that are affected by the origin of the
test AM fungi. To investigate this, Querejeta et al. (2006) inoculated
seedlings of O. europaea var. sylvestris or R. lycioides with either
a mixture of eight native Glomus species or with the non-native
Glomus claroideum, before field transplanting in a semi-arid area
in Murcia province. Inoculation with native AM fungi produced the
greatest improvement in nutrient and water status as well as in
long-term growth for both O. europaea and R. lycioides. Foliar d18O
measurements indicated that native AM fungi enhanced stomatal
conductance to a greater extent than the non-native AM fungus in
both target plants. The d13C data showed that intrinsic water-use
efficiency in Olea was stimulated by native AM fungi. The results
suggested that modulation of leaf gas exchange by native, drought-
adapted, AM fungi is critical to the long-term performance of host
plants in semi-arid environments. In further work, Querejeta et al.
(2007) hypothesised that enhanced transpiration as well as an
improved plant water status were key mechanisms involved in
plant growth stimulation by native AM fungi in semi-arid soils.
These authors pre-inoculated seedlings of the dry-land shrubs
P. lentiscus and R. sphaerocarpa L. before transplanting them into
a degraded site in Murcia. Pre-inoculation with native AM fungi
enhanced shoot water content and shoot d15N in both shrub
species. Increased K uptake and improved water relations were
considered key to growth stimulation by native AM fungi in
P. lentiscus. Shoot d18O was significantly lower in AM-inoculated
than in non-inoculated P. lentiscus seedlings, indicating enhanced
cumulative transpiration. Growth stimulation by native AM fungi in
R. sphaerocarpa was attributed to increased P uptake, enhanced N2
fixation and a largely nutrient-mediated improvement of plant
water status.

The importance of using native ectomycorrhizal fungi had been
suggested earlier by Maestre et al. (2002) who found no effect of
nursery inoculation on seedling survival. They attributed the lack of
effectiveness to the fact that they used an exotic fungal strainwhich
did not survive the drought summer conditions in the study area
(Alicante).
5.3. Effect of mycorrhizal inoculation, and interaction with organic
amendments, on transplant performance and soil quality

Mycorrhizal seedlings of plant species from natural communi-
ties, produced in commercial nursery conditions, have been used
for a series of field experiments testing the impact of organic
amendment additions on plant performance and soil quality. These
assays involved ecto-, ectendo- or AM-mycorrhizal inoculation.

Ectomycorrhizal inoculation in interaction with organic
amendments was investigated in field experiments using
P. halepensis seedlings inoculated with Pisolithus arhizus and plan-
ted in a terraced rangeland amended with urban solid refuse
(Roldán et al., 1996; Querejeta et al., 1998). The application of the
organic amendment increased soil fertility and soil water content,
whilstthe combination of soil terracing, refuse amendment and
mycorrhizal inoculation significantly improved the performance of
P. halepensis.
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A multi-factorial field experiment was designed to evaluate the
influence of a fresh organic residue addition, and mycorrhizal
inoculation with P. arhizus on P. halepensis in a semi-arid rangeland
in Murcia (Caravaca et al., 2002c). Both treatments increased C-
fractions and enzyme activities (dehydrogenase and phosphatase)
and aggregate stability in the mycorrhizospheric soil around the
roots of this tree. Aggregate stability in the rhizosphere was
strongly correlated with the microbial biomass carbon and soluble
C-fractions (water soluble carbon and water soluble carbohydrates)
as well as with dehydrogenase and phosphatase activities.

Caravaca et al. (2005b) then used seedlings of Cistus albidus L.
and Quercus coccifera L., inoculated with the ectomycorrhizal
fungus Scleroderma verrucosum, to assess the effect of the addition
of sugar beet, rock phosphate, and Aspergillus niger directly into the
planting hole, in a target, degraded, semi-arid area in Murcia.
Mycorrhizal inoculation resulted in promotion of plant growth of
both plant species and an enhancement of soil physicochemical,
biochemical, and biological properties.

Field experiments involving inoculation with AM fungi and
addition of composted urban residues have been carried out using
indigenous shrub species such as O. europaea var. sylvestris
(Caravaca et al., 2002a); P. lentiscus (Caravaca et al., 2002b);
R. sphaerocarpa (Caravaca et al., 2003a); or R. lycioides (Caravaca
et al., 2003d). Water-soluble carbon, water-soluble carbohydrates,
microbial biomass carbon content and enzyme activities (dehy-
drogenase, urease, protease-N-alpha-benzoyl-L-argininamide, and
acid phosphatase) were increased in the mycorrhizosphere of the
target shrubs. Subsequent integrative studies corroborated these
findings (Caravaca et al., 2003b, 2003c; Alguacil et al., 2005), whilst
similar synergistic effects were found by adding other organic
amendments such as sewage sludge (Alguacil et al., 2004; Caravaca
et al., 2005a and b).

The impact of AM inoculation in combination with organic
amendments has also been tested for Dorycnium pentaphyllum
Scop., an autochthonous legume from semi-arid areas in SE Spain
used for restoration purposes. The tailored AM-seedlings were
transplanted to a degraded semi-arid area in Murcia, in combina-
tion with several A. niger-treated organic amendments and rock
phosphate additions (Alguacil et al., 2008). These treatments
produced beneficial effects on the physical, chemical and biological
properties of the mycorrhizosphere soil of the transplanted target
legume. Similar benefits on D. pentaphyllum performance were
obtained using other type of residues: sugar beet residues
(Caravaca et al., 2004a) or dry olive cake residues (Caravaca et al.,
2004b; Medina et al., 2004).
6. Conclusions

Morphological and molecular approaches have been applied
successfully to analyze the diversity of mycorrhizal fungi in several
semi-arid ecosystems of SE Spain. A germplasm bank of semi-arid
zone-adapted ecotypes of Glomeromycota fungi has been estab-
lished, and these are available for revegetation programmes in the
Region. Disturbance of the target semi-arid ecosystems caused by
global climate change or other stresses decreases the density and
diversity of mycorrhizal fungus populations, yet some mycorrhizal
propagules remain, suggesting adaptation to the situation within
the stressed area.

Many field experiments have demonstrated that using native
plant species, inoculated with a managed community of indigenous
mycorrhizal fungi, is a successful biotechnological tool to aid the
integral recovery of degraded semi-arid SE Iberian ecosystems.
Improvements of both plant development and soil quality were
reported, thus initiating the restoration and maintenance of a self-
sustaining ecosystem. Inoculation with indigenous mycorrhizal
fungi has resulted in improvements of both plant performance and
the physicochemical properties in the soil around native shrub
species, whereas exotic fungi were effective only during the first
year after transplanting. New information on the specificity of
mycorrhizal fungus-plant interactions in patchy environments has
been reported, indicating a strong influence of mycorrhizal fungi on
plant populations and community dynamics in arid ecosystems.

Isotopic techniques based on approaches using d18O, d13C and
d15N measurements have proved useful in determining how
mycorrhizal inoculation affects some eco-physiological responses
related to water-use efficiency and nutrient acquisition by plants.
Results show that tailored mycorrhizal inoculation improves
certain physiological processes in plant communities in semi-arid
SE Spain. Native, drought-adapted, mycorrhizal fungi appear crit-
ical to the long-term performance of host plants in semi-arid
environments. Field experiments have shown that tailored inoc-
ulation with mycorrhizal fungi in combination with composted
organic residues, using indigenous shrub/tree species as test
plants, improved plant establishment, enhanced enzymatic activ-
ities involved in C, N and P cycling and increased soil aggregate
stability.
7. Future trends

Despite the advances in our knowledge of mycorrhizal presence
and functioning in SE Spain over the last two decades, further basic,
strategic and applied studies are needed to better understand the
significance of mycorrhizas in determining biodiversity and func-
tion in the semi-arid ecosystems in this region. A key aimwould be
to use current molecular approaches in the integral analysis of the
diversity of all types of mycorrhizal propagules associated with
target plant communities. This is particularly critical to detect the
“hidden diversity” of AM populations. A thorough knowledge of
this diversity is needed to produce mycorrhizal fungal inoculants
representing the integral diversity of the target area. Seedlings with
a tailored mycorrhizal status will act as a "resource islands" of
inoculum for the surrounding area to benefit plant cover devel-
opment and for improving soil quality in degraded ecosystems. This
would maximize the mycorrhizal benefit in revegetation/conser-
vation programmes facilitating nutrient and water recycling and
capture.

An increased knowledge of the role of mycorrhizas in stress
adaptation will be fundamental to improve the eco-physiological
gains in plant resistance to drought stress induced by a tailored
mycorrhization. It will be important to assess how an optimized
mycorrhizal status of transplanted seedlings can be used in an
adaptive management strategy to improve the resilience of the
target endangered plant/community against global climate change.

To carry out field studies to investigate how the diversity and
activity of mycorrhizal fungi affect the composition, diversity,
structure and functionality of plant communities in semi-arid SE
Spain ecosystems will constitute a research priority in the next
future.
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