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Different satellite rainfall products are used in different applications over differ-
ent parts of the world. These products are particularly important over many parts
of Africa, where they are used to augment the very sparse rain-gauge network.
However, the quality of the different satellite products varies from one product
to another and from one climatic region to another. The climate over eastern
Africa varies from wet coastal and mountainous regions to dry arid regions.
Significant variations could be observed within short distances. The different cli-
mates will pose different challenges to satellite rainfall retrieval over this region.
This study explores the effect of mountainous and arid climates on four dif-
ferent satellite rainfall-estimation (RFE) algorithms. The mountainous climate
is located over the Ethiopian highlands, while the arid region covers parts of
Ethiopia, Djibouti and Somalia. One infrared-only product, African rainfall clima-
tology (ARC), one passive-microwave-only product (the Climate Prediction Center
morphing technique, CMORPH) and two products (the RFE algorithm and the
tropical rainfall measuring mission (TRMM-3B42)), which combine both infrared
and passive-microwave estimates, are used for this investigation. All the products
exhibit moderate underestimation of rainfall over the highlands of Ethiopia, while
the overestimation over the dry region is found to be very high. The underestima-
tion over the mountainous region is ascribed to the warm orographic rain process,
while the overestimation over the dry region may be because of sub-cloud evapo-
ration. Local calibration of satellite algorithms and merging of satellite estimates
with all locally available rain-gauge observations are some of the approaches that
could be employed to alleviate these problems.

1. Introduction

The distribution of rain gauges over many parts of Africa is very sparse. In addition,
the available stations are distributed unevenly, and most of the stations are located
in cities along the major roads. The data from the cities may not represent what is
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going on away from the highways where the data is needed most. Satellite rainfall esti-
mates are used to augment the gauge measurements. In fact, there are many parts of
Africa where satellite products are the only sources of rainfall information. However,
the quality of the satellite rainfall products is not very good, particularly at higher
temporal and spatial resolutions. The quality also varies from one product to another,
and from one climatic region to another. The climate over eastern Africa varies from
arid lowlands to wetter highlands and coastal areas. The different climates have differ-
ent implications on satellite rainfall-retrieval algorithms. This article investigates the
effect of mountainous and arid regions on different satellite rainfall-estimation (RFE)
algorithms.

The most widely used sensors for satellite RFE are thermal-infrared (TIR) and
passive-microwave (PM) sensors. The information from TIR observation is mainly
on the temperature of the top of a cloud, from which the depth of the cloud is
inferred. PM sensors provide more information about precipitation because of the
physical interaction between PM wavelengths and precipitation. However, currently,
PM sensors are available only on board polar-orbiting satellites. This makes the obser-
vation frequency of PM sensors only a couple of times a day. As a result, current
precipitation-retrieval algorithms use TIR, or a combination of TIR and PM. Both
sensors have some serious limitations in retrieving rainfall, particularly over land (e.g.
Levizzani et al. 2002, Gruber and Levizzani 2008, Wang et al. 2009). The limitations
for TIR include the fact that it provides only information about the top of a cloud,
underestimates warm rain and misidentifies cirrus clouds as raining. The main limita-
tions for PM sensors include background emission from the land surface, which varies
significantly depending on vegetation type and soil water content, low observation
frequency (typically twice per day), which makes aggregation over daily time periods
impossible, and beam-filling problems owing to the coarse spatial resolutions.

Mountainous and dry regions pose unique challenges to satellite rainfall retrievals,
both from PM and TIR sensors. One challenge to TIR rainfall-retrieval algorithms
comes mainly from warm orographic rains. Most TIR algorithms use fixed brightness-
temperature thresholds to discriminate between raining and non-raining clouds. In
addition, these thresholds are usually too cold for the warm orographic clouds, result-
ing in underestimation of rainfall. On the other hand, the rainfall signal for overland
PM rainfall retrievals comes mainly from ice scattering at the upper parts of convective
clouds. However, orographic rain may not produce much ice aloft, which may result in
underestimation of surface rain. The other challenge to overland rain retrieval using
PM algorithms comes from cold surfaces and ice over mountaintops, which could be
misidentified as rain.

There are three main challenges to satellite rainfall retrieval over dry regions. The
first one is sub-cloud evaporation. Over arid regions, the atmosphere beneath the
clouds is mostly dry. As a result, although rainfall may be detected aloft, it will evap-
orate before reaching the surface resulting in huge overestimation of surface rainfall.
The second challenge is a combination of the coarse spatial resolution of the satellite
products (mostly about 0.25◦ latitude × 0.25◦ longitude) and the very hot background
surface. The coarse-resolution image may cover both rain areas and hot surfaces
whose average may be misidentified as a non-raining pixel. This may result in poor
detection of surface rainfall. The third effect is specific to PM rainfall retrieval, and is
related to a land-screening problem that identifies desert regions as raining (e.g. Wang
et al. 2009).

D
ow

nl
oa

de
d 

by
 [

Fl
or

id
a 

A
tla

nt
ic

 U
ni

ve
rs

ity
] 

at
 0

8:
40

 1
9 

N
ov

em
be

r 
20

14
 



Challenges of satellite rainfall estimation 5967

To investigate the effects of highland and dry arid regions on rainfall retrieval from
TIR and PM observations, four satellite rainfall products are evaluated over a moun-
tainous region of Ethiopia and a dry region covering parts of Ethiopia, Djibouti and
Somalia. The four satellite rainfall products are selected to enable the investigation of
TIR-only, PM-only and combined TIR–PM algorithms. Thus, one of the products is
the TIR-only product, the second is based mostly on PM estimates, and two of the
products combine rainfall estimates from both TIR and PM sensors. The next section
describes the study regions, the rain-gauge data used and the satellite products evalu-
ated. Section 3 shows validation results, while section 4 discusses these results. Section
5 summarizes the findings.

2. Study region and data

2.1 Study region

Two validation sites with very different topography and climate were selected for
this study. Both sites are located over the Horn of Africa (figure 1). The first site is
located over the highlands of Ethiopia (S1 in figure 1). This site represents a complex

35° 40° 45°
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500
Elevation (m)

35° 40° 45°

Figure 1. Topography and rain-gauge distribution of the validation sites. S1 represents a
mountainous region, while S2 is an arid area. The plus (+) signs represent rain-gauge stations
for S1 and its surrounding, and locations of field reports for S2.
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5968 T. Dinku et al.

Figure 2. Mean (1971–1990) monthly rainfall. Boxes outlined with black show the validation
sites, while boxes with grey outlines are used to compute area averages for the time series shown
in figure 2. These data are obtained from the Global Precipitation Climatology Center (GPCC;
Schneider et al. 2008), and they are the ‘full data’ products at a spatial resolution of 0.5◦. The
mean is limited to 1990 because there are no data over Somalia starting from 1991.

topography with significant variation in elevation from the rift valley in the centre to
the mountains on either sides of the valley (figure 1). It is the wettest of the two vali-
dation sites (figures 2 and 3). The main rainy season is during June–September, but it
also receives rainfall from February to October (figure 3). The main synoptic feature
is the inter-tropical convergence zone (ITCZ); but its effect is very much modulated
by the topography. The second validation site is a lowland area that covers parts of
Ethiopia, Djibouti and Somalia (S2 in figure 1). It represents a relatively dry climate
(figures 2 and 3). Its mean annual rainfall is about 30% of the wetter validation site.
It has two rainy seasons, with peaks in April and August (figure 3). The two seasons
are associated with north–south shifts of the ITCZ. These two sites represent very dif-
ferent climatic characteristics within a very close proximity. This will be shown to have
different implications for satellite RFE algorithms.
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Challenges of satellite rainfall estimation 5969

Figure 3. Mean (1971–1990) monthly rainfall averaged over the grey boxes in figure 2. S1 is
for the site over the Ethiopian highlands, while S2 is for the arid region.

2.2 Gauge data

A relatively dense station network of about 140 gauges over the Ethiopian highland
was used to evaluate the performance of different satellite products over a mountain-
ous region. Out of the 140 stations, 75 fall within the area of interest (S1 in figure 1).
Data from the summer months of 2003 and 2004 were used for the current anal-
yses. These data were quality controlled and interpolated into regular grids using
climatologically aided interpolation (Willmott and Robeson 1995). The climatological
(mean) values were interpolated using kriging, while angular distance-weighted inter-
polation (New et al. 2000) was used to interpolate the anomalies. All available stations,
except the few whose data is available through the global telecommunication system
(GTS), were used in the interpolation. The GTS stations were excluded because they
are incorporated in some of the products. However, only data within the validation
box and with at least one gauge per pixel were used for validation.

The data used for the validation over the dry region (S2) were obtained from the
Food and Agriculture Organization (FAO) of the United Nations. The FAO pro-
vided these data for the validation of satellite rainfall estimates over the desert locust
recession regions, and S2 is one of those regions.

These are not rain-gauge measurements; rather, they are qualitative information col-
lected during field campaigns by desert locust survey teams from the different member
countries. Rainfall may be observed by the survey team itself, or the information may
be collected from the locals. Sometimes the dates are precise, but often the timing and
location could be vague. Here, the data were used only when the time and location of
observation were reported to be exact. Figure 1 presents the different locations from
where the reports were collected. The data for this box (S2) have not been interpolated
because they are just binary (rain/no-rain) data from reports collected from ad hoc
field campaigns. Thus, for each report, the closest satellite pixel is used for the com-
parisons. This means comparing a point measurement against an area average of a
10 km × 10 km or 25 km × 25 km pixel, and this would affect the result. This may
also affect the comparison over the two validation sites, as the data over the first site
have been interpolated. However, the spatial variability of rainfall over this region is
relatively small and point-to-area comparison might not affect the result significantly.
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5970 T. Dinku et al.

2.3 Satellite data

Four satellite rainfall products are compared over the two validation sites. Three of the
products come from the National Oceanic and Atmospheric Administration (NOAA)
Climate Prediction Center (CPC). These include African rainfall climatology (ARC;
Love et al. 2004), the African RFE algorithm (Herman et al. 1997, Xie et al. 2002) and
the CPC morphing technique (CMORPH; Joyce et al. 2004). The fourth product is
produced by the tropical rainfall measuring mission (TRMM) project at the National
Aeronautics and Space Administration (NASA). The algorithm used is the TRMM
multi-satellite precipitation analysis (TMPA; Huffman et al. 2007), and the product
used here is TRMM-3B42. These products range from the simplest (ARC) to the most
sophisticated (CMORPH), although it is not straightforward to compare TRMM-
3B42 and CMORPH as they use different advanced algorithms. Table 1 provides
summary information for these products.

The ARC is a TIR-only product adjusted with gauge data that are obtained through
GTS. It is designed specifically to produce consistent high-resolution (0.1◦) daily
rainfall climatology for Africa. The objective was to produce daily rainfall time series
starting from 1982, but the current available data starts from 1995. The NOAA CPC
is working to produce the complete time series. The ARC algorithm uses a single TIR
threshold (235 K) for the whole of Africa to discriminate between raining and non-
raining clouds. This threshold is used to compute cold cloud duration (CCD) from
3-hourly TIR observations. Then, a single parameter is used to convert CCD into rain
rates. The current version of the RFE algorithm, v. 2.0 (RFE2), is very similar to the
ARC, except that it uses 0.5-hourly TIR observations and includes PM inputs (Xie
et al. 2002). The previous version, v. 1.0 (RFE1; Herman et al. 1997), was operational
from 1995 to 2000. RFE1 was a 10-daily product at 0.1◦ spatial resolution. There are
two main differences between RFE1 and RFE2. The first is that RFE1 did not use
PM inputs. The second difference is that RFE1 had a provision for taking orographic
warm-rain processes into account, which is absent from the current version. The effect
of orography was accommodated by combining relative humidity, wind direction and
the terrain slope to estimate rainfall over regions where cloud-top temperatures are
between 275 and 235 K.

The CMORPH algorithm is a new approach for combining PM rainfall estimates
with TIR information. As such, CMORPH is not a RFE algorithm; rather, it is
a technique whereby PM rainfall estimates, produced by different algorithms, are
interpolated in space and time using motion vectors derived from 0.5-hourly TIR
observations (Joyce et al. 2004). This algorithm starts with the time sequence of fea-
ture motions from the TIR data, and then this information is used to compute the
displacement vector for morphing from one instantaneous microwave estimate to the

Table 1. Summary of the satellite products evaluated here.

Time resolution Space resolution Existence PM Gauge

ARC Daily 0.10◦ 1995–present N Y
RFE Daily 0.10◦ 2000–present Y Y
TRMM-3B42 3 hourly 0.25◦ 1998–present Y Y
CMORPH 3 hourly 0.25◦ 2003–pressent Y N

Note: The PM and gauge columns indicate whether the product includes passive-
microwave or gauge observations
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Challenges of satellite rainfall estimation 5971

next. This enables CMORPH to combine the better RFE accuracy of PM estimates
with TIR observations at higher temporal and special resolution. The final output
from the CMORPH algorithm is still a PM-only product. Thus, here CMORPH is
used to represent the PM-only products. The TMPA algorithm (Huffman et al. 2007)
combines TIR data from geostationary satellites, PM data from different sources
and GTS gauge reports. The TRMM-3B42 product is created in four steps: (1) the
PM estimates are calibrated and combined, (2) TIR precipitation estimated are
created using the PM estimates for calibration, (3) PM and TIR estimates are com-
bined and (4) the data are rescaled to monthly totals whereby gauge observations
are also used indirectly. TRMM-3B42 is a 3-hourly product at a spatial resolution
of 0.25◦.

3. Comparison of satellite rainfall products over mountainous and arid regions

Only the error statistic describing the rainfall detection capabilities of the satellite
products is evaluated. This is because the FAO data is mainly qualitative and can-
not reliably be used for evaluating the skill of the satellite products in estimating the
amount of rainfall. The validation statistics used are frequency bias (FBS), probabil-
ity of detection (POD), false alarm ratio (FAR) and Heidke skill score (HSS). The
expressions for these statistics are given below. The expressions for the categorical
statistics are also given below. These expressions are based on the contingency table
(table 2), where A, B, C and D represent hits, false alarms, misses and correct negatives,
respectively:

FBS = A + B
A + C

(1)

POD = A
A + C

(2)

FAR = B
A + B

(3)

and

HSS = 2(AD − BC)
(A + C)(C + D) + (A + B)(B + D)

(4)

Table 2. Contingency table for comparing rain-gauge measurements and satellite rain-
fall estimates. The rainfall thresholds used are 1.0 and 0.5 mm, for the mountainous

and dry region, respectively.

Gauge ≥ threshold Gauge < threshold

Satellite ≥ threshold A B
Satellite < threshold C D
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5972 T. Dinku et al.

The FBS compares the rainfall detection frequency of the satellite estimates with
that of the rain gauge. It shows whether the satellite product underestimates (FBS < 1)
or overestimates (FBS > 1) the rainfall events detected by the rain gauge. The POD
assesses how good the satellite estimates are in detecting the occurrence of rainfall,
while the FAR measures how often the satellite products detect rainfall when there
is actually no rainfall. The HSS is a measure of the overall skill of the estimates
accounting for matches due to random chance.

3.1 Comparison of satellite rainfall products over the highland region

Figure 4 compares the different validation statistics for the site over the Ethiopian
highlands. The FBSs show that the satellite products underestimate the frequency of
the rainfall. The POD is also low, except for CMORPH. All products have low FAR;
that is, the problem of detecting rainfall when there is no rainfall is very small. Thus,
the main problem over this region seems to be the moderate underestimation of the
occurrence of rainfall.

Overall, the PM product (CMORPH) exhibits a relatively better performance, while
the TIR-only product (ARC) has the poorest performance. The ARC has the highest
underestimation of both amount and frequency of rainfall, while CMORPH has the
lowest bias. CMORPH also has better rainfall detection (higher POD), while ARC has
the poorest rainfall-detection statistics. Comparing the products that blend PM and
TIR estimates, TRMM-3B42 shows a relatively better performance. This shows that
single-threshold TIR products may not be suitable for such a mountainous region,
while retrievals that make the best use of PM observations (CMORPH and TRMM-
3B42) are better suited. The fact that ARC has relatively higher Correlation Coefficient
(CC), with high underestimation and lower POD, means that the temperature thresh-
old used is too low for this region. RFE uses the same threshold, but it also has
PM input, which contributes to the improvement over ARC. The fact that RFE uses
30-minute TIR observations, while ARC uses 3-hourly observations may also con-
tribute to the difference. The improvement of TRMM-3B42 over RFE comes mainly
from the way PM inputs are used. In TRMM-3B42, the PM estimates are also used
to calibrate the TIR brightness temperatures, while in RFE, the PM estimates are just
combined with the TIR estimates. As a result, both the temperature thresholds and the

Figure 4. Comparison of satellite products for the mountainous region over Ethiopia (S1in
figure 1). The number of points used to compute these statistics, N = 1506.
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Challenges of satellite rainfall estimation 5973

rain rate may vary from one location to the other in TRMM-3B42. The fixed tempera-
ture threshold and fixed rain rates are major shortcomings for the RFE algorithm. The
improvement from TRMM-3B42 to CMORPH could be because the latter is totally
based on PM estimates with TIR data used just to interpolate the PM estimates in
time and space. As PM observations have a better physical relationship to precipita-
tion, CMORPH appears to be doing better. It should also be noted that TRMM-3B42
uses gauge adjustments, while CMORPH does not. Thus, the better performance of
CMORPH could be more significant than shown here.

3.2 Comparison of satellite rainfall products over the arid region

A comparison over the arid site is presented in figure 5. The FBS statistics show
the opposite of what has been observed for the mountainous region. All the satellite
products overestimate the frequency over the arid region, and the overestimation is
very high. The overestimation of rain frequency is also reflected in the very high FAR
values. On average, 87% rainfall detection by the satellite products is a false alarm. This
is a serious problem for these satellite rainfall algorithms over this specific region. The
FAR statistic is very sensitive to the climatology of the region, and the fact that rainfall
is a rare event over this region may make this statistic less reliable. However, the fact
that there is also high FBS lends some credibility to the FAR statistic. On the other
hand, the POD is the only statistics that is comparable to that obtained for the moun-
tainous region. The POD is also very low; the highest is 35% for RFE and the lowest
is 22% for CMORPH. The HSS statistic shows that, although positive, the skills of the
products in rainfall detection over this region are very low. The HSS values and hence
the rainfall-detection skills, are much better over the highland region.

It is hard to decide which product performs better over this region. All products per-
form very poorly. RFE has slightly better POD, while TRMM-3B42 and CMORPH
have lower FBS values. It is interesting to note that ARC, which uses a very simple
algorithm, is as good as products from the more sophisticated algorithm. It is also
curious why ARC seems to have slightly better FBS than RFE. One possible explana-
tion for this could be the 3-hourly sampling frequency of the TIR data used in ARC
compared to the 0.5-hourly sampling used for the other products. The low sampling
frequency of ARC could reduce the overestimation of rainfall occurrence.

Figure 5. Same as figure 4, but for the arid region (S2 in figure 1). The number of points used
to compute these statistics, N = 1874.
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5974 T. Dinku et al.

4. Discussion

The previous section presented the error statistics, which showed that the different
satellite rainfall products have different problems over the different climatic regions
studied here. There is some underestimation of rainfall frequency and amount over
the mountainous region, while a huge overestimation is observed for the arid region.
In this section, an attempt will be made to discuss the possible physical reasons behind
those problems and how some of the problems may be alleviated.

4.1 The mountainous region

The underestimation over the highland region is mainly attributed to the complex
orography and the associated warm-rain process. Products such as ARC and RFE
use a single TIR threshold for discriminating between raining and non-raining clouds.
However, this threshold could be too cold for regions where the warm-rain process
dominates. Figure 6 shows temperature thresholds for discriminating raining and
non-raining clouds over Ethiopia for the month of July. The suitable thresholds are
different for the different parts of the country.

Note the difference between the thresholds for the southwestern and southern parts
of the country. The threshold for the former region is relatively warm (−20◦C), while
it is much colder for the latter region (–60◦C). Yet, the two regions are adjacent to
each other. ARC and RFE will underestimate rainfall over the southwest region and

Figure 6. Distribution of suitable temperature thresholds (◦C) for discriminating between rain
and non-raining clouds for the month of July. The circles are locations of rain-gauge stations.
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Challenges of satellite rainfall estimation 5975

overestimate over the southern part. This is a result of the complex topography and
synoptic features such as moisture sources. For PM rain retrieval, the main problem
is that orographic rains may not produce much ice aloft. As current overland PM
rainfall-retrieval algorithms depend on scattering by ice, this may lead to underestima-
tion. Dinku et al. (2008) have shown the overall effect of orography on satellite RFE
by comparing satellite products over Ethiopia and Zimbabwe. Most of Zimbabwe has
a relatively flat topography; as a result, the performance of the products was much bet-
ter. For example, correlation coefficients obtained for Zimbabwe were 0.64, 0.56 and
0.47 for RFE, TRMM-3B42 and CMORPH, respectively, compared with 0.26, 0.39
and 0.32 for Ethiopia.

4.2 The arid region

Section 3.2 showed the huge overestimation of rainfall frequency over the dry val-
idation region by all the products. One major factor for this is perhaps sub-cloud
evaporation. The atmosphere below the cloud is very dry over this region. As an exam-
ple, figure 7 compares the long-term (1968–1996) mean relative humidity (%) over
the two validation sites. The data comes from National Centers for Environmental
Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis
(Kalnay et al. 1996). The left panel is for April and the right one for August. April
and August are the months when the dry and mountainous regions, respectively, have
their rainfall maxima (figure 3). Although the two validation boxes are very close to
each other, the relative humidity over the two regions is drastically different. Relative
humidity over S1 is above 80% during both months, while that over S2 is less than
60% even during the wettest month for the region. The effect of this dry atmosphere
is that the rainfall detected aloft by the satellite sensors evaporates before reaching the
ground. In addition, this may have resulted in the huge overestimation by the satellite
algorithms. The other possibility, which is specific to PM algorithms, is that desert
surfaces could be confused with rain signatures (e.g. Wang et al. 2009). This would
obviously lead to overestimation.

4.3 Tackling the problem

The above discussions have described some of the challenges for satellite rainfall prod-
ucts over mountainous and arid regions. This does not mean that these are the only
challenges, but they are the major ones for the current area of interest. The other
challenge is over the coasts. Coastal effect is somewhat similar to that over the moun-
tainous regions in that satellite rainfall products tend to underestimate rainfall. The
question is how can we address these problems in the African context? One approach
for taking orographic rain into account could be using the technique implemented in
RFE1 (Herman et al. 1997). As discussed in section 2.3, the RFE1 algorithm has a
module that takes orographic rainfall into account. As a result, RFE1 was found to be
better than RFE2 over Ethiopia (Dinku et al. 2007). However, it might not be easy to
implement this approach in the African context. In addition, this approach may not
solve the major problem of the RFE algorithm, which is its use of a single temperature
threshold.

Local calibration could be another approach. Figure 6 emphasizes the importance
of local calibration. This figure shows the temperature that gives the smallest esti-
mation error at station locations. It is obvious that different parts of the country
need different TIR thresholds. The –60◦C threshold works better for the southern
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Table 3. Comparison of TAMSAT and CMORPH at 10-daily accumulation and 0.25◦
spatial resolution.

N = 2448 TAMSAT CMORPH

CC 0.70 0.74
Eff 0.44 0.35
Bias 0.87 0.98
ME (mm) −9 −1
RMS (%) 42 46

Notes: CC, Correlation Coefficient; Eff, Efficiency; ME, Mean Error; RMS, Root
Mean Square Error.

and eastern parts of the country, –50◦C could be better over some areas in the west,
while −20◦C might be needed for the southwestern parts. However, local calibra-
tion is not just a selection of appropriate temperature thresholds; it also involves
determining the other relevant calibration parameters using local gauge observations.
A good example that shows the value of local calibration is the tropical application of
meteorology using the satellite data (TAMSAT) algorithm. This is a simple TIR-only
algorithm, but uses different calibration parameters over different parts of Africa and
different months (Grimes et al. 1999, Thorne et al. 2001). Table 3 compares the per-
formance of the TAMSAT algorithm with that of CMORPH over Ethiopia. There is a
big difference in the level of sophistication between the two algorithms; yet, TAMSAT
performs as well as CMORPH. This is attributed to the specific calibration of the
TAMSAT algorithm over Ethiopia. The problem with local calibration is that one
needs access to rain-gauge data from the different countries. This has not been an easy
task. Thus, the best approach could be helping individual countries in the region with
calibration of the simple algorithms using their own rain-gauge data. Local calibra-
tion of sophisticated algorithms such as CMORPH may not be possible. However,
the CMORPH, or other similar products, could be significantly improved by blending
the products with rain-gauge observations. The blending process involves removing
biases and then merging the satellite estimate with gauge observations. Of course, this
process could also be used with the simpler algorithms. The blending process com-
bines the point accuracy of the gauge observation with the better spatial coverage of
the satellite products. This approach could now be used to generate about 30 years of
better quality rainfall time series at higher temporal and spatial resolution.

5. Summary

The effect of highlands and arid regions on different satellite rainfall-retrieval algo-
rithms has been investigated over eastern Africa. The algorithms investigated include
simple algorithms (ARC and RFE) as well as the current state-of-the-art algorithms
(CMORPH and TRMM-3B42). These products were evaluated using relatively dense
rain-gauge observations from a mountainous region over Ethiopia and an arid region
that covers parts of Ethiopia, Djibouti and Somalia. All satellite products moder-
ately underestimated both the occurrence and amount of rainfall over the highland
region. This underestimation was ascribed to the warm-rain process associated with
the orography of the region. CMORPH was found to do better than the other prod-
ucts, while ARC exhibited the worst performance. The effect over the drier region
is the exact opposite of that observed for the highland area. All the satellite rainfall
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products exhibited extreme overestimation of both frequency and amount of rainfall.
The overestimation of the frequency of rainfall ranges between 175% for CMORPH
to 230% for RFE. This extreme overestimation is mainly ascribed to evaporation of
rainfall in the dry atmosphere under the cloud base.

The topography effect may be accounted for by using slope, moisture and wind data
from numerical models, as was implemented in the previous version of RFE. However,
local calibration could be another approach for the African context. Calibration that
uses locally available rain-gauge observations could significantly improve RFE over
the different climatic regions. This is better carried out by the countries themselves,
as only a small fraction of gauge data is available outside the countries. Another
approach to improving satellite rainfall products is combining the point accuracy
of the gauge observations with the better spatial coverage of the satellite products.
Satellite rainfall products now go back about 30 years. Thus, it is possible to produce
good-quality and consistent historical time series by merging satellite estimates and
gauge observations.
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