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Cellular automata (CA) models are increasingly used to simulate various dynamic courses,
e.g. urban spatial growth, forest fire spread and soil desertification. CA can express space
structures and patterns of complex systems, which are difficult to perform only with
mathematical equations. In this study, a new CA-based spatial multi-criteria evaluation
(MCE) methodology was developed to conduct land suitability simulation (LSS). The
approach incorporated MATLAB to build the analytical hierarchy procedure (AHP) for
criteria weighting. The method is implemented as a tool, called AHP–CA–GIS, using C#
.NETcomputer language in ArcGIS environment. It has adjustable parameter values which
allow users to rectify model inputs for deriving different scenarios. It is spatial-based,
flexible, low-cost and robust, as well as suitable for long-term evaluation. It has increased
the scope of GIS application in MCE and makes the application practical for decision-
making. The AHP–CA–GIS model has been applied to simulate an evaluation of irrigated
cropland suitability in the Macintyre Brook catchment of southern Queensland, Australia.
Five suitability scenarios were generated. The resultant land suitability map was compared
with present land use. The analysis has clearly revealed the potential for irrigation expan-
sion in the catchment. It has also represented the possible suitability of spatial distribution
in the long run. This, in turn, can help the decision-makers optimise land allocation and
make better land-use planning decisions.

Keywords: cellular automata; suitability simulation; multi-criteria evaluation; GIS;
analytical hierarchy procedure

1. Introduction

Land suitability is used to assess the potential of land for a specific land use (Littleboy et al.
1996). Land suitability evaluation (LSE) for irrigated agriculture involves the interpretation of
data relating to soils, topography, vegetation, etc., during an effort to match the land character-
istics with crop requirements (Wang et al. 1990). Due to a number of factors involved in
decision-making, LSE can be identified as a multi-criteria evaluation (MCE) approach
(Reshmidevi et al. 2009). MCE is primarily concerned with how to combine the information
from several criteria to form a single index of evaluation. A number ofMCEmethods have been
proposed in the field of LSE over the last decade or so, such as weighted linear combination
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(WLC) (Carver 1991, Eastman 1997, Giordano and Riedel 2008), analytical hierarchy process
(AHP) (Saaty 1980, Store and Kangas 2001, Hübner and Günther 2007), ordered weighted
averaging (OWA) (Yager 1988, Malczewski et al. 2003, Malczewski and Rinner 2005,
Boroushaki and Malczewski 2008) and concordance analysis (Carver 1991, Joerin et al. 2001).

The AHP (Saaty and Vargas 1991) is a well-known method of multi-criteria technique
which has been widely utilised. This approach of decision-making involves structuring
multiple-choice criteria into a hierarchy, assessing the relative importance of these criteria
and determining criteria weights. It is especially useful in situations where it is impractical to
specify the exact relationships between large numbers of evaluation criteria (Chen et al.
2010). A geographic information system (GIS) is a computing application capable of
creating, storing, manipulating, visualising and analysing geographic information
(Goodchild 2000). Because one of the most useful GIS applications for planning and
management is the land suitability mapping and analysis (McHarg 1969, Hopkins 1977),
GIS has been integrated with the AHP method to solve LSE problems (Cram et al. 2006,
Hossain et al. 2007, Anagnostopoulos et al. 2010). However, land is a complex system
which is composed of a physical environment as well as the results of past and present
human activity (FAO 1976). Using theMCEmethod only to cope with the LSE problemmay
neglect some potential phenomena and rules implicated. Therefore, a simulation model
which can deal with such a complex system is necessary to be exposed.

Cellular automata (CA) models have been applied as tools to support land-use planning
and policy analysis (Geertman and Stillwell 2004) and to explore scenarios for future
development (Barredo et al. 2003, Nijs et al. 2004). CA can describe a complex system
through modelling the system starting from the elementary dynamics of its interrelation and
allowing the system complexity to emerge by interaction of simple individuals following
simple rules (Malczewski 2004). Therefore, CA is a good tool for land suitability analysis,
which is an important measure for land-use planning. Here we refer to simulation mod-
el–based potential LSE as land suitability simulation (LSS). CA-based LSS can reveal
implicated and potential phenomena and rules of land use, which is the main difference
compared with traditional LSE. Traditional LSE may only integrate experts’ knowledge or
use GIS to plot the suitability of land use for irrigation, but perhaps it neglects the potential
rules in land suitability and only pays attention to current circumstances. On the other hand,
CA can dynamically reveal the possible land suitability spatial distribution in the long run, if
data are available, with its special ‘bottom-up’ (Liu et al. 2008a) characteristic which can
reflect complex patterns in macro derived from simple rules in micro. This is difficult to
accomplish by traditional methods without CA.

The core of CA is how to define transition rules, which can be expressed in lots of forms
(Li et al. 2008), such as logistic regression (Wu 2002), dynamic urban evolutionary model
(DUEM) (Batty et al. 1999), slope, land use, exclusion, urban extent, transportation and
hillshade (SLEUTH) model (Clarke and Gaydos 1998), MCE (Wu and Webster 1998), neural
networks (Li and Yeh 2002), support vector machines (Yang et al. 2008), ant colony
optimisation (Liu et al. 2007, 2008a) and nonlinear transition rules (Liu et al. 2008b). We
choose the MCE method to represent transition rules in this study due to its extensive
applications in LSE (Tiwari et al. 1999). The inspiration source is Wu and Webster’s MCE-
CAmethod (Wu and Webster 1998) in urban growth simulation, but the application of hybrid
usage of CA and MCE in LSS has significant differences. First, transition rules for urban
growth simulation are obtained from building inner relationships of real urban land uses in
different times. But the transition rules for LSS problems mainly rely on the suitability
classification according to indigenous knowledge (Sicat et al. 2005), as well as experts’ and
local decision-makers’ opinions in decision-making. Second, the simulation results of urban
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growth could be calibrated according to the actual urban land use. As to LSS, the validation
and calibration method of the model inherits the method for LSE, which more depends on the
indigenous knowledge (Sicat et al. 2005), field surveys (Corona et al. 2008), opinions of
decision-makers (Joerin et al. 2001), expert knowledge (Kalogirou 2002) and comparisonwith
existing location of the specific land use (Hossain et al. 2007, Hossain and Das 2010).
However, issues such as use of expert knowledge, GIS and field survey in model calibration
and validation are complex. Each type of these experimental methods has its strengths and
weaknesses (Robinson et al. 2007), which deserves further investigation in future.

The objective of the study is to propose a new method which applies CA, in combination
with AHP in GIS environment, to simulate potential land suitability for irrigated agriculture
land use. A tool called AHP–CA–GIS has been developed to implement LSS process. A case
study in the Macintyre Brook catchment of southern Queensland of Australia is presented
here to illustrate the feasibility of this tool in the evaluation of irrigated cropland suitability.

2. Study area

The Macintyre Brook catchment is located in southern Queensland near the state border with
New South Wales, and lies between 27�5700100S and 28�4704800S latitude and 150�4500500E
and 151�4202400E longitude (Figure 1). The catchment is relatively flat in the western area, with
undulations becoming steeper towards east and north-east. The elevation at the major town of
Inglewood is 284 m.Macintyre Brook River flows from east to west, and its tributaries are the
main source of surface water for the region. The region is not well endowed with groundwater.
The irrigation water to Macintyre Brook is supplied by Coolmunda Dam, along which the
main irrigation areas of the catchment are located (Malcolmson and Lloyd 1977).

The catchment covers an area of 4200 km2. It is characterised by extremely diverse soil
types and topography (Harris 1986), making it suitable for a wide variety of land use (Figure 1)
and agricultural production. Currently about 1.5% of the catchment area is devoted to irrigated
cropping and perennial horticulture as well as sown pastures. The remainder is dominated by
dry-land cropping (3%), native pasture grazing country (80%) and state forest reserves (15%).
Historically, grazing was predominant, but dry-land and irrigated cropping have become

Present land-use

Irrigated cropping

Cropping

Production forestry

Grazing natural vegetation

Services

Residential

Intensive animal production

River/reservoir/dam

Nature conservation

Figure 1. Location and land use (50 m resolution) of Macintyre Brook (Chen et al. 2010).
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increasingly significant over time. The main crops include fodder (lucerne), maize, sorghum
and peas and there are orchards as well of peach, plum and apricot.

The area under irrigation in the catchment has increased steadily following the construc-
tion of the Coolmunda Dam in 1968. Irrigation in the region was traditionally geared around
tobacco production, but the demise of that industry in the 1960s led many irrigators to fall
back on opportunistic irrigation of pastures and crops. More recently, there has been
significant development in olive and peanut production (Chen et al. 2010).

3. Methodology

CA essentially consists of the following elements: (1) a grid space, (2) a set of grid cell states,
(3) a definition of a cell’s neighbourhood, (4) a set of transition rules that compute a cell’s
state transitions with a function of the states of neighbouring cells and (5) discrete time steps
in which all cells updated simultaneously (White and Engelen 2000). In the simulation of
this study, we attempted to model potential land suitability with CA transition rules and
represent suitability distribution in a spatial context. The grid space in this study is two-
dimensional, and the cell state represents irrigated land suitability. Moore neighbourhood
(Gray 2003) (with eight adjacent cells) was adopted here with the spirit of simplicity. The
detailed simulation method is described below.

3.1. Assumptions

Three assumptions are made to ensure the compatibility between the CA model, nature
system and practical operations of decision-makers during the simulation courses.

(1) Lands surrounding irrigated area have higher suitability and more possibility to be
developed as irrigated lands. In other words, regions close to irrigated areas have
more chance to be expanded to irrigated agriculture land use. We define this
assumption as an irrigation neighbour effect (INE) here.

(2) Only the highly suitable areas will be selected by decision-makers for the new
development of irrigated cropland, considering water-use efficiency and production
benefit.

(3) In reality, irrigation will never occur on some lands, such as rivers, residential areas,
forestry and mining areas. We set these lands as restrictive areas which constrain the
expansion of irrigation areas.

3.2. Derivation of criterion maps

The derivation of criterion maps consists of three steps:
The first step is suitability classification. This study used the suitability classes which

were proposed by the Food and Agricultural Organisation (FAO 1976). The classification
consists of four levels: highly suitable (S1), moderately suitable (S2), marginally suitable
(S3) and unsuitable (N). Detailed descriptions of these four levels are given in Table 1.

The second step is selection of criteria. Seven criteria were chosen to evaluate the
suitability. These include percent slope (S), soil texture (ST), depth to water table (DTW),
electrical conductivity of groundwater (ECw), hydraulic conductivity of soil (Ks) (Chen
et al. 2010), distance to stream (DS) and irrigation land use (IL). IL describes irrigation
distribution with binary values (0 or 1). It was used to generate the INE layer, described in
Assumption 1. The threshold values of other criteria are given in Table 2. They were
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determined based on literature survey and expert opinions, and are only applicable to a
broad-scale analysis of irrigated cropping in this specific catchment.

The last step is generation of criterion maps. All the criterion maps need to have the same
geographic scale, boundary, cell size and spatial reference. In this study, the criterion maps
were standardised in raster formatwith a cell size of 100 · 100m. UTMZone 56Swas used as
the spatial reference. Based on the thresholds in Table 2, we classified the criterion maps S, ST,
DTW, ECw, Ks and DS into four classes. Raster layers have numerical values 4, 3, 2 or 1,
which represent S1, S2, S3 andN, respectively. The ILmap is the seventh criterionmap used to
complete the implementation of CA algorithms. Irrigated area was picked from the present
land-use map. The present land-use map has a cell size of 50 · 50 m (Figure 1). To meet the
requirement of uniform cell size, we re-sampled the map to 100 · 100 m using bilinear
interpolation and then selected the irrigated area to generate the IL map. Cells in the IL map
layer have a value 1 or 0, which represents whether the cell is an irrigated area or not. The IL
map in Figure 2 is the initial IL layer used to generate the INE layer. A detailed generating
method will be given in Section 3.4.The INE layer carries out Assumption 1 and has values of
real numbers ranged between 0 and 1. Its value reflects the possibility of land being developed
into irrigated land. Criterion map DS is generated by buffer zone analysis. Taking into account
the requirement and availability of surface water for irrigated agriculture, we selected the
downstream parts ofMacintyre Brook River, which seldom run out of water in dry season, and
generated buffer zones for the downstream parts. Buffer zones of different levels were
classified by the thresholds of DS in Table 2.

3.3. Determination of criterion weights using AHP

AHP was used to determine criterion weights. Saaty’s (1977) AHP is a method to determine
the weights through pair-wise comparisons of parameters. A pair-wise comparison matrix

Table 1. Land suitability classification (Chen et al. 2010).

Class Definition

S1 Highly suitable: land having no significant limitations for sustained applications to irrigated
cropping, or only minor limitations that will not significantly reduce the productivity

S2 Moderately suitable: land having limitations that are moderately severe for sustained
application to irrigated cropping, and may reduce the productivity marginally

S3 Marginally suitable: land with limitations that are severe for sustained application to irrigation
cropping, and as such reduce productivity significantly but is still marginally economical

N Unsuitable: land with extreme limitations which appear to preclude sustained application to
irrigation cropping

Table 2. Criteria for suitability assessment (Chen et al. 2010).

Criterion S1 S2 S3 N

S (%) 0–2 2–4 4–8 .8
ST Fine to

medium
Heavy clay Coarse or poorly

drained
Very coarse or shallow
depth

DWT (m) .4 3–4 2–3 ,2
ECw
(dS/m)

0–0.5 0.5–2 2–5 .5 (if depth , 4 m)

Ks (m/d) 0.3–1 0.05–0.3 or
1–2

2–2.5 ,0.05 or .2.5

DS (m) ,1000 1000–2000 2000–3000 .3000

International Journal of Geographical Information Science 135

D
ow

nl
oa

de
d 

by
 [

L
in

na
eu

s 
U

ni
ve

rs
ity

] 
at

 1
4:

45
 1

1 
O

ct
ob

er
 2

01
4 



was created to express the relative importance between each two criteria. The comparison
matrix is basically a list of criteria, which are weighted depending on their respective
importance. Table 3 shows the comparison values, which were determined according to
judgements of experts including surface-water hydrologists, groundwater hydrologists, soil
scientists and irrigation specialists. The matrix values, which could be 1/9, 1/8, 1/7, 1/6, 1/5,
1/4, 1/3, 1/2, 1, 2, 3, 4, 5, 6, 7, 8 or 9, represent the relative degree of importance of one
criterion against another. A bigger matrix value means one criterion is more important than
the other for a particular pair of criteria, and vice versa. Value 1 means the two compared
criteria have equal importance. Value 9 represents absolute importance and 1/9 the absolute
triviality (Saaty and Vargas 1991). In Table 3, the comparison value between Ks along the

Figure 2. Criterion maps used for the evaluation of irrigated agricultural land and restriction land-use
map. The suitability levels are classified based on the threshold values. Criterion maps are S, ST, Ks,
DWT, ECw, DS and IL.
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side of the table and S along the top is 3, which illustrates that Ks is moderately more
important than S, while the comparison value between ECw and S is 1/3, which shows ECw
is moderately of less importance thanS. The weight of each parameter value obtained
through importing this comparison matrix into AHP algorithm is shown in Table 4. The
sum of all weight values equals to 1.

3.4. Process of CA simulation

After calculating the weight of each parameter, we applied a CA model in which MCE was
used to simulate irrigation suitability. Themodel prescribes that the state of a cell in time t + 1
is determined by its state and its neighbours in time t as well as corresponding transition
rules. It is described as follows:

Stþ1xy ¼ f Stxy; �xy; T
� �

(1)

where Stþ1xy and Stxy are land suitability states in location (x, y) at times t + 1 and t, �xy is the
development status of the neighbours of location (x, y) and T is a series of transition rules. In
the process of simulation, the development status is obtained through eight-neighbour rule.
With a 3 · 3 window, the central cell picks the values of its eight neighbour cells, and then
calculate land suitability state of the next time. With Equation (1), transition rules can be
defined flexibly. The state at time t + 1 can be determined by

Stþ1xy ¼ f Pt
xy

� �
(2)

Table 3. Comparison matrix of objectives.

S ST DTW ECw Ks DS IL

S 1 2 4 3 1/3 1 2
ST 1/2 1 5 4 1/2 2 2
DTW 1/4 1/5 1 1/2 1/4 1/2 1
ECw 1/3 1/4 2 1 1/3 1 1
Ks 3 2 4 3 1 3 4
DS 1 1/2 2 1 1/3 1 2
IL 1/2 1/2 1 1 1/4 1/2 1

Table 4. The weights calculated from comparison
matrix using AHP method.

Criterion Weight

S 0.1854
ST 0.1873
DTW 0.0518
ECw 0.0787
Ks 0.3141
DS 0.1116
IL 0.0711

Total 1.0
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where Stþ1xy is the land suitability state in location (x, y), time t + 1; Pt
xy is the transition

probability of suitability of state S in location (x, y) in time t, which is represented as

Pt
xy ¼ f rtxy

� �
¼ f o Ft

xyk ; Wk

� �h i
(3)

where rtxy is the estimated suitability transition intensity of state S in location (x, y); Ft
xyk is the

value of criterion k in location (x, y), which is extracted from each criterion map, including
the INE map generated from the IL map in state t; Wk is the weight for each factor; o is the
united function which calculates the combined score with the parameters of Ft

xyk andWk; and
f is used to translate suitability into a function of probability.

Equation (3) can be expressed as below (Wu and Webster 1998):

Pt
xy ¼ f rtxy

� �
¼ exp a

rtxy
rmax
� 1

� �� �
(4)

Equation (4) is the key equation used in suitability evaluation. In this equation, Pt
xy is the

transition probability of suitability of state S in location (x, y), 0 � Pt
xy � 1. a is the

dispersion parameter, which takes a value between 1 and 10. The value of a governs the
stringency of suitability estimation, with a higher value reflecting a more stringent evalua-
tion process. Thus, this parameter has an important influence on the whole evaluation
pattern. Detailed discussion about it can be found in Section 4.3. rmax is the maximum
value of rxy . r

t
xy is the estimated suitability transition intensity of state S in location (x, y),

which is calculated by the following equation:

rtxy ¼
Xm
k¼1

WkF
t
xyk

 !
Restrictxy (5)

where Ft
xyk is the value of criterion k in location (x, y) in time t, Wk is the weight for each

criterion and Restrictxy is the value of restriction in location (x, y). Restrictxy has a binary
value, 0 or 1. It carries out Assumption 3 in Section 3.1.We take into account the classes in
the land-use layer. If a land-use class has restriction, the corresponding cells of it will be
valued 0, else valued 1. For instance, rivers, reservoirs and other protected areas should be
treated as restrictive factors. They have absolute restriction to irrigation because the prob-
ability of irrigation on these lands is zero. In such cases, Restrictxy = 0. In Equation (5),
1<k � m represents a criterion in the evaluation process; m is the total number of criteria. In
this study, m = 7: they are S, ST, DTW, ECw, Ks, DS and INE.

Therefore, in this study, the specification of rtxy becomes

rtxy ¼ w1Sxy þ w2STxy þ w3DTWxy þ w4ECwxy þ w5Ksxy þ w6DSxy þ w7INExy

� 	
Restrictxy

(6)

where w1, w2, . . ., w7 are AHP weighting parameters; Sxy , STxy , DTWxy , ECwxy , Ksxy
and DSxy are standardised values of each criterion in location (x, y); Restrictxy is the
value of restriction in location (x, y) with a binary value 0 or 1 and INExy is the value
for INE in location (x, y) generated from IL layer with the eight-neighbour rule using
Equation (7):
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INExy ¼
Pxþ1

i¼x�1
Pyþ1

j¼y�1 ILij � ILxyPxþ1
i¼x�1

Pyþ1
j¼y�1 Nij � 1

(7)

where Nij is defined to cope with cells on the border of the layers. Nij = 1 when the value in
location (i, j) is not null (null for cells out of border), otherwiseNij = 0; ILij is the binary value
of the cell in location (i, j) of the IL layer. Figure 3 gives an example of illustrating the
method with a raster layer of 3 · 3 cells.

When the transition probability of suitability (Pt
xy) of each grid cell has been obtained

from Equation (4), the transition probability matrix of the next state is generated, which will
be used for the next iterative run to build a probability map for irrigation suitability. The
probability values ranged from 0 to 1 can then be transformed into four suitability classes
through three classification thresholds in Table 5. In this study, the range of probability value
is equally divided into four parts by four classes, so that values of ThresholdS1–S2,
ThresholdS2–S3 and ThresholdS3–S4 in Table 5 are 0.75, 0.5 and 0.25, respectively.

After the transition process, each cell was reclassified into four classes and the assumed
irrigated land use of the next state was ascertained according to Assumption 2 defined in
Section 3.1.It means highly suitable areas are regarded as irrigated agriculture lands for the
next state processing.

There are two methods to terminate CA evolution. First, compare two layers at time t and
t + 1. If there are no differences between them, it means steady state has been reached.
Second, experts pick an eligible result with experience or preset limitation (threshold). The
first method was used in this study to get a steady resultant suitability evaluation map.

It should be noted that simulation time has no necessary correspondence to real time
(Cecchini 1996). In this study, the generated irrigated land-use maps by iteration were not
mapping into real time. With sufficient time-series data, each criterion layer of real time
could be input corresponding to a specified iteration. This will be studied in future research.

Figure 3. Generation of INE layer from IL layer.

Table 5. The rules for suitability classification from probability value.

Probability value Suitability class

Pt
xy � ThresholdS1–S2 Highly suitable (S1)

ThresholdS1–S2 . Pt
xy � ThresholdS2–S3 Moderately suitable (S2)

ThresholdS2–S3 . Pt
xy � ThresholdS3–N Marginally suitable (S3)

Pt
xy , ThresholdS3–N Unsuitable (N)
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4. Implementation of the integrated simulation

4.1. Key technology in development

The AHP–CA–GIS tool was developed using C# .NET to construct the framework of the
simulation software for suitability evaluation. MATLAB software–embedded components,
which provide special features enabling users to create a component object model (COM)
(Phan 2004), were incorporated to implement AHP for calculating criteria weights. The
Environmental Systems Research Institute (ESRI) ArcGIS Engine, which is a core set of
cross-platform ArcObjects components compatible with multiple application programming
interfaces (APIs) (ESRI 2008), was employed for spatial data manipulation and result
displaying.

4.2. Simulation implementation

The implementation of the AHP–CA–GIS tool (Figure 5a) is expressed through Figure 4. It
is a set of processes of spatial iteration in accordance with CA evolution (Figure 5b).

4.2.1. Process 1: AHP calculation

Import AHP comparison matrix into the model with the same format to Table 3, so the tool
can read the matrix (Figure 5c) and calculate and return the weight values of all criteria
(Figure 5d). Measure the consistency ratio (CR) of the result. If it cannot meet the predefined
requirements, the pair-wise values in the matrix should be re-evaluated and return a new
matrix to be re-calculated in the AHP module.

4.2.2. Process 2: Data preparation

(1) According to present land uses, select areas where irrigation is impossible to occur,
such as mining areas, rivers, residential areas and manufacturing and industrial
zones. Make them as restrictive areas with a value of 0; then create a restriction
land-use map, which is shown in Figure 2. The figure shows portions hatched and
non-hatched for restrictive and non-restrictive areas, respectively.

(2) Input the IL map. Calculate the INE value for each cell which derived from the IL
map according to the eight-neighbour CA rule mentioned in Equation (7); then store
all cell values into an INE map.

4.2.3. Process 3: Model simulation

(1) Read cell values of the criterion maps, restriction land-use map and the INE map in
value matrices; input these matrices and corresponding weights obtained from the
AHP calculation into the AHP–CA–GIS model, and output the suitability probability
value matrix. The parameter configuration window of the tool is shown in Figure 5e.

(2) Generate the probability layer from the probability value matrix. Based on the
suitability classification rule defined in Table 5, standardise the probability layer
into a suitability classification layer with four suitability classes (S1, S2, S3 and N).

(3) Compare the suitability classification layer with the simulated classification layer of
the previous iteration. If there are differences between these two layers, it means the
steady state has not been reached, and the CA process needs to be further evolved. (If
it is the first iteration, then it assumes steady state has not been reached and directly
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goes to the next iteration.) Based on Assumption 1 in Section 3.1, an assumed IL
map is generated. This map is regarded as a new condition layer to replace the
previous IL map; then go back to repeat all steps in process 3. A series of iterations
will be implemented until the spatial distribution of suitability achieves steady state
(Figure 5f).

Figure 4. Workflow for implementation of simulation process.
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4.2.4. Process 4: Result verification

Because there are subjective factors present in the simulation process, such as the compar-
ison matrix whose values are filled by experts, the result has to be verified. Based on a field
survey, judge if the suitability map is realistic. If not, the dispersion parameter mentioned in
Equation (4) or AHP matrix values may need to be adjusted as new inputs; execute steps in
process 3 again to generate a more reasonable scenario.

4.3. LSS results and discussion

With different input parameter values, the AHP–CA–GIS tool can generate various simula-
tion results. The parameter value which is provided to be adjusted by decision-makers to

(a)

(c)

(e) (f)

(d)

(b)

Figure 5. AHP–CA–GIS simulation tool interface. (a) The main interface of AHP–CA–GIS tool with
map control and layer control. (b) Two main components: AHP calculation and CA processing. (c)
AHP calculation interface. (d) AHP calculation interface with criteria weights calculated. (e) CA
processing window for parameter configuration. (f) A simulation result after iterative runs.
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form different scenarios is the value of dispersion parameter a. It can control the dispersion
degree of the suitability distribution. A lower a value derives a more optimistic scenario
corresponding to the situation that abundant resource available for irrigated cropland. With a
higher dispersion value, the possibility for irrigation suitability is depressed, which is
corresponding to a less optimistic scenario. Figure 6 shows five suitability maps generated
from five scenarios by changing a values to 1, 2.5, 5, 7.5 and 10. Criteria weights were kept
the same for all scenarios. For practical demand, more values could be picked by decision-
makers to run other scenarios. The percentage areas of suitability classes derived from the
five resultant scenario maps are compared against each other in Figure 7.

The scenario with a = 1 has the most optimistic situation. About 22% of the catchment
area is dominated by highly suitable (S1). Sixty-two percent of the area is moderately
suitable (S2) and 16% is marginally suitable (S3). There is no unsuitable land (N) in the
catchment at all under this scenario.

The scenario with a = 2.5 has a declined optimistic situation compared to the scenario
with a = 1. About 3% of the area is dominated by S1. S2 has decreased to 16% and S3 has
increased to 27%. It is obvious that the N class appears and occupies 54% of the total area.

With a = 5, there is only no more than 1% of the area covered by S1. The S2 class
decreases to 2% and the S3 class is down to 17%. The N class largely increases to about 80%.

With a = 7.5, the area with high suitability is close to 0. The area of S2 class is also nomore
than 1%. S3 class reduces to 7%. The N class now has the dominating area of more than 92%.

With the greatest value of a (a = 10), it derives a worst-case scenario. Highly suitable
area and moderately suitable areas are almost 0. Small areas of marginally suitable class
(2%) are located along riverside where ground water is available. Unsuitable class covers
nearly 98% of the total catchment area.

Figure 6. Suitability evaluation maps of irrigated agriculture in the Macintyre Brook catchment.
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Figure 8 illustrates a method of how to select a reasonable a parameter value which is
crucial to model simulation. It shows the probability values Pt

xy [defined in Equation (4),
0 � Pt

xy � 1] for suitability evaluation with different suitability transition intensities rtxy
[defined in Equation (6), 0 � rtxy � rmax] in these five scenarios. It is a nonlinear transition
from rtxy to the probability value. The probability curve of a = 2.5 has a more uniform
probability distribution than in the case of others. Based on the decision-makers’ opinions,
the field survey and expert knowledge, the resultant map with a = 2.5 was selected in this
study for more detailed analysis.

According to the resultant suitability map with a = 2.5, the S1 class is mainly distributed
on the flood plain of the Macintyre Brook, where the water resources and soil conditions are
suited for irrigation. The N regions are mainly located in the south-eastern areas of the
catchment, which are characterised with complex topography, relatively steep slopes, poor
soil texture, lower hydraulic conductivity and relatively high distance from streams.

Using GIS overlay analysis, the resultant map was validated by the existing location of
irrigated croplands in the study area. The present irrigated land was compared with the
simulated highly suitable (S1) regions. The result showed that only about 36% of the highly
suitable lands have been used for current irrigation practice. It revealed the irrigation land-
use development potential of the area. The spatial distribution of suitability has indicated that
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Figure 7. Percentage areas of suitability classes derived from the five resultant scenario maps.
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the impact of ECw and DWT to evaluation results is not pronounced. Ks has a great impact
on the simulation result. More than 95% of the S1 and S2 classes are located in the areas
where Ks is within the range of 0.05–2 m/d. Soil texture also has a significant influence on
the evaluation classification. More than 95% of S1 and S2 lands are located in regions with
fine to medium soil texture. The results have also illustrated that about 80% of S1 and S2
regions are on surfaces with slopes less than 2%. The S1 areas in the resultant map and the
buffer areas in the DS criterion map have a close match (similar spatial distribution pattern),
with about 75% of S1 areas falling into the 1000 m buffer zone of the main stream.

It is evident that, with satisfied budget and water supply, the catchment has potential to
expand its irrigation areas and provide more food supplies. The results from this study will
provide a basis to support decision-making in the future development of irrigated land in the
catchment.

5. Conclusion

As a new attempt to expand CA application into the field of agriculture, this article has
introduced CA concept into multi-criteria suitability evaluation for irrigated land use.
Combined with AHP using MATLAB components, we have integrated CA into MCE in
GIS environment. A new model, AHP–CA–GIS, has been developed and implemented to
achieve LSS. The AHP–CA–GIS tool has the following advantages:

(1) Spatial-based: All analysis results are displayed with spatial format and spatial
processing. They are spatially explicit and easy to understand.

(2) Flexibility: The values of the dispersion parameter and criteria weights are adjus-
table, which allows the users to rectify the modelling inputs so as to adapt to different
scenarios. It increases the scope of application of the GIS simulation and makes it
practical for decision-making.

(3) Low cost: The tool can provide an integrated solution of irrigated land suitability
evaluation. It simplifies the traditional MCE method and makes cost-effective
solutions for expert knowledge integration and spatial data analysis.

(4) Long-term evaluation: The methodology takes into account the irrigation neighbour
effect. It incorporates the CA conception that surrounding development will affect
suitability assessment and dynamically evolve the simulation. This reveals the
possible potential for irrigation expansion in the study area and represents the spatial
distribution of irrigated cropland suitability in the long run. The approaches make
the result more in line with the actual decision-making requirements.

Five suitability scenario maps have been generated using the AHP–CA–GIS tool in this
study. There is a significant correlation between suitability distribution and criteria weights.
The results have also been verified in comparison with the present land-use map. It showed
that the irrigated land could be expanded in the region and the potential development areas
have been represented in a spatial context. This has provided decision-supporting for
regional resources management and investment. It put forward a novel methodology to
enhance sustainable agricultural land-use planning.

The limitation of this study lies in three aspects. First, there are still some uncertainties
associated with the selection of two key parameters: dispersion parameter and classification
threshold. In combination with experts’ participation and field investigation, special atten-
tion needs to be paid to the determination of the parameter values in future work. Second,
more criteria may be required in the suitability simulation for irrigated agriculture. There are
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seven criteria used in the study. But in reality, criteria such as social and economic effects are
recommended to be considered. Third, specific iterations could be calibrated using real-time
data to make further improvement to the reliability of LSS results if sufficient time-series
data are available.
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