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abstract: Regime shifts are massive, often irreversible, rearrange-
ments of nonlinear ecological processes that occur when systems pass
critical transition points. Ecological regime shifts sometimes have
severe consequences for human well-being, including eutrophication
in lakes, desertification, and species extinctions. Theoretical and lab-
oratory evidence suggests that statistical anomalies may be detectable
leading indicators of regime shifts in ecological time series, making
it possible to foresee and potentially avert incipient regime shifts.
Conditional heteroscedasticity is persistent variance characteristic of
time series with clustered volatility. Here, we analyze conditional
heteroscedasticity as a potential leading indicator of regime shifts in
ecological time series. We evaluate conditional heteroscedasticity by
using ecological models with and without four types of critical tran-
sition. On approaching transition points, all time series contain sig-
nificant conditional heteroscedasticity. This signal is detected hun-
dreds of time steps in advance of the regime shift. Time series without
regime shifts do not have significant conditional heteroscedasticity.
Because probability values are easily associated with tests for con-
ditional heteroscedasticity, detection of false positives in time series
without regime shifts is minimized. This property reduces the need
for a reference system to compare with the perturbed system.

Keywords: regime shift, conditional heteroscedasticity, Lagrange mul-
tiplier test, moving-window analysis, leading indicator, ecosystem
model.

Introduction

Regime shifts are reorganizations of nonlinear ecological
processes that occur when systems pass critical transition
points. Ecological regime shifts are sometimes irreversible
and can have severe consequences for human well-being
through loss of water quality, loss of rangeland or fish
production, or loss of species (Carpenter and Brock 2006;
Scheffer et al. 2009; Drake and Griffen 2010). Generally,
the critical transition point is unknown, and regime shifts
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occur with little or no warning (Scheffer et al. 2009). There
are a wide variety of approaches to identify regime shifts
after they occur, but methods to warn of impending regime
shifts are needed if unwanted transitions are to be pre-
vented (Andersen et al. 2009; Biggs et al. 2009; Contamin
and Ellison 2009).

Theoretical evidence suggests that statistical anomalies
appear in ecological time series prior to regime shifts (e.g.,
Carpenter and Brock 2006; Carpenter et al. 2008; Scheffer
et al. 2009). Increasing autocorrelation (Scheffer et al.
2009), increasing variance (Brock and Carpenter 2006;
Carpenter and Brock 2006; Scheffer et al. 2009), shifts to
low-frequency variance (Kleinen et al. 2003; Biggs et al.
2009), and changing skewness (Guttal and Jayaprakash
2008) in ecological time series warn of impending regime
shifts in theory and are present before regime shifts in
simulations of stochastic ecosystem models (e.g., Carpen-
ter et al. 2008; Guttal and Jayaprakash 2008; Scheffer et
al. 2009), as well as in laboratory studies (Drake and Grif-
fen 2010). These indicators are thought to represent a
general class of early warning signals applicable to a wide
variety of regime shifts. However, some common critical
transitions are characterized by decreasing variance, de-
creasing autocorrelation, or no change in symmetry (Berg-
lund and Gentz 2002; Brock and Carpenter 2006; Guttal
and Jayaprakash 2008; Carpenter et al. 2009). Hence, lead-
ing indicators may have ambiguous interpretations when
applied to environmental data if the form of the underlying
dynamics is unknown (Brock and Carpenter 2006). An
additional challenge is to discern between random and
nonrandom changes in indicators (Scheffer et al. 2009).
Currently, a reference system is needed to compare to the
perturbed system in order to interpret changes in indi-
cators because indicators are not easily associated with
probability values (e.g., Drake and Griffen 2010; Carpenter
et al. 2011).

Conditional heteroscedasticity is persistence in the error
variance of autoregressive time series models (Engle 1982).
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Figure 1: Squared residuals from an autoregressive lag-1 model ap-
plied to the 200 time steps prior to regime shift in the planktivore
biomass time series from the temperate-lake food web model plotted
by the previous squared residual. The strong positive relationship is
indicative of conditional heteroscedasticity because there is a rela-
tionship between the error variance at a given time step and the
error variance at the previous time step. If the regression line was
horizontal, error variance would have no relationship with error
variance at previous time steps, and there would be no conditional
heteroscedasticity.

In time series, conditional heteroscedasticity appears as
clustered volatility, such as the periods of high volatility
and low volatility seen in plots of stock market returns
(Engle 2001). Conditional heteroscedasticity is well known
in economics, but tests for conditional heteroscedasticity
and related autoregressive conditional heteroscedastic time
series models have rarely if ever been applied to ecological
time series (Lamoureux and Lastrapes 1990; Engle 2001).
We analyzed conditional heteroscedasticity as a potential
leading indicator of regime shifts in ecological time series.
We use simulated time series from stochastic ecosystem
models to evaluate the power of conditional heterosce-
dasticity to detect impending regime shifts and to evaluate
the susceptibility of these tests to false positives. Some of
these models use empirically measured large process error,
which more adequately mimics nature than small-noise
processes generally applied to ecosystem models.

Methods

Conditional Heteroscedasticity

Constant residual variance (homoscedasticity) is a fun-
damental assumption of ordinary least squares regression
analysis. Methods for dealing with violation of the constant
variance assumption (heteroscedasticity) are well studied
and include weighted least squares regression, data trans-
formations, and heteroscedastic consistent covariance es-
timators (e.g., Box and Cox 1964; White 1980). Similarly,
stationary residual variance is also an assumption of many
time series analysis methods, and many time series are
heteroscedastic, with periods of high and low volatility
(Engle 1982, 2001; Lamoureux and Lastrapes 1990). These
time series are described as conditionally heteroscedastic,
meaning that the variance at a time step is dependent or
conditional on the variance at the time step before. High
volatility is likely to follow high volatility, and low volatility
is likely to follow low volatility, leading to a characteristic
clustering of variances.

Variance increases in the vicinity of an impending re-
gime shift due to flickering or squealing (Taylor et al. 1993;
Carpenter and Brock 2006; Scheffer 2009; Brock and Car-
penter 2010). Flickering occurs when stochastic forcing
moves a system between two states but not permanently
from one state to another (Scheffer 2009; Brock and Car-
penter 2010). These back and forth changes in state var-
iables create increased variance that can be viewed as an
early warning because environmental conditions have not
changed enough to force the system into one state (Schef-
fer 2009). Squealing occurs when variance builds in vi-
cinity of a regime shift because the system does not recover
from random environmental perturbations rapidly due to
reduced return rate to equilibrium (Scheffer 2009; Scheffer

et al. 2009; Brock and Carpenter 2010). Because of flicker-
ing and squealing, the region of time series near a critical
transition might be a cluster of high volatility, and the
region of time series more distant from the critical tran-
sition point might be a cluster of low volatility. Thus,
significant conditional heteroscedasticity is expected to ap-
pear as a system approaches a critical transition point be-
cause high volatility will appear to cluster. If an impending
regime shift is characterized by declining variance prior
to the critical transition point, conditional heteroscedas-
ticity will still appear because there is still a clustering of,
in this case, low variance prior to the shift. There should
be no significant conditional heteroscedasticity in time se-
ries without a critical transition. Figure 1 is an example
of conditional heteroscedasticity. The figure consists of
squared residuals from an autoregressive lag-1 time series
model applied to 200 time steps of simulated planktivore
biomass prior to a regime shift in a temperate-lake food
web model plotted by the squared residual at the previous
time step. The strong positive relationship between
squared residuals and the squared residuals at the previous
time step is characteristic of conditional heteroscedasticity.
The regression line would be horizontal if there were no
conditional heteroscedasticity and variance at one time
step was not dependent on variance at the previous time
step.
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Analytical Approach

We used simulated time series with and without regime
shifts to evaluate conditional heteroscedasticity as a leading
indicator. Simulated data are well suited to evaluation of
leading indicators because the locations of regime shifts
due to changes in the control parameter are known exactly.
The power of conditional heteroscedasticity as a leading
indicator can be assessed at different distances preceding
the simulated regime shift, and the indicator can be applied
to simulated time series without regime shifts to evaluate
its susceptibility to returning false positives. We selected
four models from the literature to generate time series
(table 1) representing discrete- and continuous-time ap-
proaches with various magnitudes of noise. The models
are formed from systems of stochastic difference equations
or stochastic differential equations and are calibrated to
either long-term observations or experimental results. The
stochastic difference equations include empirically mea-
sured large process errors. The stochastic differential equa-
tions contain small-noise perturbations typical of leading
indicator simulation studies (e.g., Carpenter et al. 2008).
These noise terms represent environmental stochasticity
but not independent random observation error due to
measurement error (Carpenter 2003). The stochastic dif-
ferential equations were integrated numerically using the
Euler-Maruyama method for Ito calculus. The models
were run in R (http://www.r-project.org) and Maple 13
(http://www.maplesoft.com).

Models

The models used in this study have been described in detail
elsewhere and are described only briefly here (table 1).
The first model is a stochastic Ricker population dynamics
model (May 1976; Ponciano et al. 2005) that is widely
used to describe discrete-time, density-dependent popu-
lation dynamics (e.g., Beard et al. 2003; Ponciano et al.
2005). Model parameters, including process error, were
derived from laboratory cultures of Escherichia coli, using
maximum likelihood methods by Ponciano et al. (2005).
When the model growth rate (see table 1) is raised past
the critical transition point, the system undergoes a period-
doubling (pitchfork) bifurcation. We simulated 2,000 time
steps at a stable point as a reference series with no regime
shift. We then simulated 2,000 time steps with slowly in-
creasing population growth rate so that the system would
pass the critical transition point at time step 1,500.

The second model describes the discrete-time dynamics
of a midge-algae-detritus food web in Lake Myvatn, Ice-
land (Ives et al. 2008). The model parameters, including
process error, were derived from long-term data, using
maximum likelihood methods by Ives et al. (2008). We

generated a reference series of midge biomass with no
regime shift by setting the algal growth rate low so that
midge dynamics remained at a stable point. We simulated
a 2,000-step time series of midge biomass with regime shift
by slowly increasing the algal growth rate to mimic eu-
trophication, with the result that the critical transition
point is crossed at step 1,500. We applied conditional het-
eroscedasticity tests to the resulting midge time series. To
find the transition point, we simulated the deterministic
skeleton of the model and labeled the point just before
oscillations begin as the critical transition point. After the
critical transition point is crossed, this equation undergoes
a supercritical Neimark-Sacker bifurcation (a discrete-time
Hopf bifurcation), which is characteristic of a system that
loses fixed-point stability and moves toward periodic or
quasi-periodic behavior (Ives et al. 2008).

The third model is a simple continuous logistic growth
equation that describes Daphnia magna population dy-
namics in a laboratory experiment (Drake and Griffen
2010). Drake and Griffen (2010) progressively decreased
food supply to populations of Daphnia over the course of
several weeks, leading to declines in abundance and even-
tually extinction. Declines in both population growth rate
and system carrying capacity are expected when food sup-
ply is diminished (Griffen and Drake 2008; Drake and
Griffen 2010). We generated a reference series of Daphnia
biomass by simulating 2,000 time steps at a stable equi-
librium. We generated a series with regime shift by sim-
ulating 2,000 time steps with slowly decreasing intrinsic
growth rate and decreasing carrying capacity so that the
system crosses the critical transition point at time step
1,500 and undergoes a transcritical bifurcation. We did
not allow the population to become extinct so that we
could continue to apply conditional heteroscedasticity tests
to the end of the 2,000-step time series. Small noise was
added because process error was not estimated empirically
by Drake and Griffen (2010).

The fourth model describes planktivore-zooplankton-
phytoplankton food web dynamics in a temperate lake.
The model parameters were derived from long-term data
by Carpenter et al. (2008). Small noise was added because
process error was not estimated empirically (Carpenter et
al. 2008). We generated a reference series of planktivore
biomass by simulating 2,000 time steps at a stable equi-
librium with high predation pressure on planktivores. This
system has low planktivore biomass, high zooplankton
biomass, and low phytoplankton biomass. We generated
a series with regime shift by slowly reducing predation
pressure on the planktivores to simulate overfishing of
predatory fish. The system crosses the critical transition
point for a fold bifurcation at time step 1,500, and there
is a trophic cascade characterized by increasing planktivore
biomass, declining herbivore biomass, and increasing phy-
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toplankton biomass. The planktivore biomass time series
is used in this analysis of conditional heteroscedasticity.
The herbivore biomass time series and phytoplankton bio-
mass time series are considered in further analysis de-
scribed below.

Test for Conditional Heteroscedasticity

We tested for conditional heteroscedasticity in the model
time series with a simple and widely used Lagrange mul-
tiplier test described by Engle (1982; see also Engle et al.
1985). The testing procedure is as follows: (1) fit a lag-1
autoregressive model by using ordinary least squares re-
gression, (2) square the residuals obtained from step 1,
(3) lag the squared residuals from step 2 by one time step,
(4) regress the squared residuals from step 2 by the lagged
squared residuals from step 3, (5) calculate the Lagrange
multiplier test statistic as the product of the r2 value from
the auxiliary regression in step 4 and sample size from the
auxiliary regression in step 4, and (6) calculate the prob-
ability value for the Lagrange multiplier by comparing the
Lagrange multiplier test statistic to a x2 distribution with
1 df.

Worked examples of the test calculations with and with-
out conditional heteroscedasticity are provided in the ap-
pendix, available as a zip file in the online edition of the
American Naturalist. Generally, leading indicators are ap-
plied using moving-window analysis (e.g., Scheffer et al.
2009). Here we apply the Lagrange multiplier test for con-
ditional heteroscedasticity to 200 time step windows. At
time t, the value for t and the 199 previous time steps are
included in the window. We move the window forward
50 time steps in between each test. In our model analyses,
the time series have 2,000 observations so that 37 tests are
applied with each test, consisting of 200 observations. We
applied these tests in Minitab 15 (http://www.minitab
.com).

A likely outcome is recording some significant tests even
if there is no conditional heteroscedasticity and no im-
pending regime shift. If the critical level of significance for
conditional heteroscedasticity tests is 0.05, five significant
tests are expected per 100 tests conducted when there is
no conditional heteroscedasticity. A Bernoulli expansion
may be used in conjunction with the moving-window test
results in order to find the probability of returning a given
number of significant tests in the total number of tests
(Wilkinson 1951; Moran 2003). For example, if there is
one significant test in 10 tries, we might not, without other
evidence, conclude that there is an impending regime shift
because the probability of finding one significant test in
10 is high ( ). The probability by Bernoulli ex-P p .315
pansion is calculated as

N !
K N�Kp p # a (1 � a) ,[ ](N � K)!K !

where N is the number of tests conducted, K is the number
of significant tests, and a is the level of significance (e.g.,

) for the individual conditional heteroscedasticitya p 0.05
tests (Moran 2003). Lookup tables for probability values
from this equation are available in Wilkinson (1951).

Variable Selection

Leading indicators of regime shifts might be effectively
resolved in time series data collected by standardized en-
vironmental monitoring programs (Brock and Carpenter
2006). However, environmental monitoring programs can-
not record all variables of interest, and it may be difficult
to choose variables that may be important for warning of
a future regime shift (Lovett et al. 2007). We applied the
moving-window Lagrange multiplier test for conditional
heteroscedasticity (window width, 200) to the simulated
phytoplankton and zooplankton biomass time series from
the temperate-lake food web model to evaluate how var-
iable selection from environmental monitoring may affect
conditional heteroscedasticity as a leading indicator.

Results

Conditional Heteroscedasticity as a Leading
Indicator of Regime Shifts

The discrete-time Escherichia coli dynamics model shifts
toward chaotic behavior as the growth rate increases past
the critical transition point and the data pitchfork, a pat-
tern characteristic of the period-doubling bifurcation (fig.
2A, black dots). The reference series was variable around
a stable point and had no long-run change in E. coli abun-
dance (fig. 2A, red line). There was significant conditional
heteroscedasticity prior to the critical transition in the time
series with a regime shift, and significant tests appeared
consistently before the transition point (fig. 2B, black line).
The cumulative number of significant tests was significant,
as judged by Bernoulli expansion ( ) at time stepP ! .05
450. In the reference time series, there was one significant
conditional heteroscedasticity test in 37 applications (fig.
2B, red line). This frequency of occurrence is not signif-
icant as judged by Bernoulli expansion.

The midge biomass dynamics from the discrete-time
food web model for Lake Myvatn transition from a stable
point to oscillating behavior as algal growth rate is slowly
increased (fig. 2C, black line). Midge biomass began os-
cillating prior to algal growth rate being pushed across the
critical transition point, indicating that environmental sto-
chasticity plays an important role in determining the state
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Figure 2: A, Time series from the discrete Escherichia coli dynamics model with (black line) and without (red line) a regime shift. B,
Cumulative number of significant moving-window Lagrange multiplier tests for conditional heteroscedasticity applied to the discrete E. coli
dynamics model time series with (black line) and without (red line) regime shift. There are 37 total tests applied to the time series. C,
Midge biomass time series from the discrete lake food web model with (black line) and without (red line) a regime shift. D, Cumulative
number of significant moving-window Lagrange multiplier tests for conditional heteroscedasticity applied to midge biomass time series
from the discrete lake food web dynamics model time series with (black line) and without (red line) regime shift. There are 37 total tests
applied to the time series. The vertical gray line at step 1,500 denotes the critical transition point for the control parameter in both models
with regime shift.

of the system. Flickering between the stable point and
oscillating regimes appears to occur between time steps
500 and 1,000. The reference system had considerable var-
iability but remained about the stable point throughout
the time series (fig. 2C, red line). Significant tests accu-
mulated for the transition case, and the frequency of sig-
nificant tests was significant by time step 700 (fig. 2D,
black line). The significant tests occurred mainly while the
system was flickering, and there were few or no significant
conditional heteroscedasticity tests when the time series
was at the stable or oscillating regime. This result under-
scores the potential importance of flickering in facilitating
detection of early warnings of impending regime shifts.
There was one significant test in 37 applications to the
reference time series (fig. 2D, red line). This frequency of

occurrence is not significant as judged by Bernoulli
expansion.

The time series from the continuous Daphnia dynamics
model with critical transition (fig. 3A, black line) had
steady population decline, while the Daphnia dynamics
time series without critical transition varied around a sta-
ble point (fig. 3A, red line). There was a steady increase
in cumulative number of significant conditional hetero-
scedasticity prior to the transition in the series with regime
shift. The cumulative number of significant tests was sig-
nificant, as judged by Bernoulli expansion, by time step
450 (fig. 3B, black line). In the reference time series, there
were two significant tests in 37 applications (fig. 3C). This
number of significant tests is not significant as judged by
Bernoulli expansion.
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Figure 3: A, Time series from the continuous Daphnia dynamics model with (black line) and without (red line) a regime shift. B, Cumulative
number of significant moving-window Lagrange multiplier tests for conditional heteroscedasticity applied to the continuous Daphnia
dynamics model time series with (black line) and without (red line) regime shift. There are 37 total tests. C, Planktivore biomass time
series from the continuous lake food web model with (black line) and without (red line) a regime shift. D, Cumulative number of significant
moving-window Lagrange multiplier tests for conditional heteroscedasticity applied to the continuous lake food web dynamics model time
series with (black line) and without (red line) regime shift. There are 37 total tests. The vertical gray line at step 1,500 denotes the critical
transition point.

The planktivore biomass time series with critical tran-
sition from the continuous lake food web model dem-
onstrated logistic growth and had significant conditional
heteroscedasticity throughout the period approaching the
regime shift, and the impending regime shift was identified
by time step 450 (fig. 3C, 3D, black lines). The reference
series varied steadily near an equilibrium value in the ref-
erence time series (fig. 3C, red line). There were no sig-
nificant conditional heteroscedasticity tests in the 37 tests
applied to the reference time series (fig. 3D, red line).

Variable Selection

Variable selection for detecting the regime shift was im-
portant in the continuous temperate-lake food web model.
While there is clear early warning in the planktivore bio-
mass series (fig. 3C), there is no clear early warning in the

zooplankton biomass time series (fig. 4A). Herbivore bio-
mass decreased as planktivore biomass increased (fig. 4A,
black line), but there was no consistent significant con-
ditional heteroscedasticity (fig. 4A, red line). Phytoplank-
ton biomass increased as zooplankton biomass decreased
(fig. 4B, black line). There was significant conditional het-
eroscedasticity prior to the critical transition point (in the
planktivore time series), but this was not consistent
through the time series (fig. 4B, red line). The phytoplank-
ton time series provides early warning as quickly as the
planktivore biomass series as judged by Bernoulli expan-
sion; however, the number of significant tests is less com-
pelling than the planktivore series when plotted (fig. 4B).
The discrepancy in consistency in returning significant
conditional heteroscedasticity tests demonstrates the im-
portance of selecting relevant environmental parameters
for long-term monitoring and application of conditional
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Figure 4: A, Zooplankton (herbivore) biomass from the continuous
lake food web dynamics model with regime shift (black line). B,
Phytoplankton biomass from the continuous lake food web dynamics
model with regime shift (black line). The cumulative numbers of
significant moving-window conditional heteroscedasticity tests are
the red dashed lines. The vertical gray lines denote the location of
the critical transition in the planktivore dynamics. A total of 37 tests
were applied to each time series.

heteroscedasticity as a leading indicator of regime shifts.
Finding appropriate parameters to measure for real sys-
tems will be a subjective task based on modeling studies
and researchers’ expert knowledge of the systems they are
studying (e.g., Carpenter et al. 2011).

Discussion

Conditional heteroscedasticity is a powerful leading in-
dicator of impending regime shifts. Cumulative tests for
conditional heteroscedasticity warn of regime shifts hun-
dreds of time steps ahead of critical transition points. Con-
ditional heteroscedasticity is robust and is effective for
forecasting a variety of forms of regime shift. This is be-
cause both increasing and decreasing variance prior to a
shift appear as clustered volatility prior to the shift.

Some indicators are ambiguous when the underlying
dynamics of the system are unknown (Brock and Car-
penter 2006). For instance, variance in water column phos-
phorus increases prior to the critical transition from an
oligotrophic state to a eutrophic state in lake ecosystem
models (Carpenter and Brock 2006). However, variance
in algal biomass declines in models describing the tran-
sition of phytoplankton communities to dominance by
toxic cyanobacteria during eutrophication (Carpenter et
al. 2009). Hence some understanding of the potential re-
gime shift is necessary to judge the practical importance
of increases and decreases in variance. Here, we have
shown that a test for conditional heteroscedasticity is ef-
fective for warning of a variety of critical transitions and
could be applied to systems with increasing or decreasing
variance prior to a regime shift. Association with proba-
bility values eases interpretation of test results.

Tests for conditional heteroscedasticity require much
larger samples than descriptive statistics such as variance
and autocorrelation (see Engle et al. 1985). This is unlikely
to be problematic for parameters that are easily measured
in situ at high frequency, such as chlorophyll-a in lakes
(Carpenter et al. 2009). However, this sample size require-
ment could be problematic for properties that cannot be
sampled at high resolution, such as fish biomass and many
other ecological variables. Hence, conditional heterosce-
dasticity tests will be practical for application only to some
variables and studies with high numbers of observations.

Increased attention will be needed to minimize false
positives as the effectiveness of leading indicators is tested
in theory and in field applications. False positives are cases
where statistics falsely indicate an impending regime shift.
False positives could lead to expensive, inconvenient, and
unnecessary changes in population or ecosystem manage-
ment. It is difficult to demonstrate the successfulness of
avoiding regime shifts because success is essentially equiv-
alent to no state change (Scheffer 2009). If this difficulty

is combined with an abundance of false positives, policy
makers and public confidence in the usefulness of pro-
grams designed to inhibit regime shifts could erode. Thus,
while these indicators should be pursued, future evalua-
tions of regime shift indicators should include time series
without regime shifts to evaluate the potential suscepti-
bility of indicators to returning false positives. In this
study, by associating probability values with the condi-
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tional heteroscedasticity indicator, we were able to mini-
mize false positives due to chance. However, false positives
may also be triggered by confounding trends in external
perturbations (Scheffer 2009). Thus, field studies are nec-
essary to more adequately evaluate leading indicators.

In simulation, leading indicators should be evaluated
against models with empirically measured process error to
better mirror real-world perturbations. Such models may
have interesting and unexpected dynamics. For instance,
the midge biomass time series we used contains flickering
and an unexpected early transition to the oscillating state
due to environmental stochasticity. Such complex dynam-
ics, not seen in the other models in this analysis, may be
more adequately captured in models with more realistic
large noises. Further, the response of some indicators may
vary considerably, depending on the magnitude of noise
in the system (Berglund and Gentz 2002). Thus, indicators
should also be evaluated against models with a variety of
magnitudes of noise.

Observation errors and biases may also be added to
simulated data to more adequately mimic field data (Car-
penter 2003). Parameters are associated with unique levels
of observational error, and this may reduce the power of
some indicators to identify impending regime shifts (Car-
penter 2003). Magnitude of observation error may be de-
pendent on sampling frequency, and high-frequency mea-
surements (e.g., every 5 min) may be superior for practical
application because they may record at a more ecologically
relevant timescale than low-frequency measurements (e.g.,
weekly). Improved statistical power due to increased sam-
pling size with high-frequency data will likely offset any
decreased power to identify impending regime shifts due
to observation error. In an experimentally induced eco-
system regime shift, Carpenter et al. (2011) found strong
early warning signals in high-frequency data, and large
data sets may be needed to uncover nonlinear dynamics
in all complex systems.

Leading indicators such as conditional heteroscedastic-
ity may fail to provide early warning of regime shifts (false
negative) if the system is driven rapidly across the critical
transition point or if an unlikely and large shock pushes
the system from one stable equilibrium to another (Schef-
fer et al. 2009). The mechanics of the system may also
cause leading indicators to fail, and it may be impossible
in practice to know whether this is the case prior to a
regime shift occurring. However, models thought to ad-
equately represent nonlinear ecosystem dynamics are char-
acterized by leading indicators prior to a regime shift (e.g.,
van Nes and Scheffer 2007; Carpenter et al. 2008; Scheffer
et al. 2009). Laboratory (Drake and Griffen 2010) and
whole-ecosystem (Carpenter et al. 2011) experimental re-
gime shifts, as well as paleoclimate records (Dakos et al.
2008), are characterized by dynamics with early warnings

prior to a regime shift. Given that conditional heterosce-
dasticity is expected prior to shifts, the probability of false
negatives will be determined largely by the sample size that
each test is applied to (Engle et al. 1985).

Leading indicators of regime shift have been successfully
applied to reconstructed time series of climate transitions
in the ancient past (Dakos et al. 2008). However, the true
utility of regime shift indicators will not be established
until they are adequately evaluated on transitions that oc-
cur at temporal and spatial scales that are relevant to policy
makers and the public (e.g., Carpenter et al. 2011). Field
studies that experimentally induce regime shifts are nec-
essary to examine the advantages and limitations of dif-
ferent indicators and to resolve potential discrepancies in
their practical interpretations.
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Mackerel Scomber vernalis. “Some seasons they will be very plentiful, and schools of them may be seen near the surface of the water one
or two miles in extent. When seen thus maneuvering in such great abundance they will not allow themselves to be taken with the hook
very extensively.” From “The Habits and Migrations of Some of the Marine Fishes of Massachusetts” by James H. Blake (American Naturalist,
1870, 4:513–521).
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