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abstract: Predicting the risk of critical transitions, such as the
collapse of a population, is important in order to direct management
efforts. In any system that is close to a critical transition, recovery
upon small perturbations becomes slow, a phenomenon known as
critical slowing down. It has been suggested that such slowing down
may be detected indirectly through an increase in spatial and tem-
poral correlation and variance. Here, we tested this idea in arid
ecosystems, where vegetation may collapse to desert as a result of
increasing water limitation. We used three models that describe de-
sertification but differ in the spatial vegetation patterns they produce.
In all models, recovery rate upon perturbation decreased before veg-
etation collapsed. However, in one of the models, slowing down failed
to translate into rising variance and correlation. This is caused by
the regular self-organized vegetation patterns produced by this
model. This finding implies an important limitation of variance and
correlation as indicators of critical transitions. However, changes in
such self-organized patterns themselves are a reliable indicator of an
upcoming transition. Our results illustrate that while critical slowing
down may be a universal phenomenon at critical transitions, its
detection through indirect indicators may have limitations in par-
ticular systems.

Keywords: leading indicators, resilience, alternative stable states, early
warning signals, local facilitation, scale-dependent feedback.

Introduction

There is growing evidence that some ecosystems may oc-
casionally undergo catastrophic transitions to alternative
states (Scheffer et al. 2001). Coral reefs can be overgrown
by fleshy algae and shift to a degraded state (Knowlton
1992), shallow lakes may flip from a macrophyte-domi-
nated clear water state to a turbid water state as a result
of eutrophication (Scheffer 1998), and arid ecosystems
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may lose their perennial vegetation and turn into desert
as a result of increasing aridity or overgrazing (Millennium
Assessment 2005; Reynolds et al. 2007).

Close to a critical threshold for such catastrophic tran-
sitions, the resilience (sensu Holling 1973) of an ecosystem
becomes small in the sense that only a small perturbation
is needed to tip the ecosystem to an alternative state. In-
tuitively, such a loss of resilience can be understood as the
shrinking of the basin of attraction around the equilibrium
state of the ecosystem (fig. 1). Unfortunately, our knowl-
edge of most ecosystems or other systems is insufficient
to predict critical thresholds, while at the same time it is
difficult to measure resilience directly (Carpenter 2003).
In view of these limitations, an alternative approach has
been recently proposed (Scheffer et al. 2009).

The idea is to use generic properties of critical thresholds
(bifurcation points) to develop early warning indicators
that can be used as indirect indicators of resilience (Schef-
fer et al. 2009). These indicators are simple statistical prop-
erties that can be measured directly by monitoring the
state variables of the system, and they all behave in pre-
dictable ways before transitions, regardless of the details
of the system. In other words, theory suggests that we can
identify the risk of an upcoming transition by monitoring
characteristics such as population abundances, nutrient
concentrations, or vegetation cover in any system, be it a
coral reef, a lake, or a savanna ecosystem.

The fact that these indicators change predictably before
critical transitions is related to the return rate to equilib-
rium after a perturbation that goes to zero at most bi-
furcations. To see what this means intuitively, note that
when the basin of attraction shrinks, it also becomes flatter
(fig. 1). This implies that the monitored state variable of
the system—such as macrophyte cover in a lake—returns
more slowly to equilibrium after a small perturbation (fig.
1B; Wissel 1984). This phenomenon, known as critical
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Figure 1: Balls and cups representation of the basin of attraction of a system with alternative stable states. A, Far from transition, the state
of the system lies in a broad basin of attraction. Small disturbances to equilibrium are damped by high recovery rates back to equilibrium.
As a result, the time to recover from a disturbance is short (A1). When monitoring the state of the system in time, the time series is
characterized by low correlation between subsequent values (A2), low variance (A3), and low skewness (A4). B, Close to transition, the
basin of attraction shrinks and may become asymmetric. Small disturbances increase the chance of shifting to the alternative state, and
they are no longer effectively damped as a result of low recovery rates back to equilibrium. The time to recover from a disturbance now
is long (critical slowing down; B1), and the collective time series is characterized by high correlation between subsequent values (B2), high
variance (B3), and high skewness (B4).

slowing down (Strogatz 1994), has major consequences
for the transient behavior of the system. A system will take
longer to recover from a disturbance when it is close to
a critical threshold (van Nes and Scheffer 2007; fig. 1, A1,
B1). If the system is subjected to stochastic perturbations,
there are also systematic changes in its fluctuations. First,
it will resemble its previous state more closely when it is
close to a critical threshold (Ives et al. 2003; Held and
Kleinen 2004; fig. 1, A2, B2). Second, the state of the system
will fluctuate more widely around its equilibrium close to
transition (van Nes and Scheffer 2003; Carpenter and
Brock 2006; fig. 1, A3, B3). Usually, but not necessarily,
the basin of attraction also becomes asymmetric close to
a transition (fig. 1; Scheffer et al. 2009). Such asymmetry

causes the state of the system to spend more time in the
flatter part of the attraction basin (fig. 1, A4, B4). As a
result, the distribution of system states becomes skewed
near a transition (Guttal and Jayaprakash 2008). While
most of the work on leading indicators has focused on the
analysis of time series, the temporal indicators that signal
approaching shifts have spatial equivalents as well. This
means that we can also measure leading indicators using
spatial information for systems such as the distribution of
abundances of metapopulations in a fragmented habitat
or the distribution of vegetation over a landscape. In such
cases, spatial correlation may rise (Dakos et al. 2010), spa-
tial variance may increase (Guttal and Jayaprakash 2009;
Donangelo et al. 2010), and spatial skewness will often
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peak (Guttal and Jayaprakash 2009) before a spatially con-
nected system goes through a systemic shift to an alter-
native state.

So far, most of these indicators have been tested in
relatively simple models where a specific type of critical
transition occurs (i.e., a fold or transcritical bifurcation;
Carpenter and Brock 2006; van Nes and Scheffer 2007;
Guttal and Jayaprakash 2008). In such simple models, the
indicators work well. There are, however, other cases of
critical transitions for which it is not yet clear whether
these indicators would successfully work (Scheffer et al.
2009; Hastings and Wysham 2010). Spatially explicit eco-
systems with pattern formation are such a case (Rietkerk
et al. 2004).

Pronounced examples of such patterned ecosystems
come from arid ecosystems where we can find a mosaic
of vegetated patches and bare soil (Aguiar and Sala 1999).
Climate change and human pressure may cause these sys-
tems to turn into barren deserts (Reynolds et al. 2007),
with considerable consequences for the livelihoods of more
than 25% of the world’s population. Specific models have
shown that the collapse of vegetation to bare soil can be
a critical transition (Rietkerk et al. 2002). Depending on
the spatial mechanisms that dominate in arid ecosystems,
particular changes in spatial patterns may signal whether
vegetation is close to collapsing into bare ground. A class
of models stressing local facilitation predicts changes in
the size distribution of vegetation patches before deserti-
fication (Kéfi et al. 2007b, 2011). Another class of models
stresses that when resources accumulate in the vicinity of
vegetation but are depleted elsewhere (Rietkerk et al.
2002), regular self-organized patterns occur. In these mod-
els, pattern shapes are predicted to change in specific ways
before the collapse to a desert state (von Hardenberg et
al. 2001; Rietkerk et al. 2004). Remarkably, the universal
phenomenon of critical slowing down—and the way this
may translate into the generic leading indicators of cor-
relation and variance—has not been studied in such spa-
tially patterned systems so far. Obviously, combining ge-
neric and specific leading indicators in this type of spatial
systems can advance our ability to anticipate critical
transitions.

Here, we address this gap in our understanding of the
predictability of critical transitions in spatially patterned
models, using arid ecosystems as an example. First, we
explore whether critical slowing down occurs before the
collapse to desertification in these models. We then esti-
mate both spatial and temporal early warning indicators
and compare them with the specific pattern-based indi-
cators found in these systems when approaching a critical
transition.

Methods

Three Models of Desertification: Spatial Mechanisms,
Patterns, and Transitions

We analyzed three existing models that describe spatial
dynamics of vegetation in arid ecosystems. All models may
undergo a critical transition to a desert state, but they
differ in the type of patterns they exhibit. All transitions
are associated with hysteresis. This means that restoring
environmental conditions to values before the transition
does not lead to recovery of vegetation. Here we describe
the mechanisms, transitions, and patterns encountered in
each model.

The first model is based on the vegetation model by
Shnerb et al. (2003) and Guttal and Jayaprakash (2007):

dwi, j p R � w � lw B (1a)i, j i, j i, jdt

� D(w � w � w � w � 4w ) � j dW ,i�1, j i�1, j i, j�1 i, j�1 i, j w i, j

dB B Bi, j i, j i, jp rB w � � m (1b)i, j i, j( )dt B B � Bc i, j O

� D(B � B � B � B � 4B ) � j dW .i�1, j i�1, j i, j�1 i, j�1 i, j B i, j

We made this model spatially explicit by defining it as a
stochastic lattice differential equation model (Chow et al.
1996). In such a model, space is represented by a two-
dimensional lattice of coupled patches (Keitt et al. 2001;
van Nes and Scheffer 2005). In each patch, vegetation B
grows logistically and has a loss rate due to grazing. Veg-
etation growth depends on water availability w. When an-
nual rainfall decreases, water scarcity reduces vegetation
growth. At some point, vegetation growth cannot com-
pensate for losses to grazing, and a patch shifts to its
alternative overgrazed desert state. Biomass and water are
exchanged between neighboring patches at rate D. There-
fore, a patch with high biomass will have the tendency to
“leak” biomass to its neighboring sites, which results in a
positive effect on its neighbors (in terms of biomass gain)
but a negative effect on the site itself (fig. 2, A1). If this
diffusive effect is very strong, differences between patches
tend to be smoothed out, and the ecosystem as a whole
remains in a homogeneously vegetated state (fig. 2, A2),
until conditions force all patches to flip to the desert state
through synchronized “fold bifurcations” at each patch
(fig. 2, A3; van Nes and Scheffer 2005). (Bifurcations occur
at parameter values where the qualitative behavior of a
system changes fundamentally.) The important mecha-
nism in this model is a positive feedback that causes each
patch to have alternative stable states (undergrazed veg-
etated state or overgrazed desert state). For this reason,
we refer to this model as the local positive feedback model.
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Figure 2: Schematic representation of the effect of vegetation on its environment, the patterns formed, and the dynamics of vegetation as
a function of environmental harshness. A, Local positive feedback model. A1, A vegetated site with high vegetation biomass has a positive
effect on its environment but a negative effect on itself because of a “leak” of biomass to neighboring sites. The positive effect diminishes
with distance. A2, No patches form, only irregular clustering of biomass. A3, Spatial vegetation mean biomass with decreasing rainfall R.
B, Local facilitation model. B1, A vegetated site has a positive effect in its direct vicinity, with no cost to itself. B2, Irregular vegetation
patches form. B3, Spatial vegetation density (fraction of vegetation sites occupied) with decreasing aridity b. C, Scale-dependent feedback
model. C1, A vegetated site has a positive impact on itself and its surroundings but negative feedback farther away because local accumulation
of water means that water is depleted farther away. C2, Regular vegetation patterns form. C3, Spatial vegetation mean density with decreasing
rainfall R. Regardless of the spatial mechanisms in each model, there is a critical point at which vegetation collapses (shaded area). Fold
bifurcation: point at which total vegetation shifts to desert; percolation point: breakup of giant cluster that spans the whole lattice; Turing
instability: onset of regular pattern formation. Insets are spatial snapshots of vegetation before desertification. Dotted gray lines indicate
the hysteresis loop present in all systems.

The second model is a stochastic cellular automaton
(Kéfi et al. 2007a) with discrete time steps:

w p [dr � (1 � d)q ](b � cr ), (2a){0, �} � �F0 �

w p r � fq , (2b){�, 0} �F�

w p m, (2c){�, 0}

w p d. (2d){0, �}

An ecosystem is represented by a lattice composed of cells,
which can be in one of three states: vegetated (�), empty
(0), or degraded (�). Empty cells are cells whose soil is
still fertile. Degraded cells are cells with eroded soil un-
suitable for recolonization. The basic processes in this
model are captured by four transformations: colonization
of empty cells, mortality of vegetation, degradation of
empty cells, and regeneration of degraded cells. Each of
these four transformations can occur with a certain prob-
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ability at each time step (eqq. [2]). The colonization and
regeneration probabilities of a patch are positively affected
by the presence of vegetation in its four neighboring cells
(fig. 2, B1). Because of this facilitating effect, we will refer
to this model hereafter as the local facilitation model. The
facilitation leads to the formation of clusters of vegetated
grid cells, and these patches have size distributions that
can be described by a power law (fig. 2, B2; Kéfi et al.
2007b, 2011). The size of the clusters is dependent on the
ecological conditions (such as rainfall or grazing pressure).
Under favorable conditions, giant clusters span the lattice
from one edge to the other (Kéfi et al. 2011). The point
where these giant clusters break down is called the per-
colation point. When conditions become even harsher, a
transition point is reached where all vegetation becomes
extinct (fig. 2, B3).

The third model is a stochastic version of a partial dif-
ferential equations model describing the dynamics of veg-
etation biomass, soil water, and surface water (Hille-
RisLambers et al. 2001; Rietkerk et al. 2002):

�P W
p cg P � dP � D DP � jdW, (3a)max P

�t W � k1

�W P � k W W2 Op aO � cg P � r Wmax W
�t P � k W � k2 1

� D DW � jdW, (3b)W

�O P � k W2 Op R � aO � D DO � jdW. (3c)O
�t P � k 2

Plants (P) grow depending on soil water availability and
are lost as a result of mortality or grazing. Surface water
(O) is supplied by rainfall and lost due to infiltration in
the soil and runoff. Soil water (W) is surface water that
infiltrates the soil after rain events and is taken up by
plants or lost by runoff. Plants, soil water, and surface
water are all assumed to diffuse in two-dimensional space.
In this model, the infiltration rate of water in the soil is
higher in areas with vegetation than in bare soil, leading
to accumulation of water under vegetation and to its de-
pletion farther away, a scale-dependent feedback. In other
words, vegetation has a local positive effect on itself and
on its immediate surroundings but a negative effect farther
away (fig. 2, C1). For this reason, we refer to this model
as the scale-dependent feedback model. This scale-depen-
dent feedback leads to the formation of regular vegetation
patterns (fig. 2, C2, C3) through a so-called Turing insta-
bility (Turing 1952). At the Turing instability, the feedback
is just strong enough to form patterns (HilleRisLambers
et al. 2001; von Hardenberg et al. 2001; Rietkerk et al.
2002). Patterns show a distinct sequence of shapes, from
gaps to labyrinths to spots with decreasing rainfall. When

water availability becomes limited, vegetation cannot sus-
tain itself, and the ecosystem undergoes a second transition
point: that of collapse into desert (fig. 2, C3).

Simulations and Analyses

Parameter values of the three models and their units are
given in table 1. We used parameter values such that the
transition of vegetation to desertification is discontinuous
(catastrophic). In all models, we assumed homogeneous
conditions; that is, parameter values are the same every-
where in space. For each model, we selected a parameter
that describes aridity (see table 1), since this drives de-
sertification in arid ecosystems. In the local positive feed-
back and scale-dependent feedback models, the level of
aridity is directly determined by rainfall (parameter R; low
rainfall leads to low vegetation growth), whereas in the
local facilitation model, aridity is indirectly determined by
the establishment probability of new vegetation (parameter
b; high aridity leads to low vegetation establishment). In
all models, we changed these control parameters in small
steps. We started simulations from a complete vegetated
state in all models. We discarded transients and continued
the simulations in each step, using the last stationary state
as the initial condition. We repeated this until the control
parameters reached a critical threshold at which vegetation
collapsed.

We first examined whether critical slowing down occurs
before all transition points in all models. Because there
are no formal analytical solutions for all transitions that
could enable us to estimate critical slowing down by the
dominant eigenvalue of the system (Scheffer et al. 2009),
we followed a numerical approach (van Nes and Scheffer
2007). After the ecosystem reached equilibrium, we re-
moved 10% of the total vegetation biomass, cover, or den-
sity according to model and estimated the recovery time
to equilibrium (with an accuracy of 0.01%) by simulation.
We did this along the whole pathway to collapse of veg-
etation for all models.

For the calculation of the spatial indicators, we used
equilibrium values of vegetation biomass, cover, or density
according to the model for each level of control parameter
up to collapse of vegetation. In the case of the local fa-
cilitation model, we first determined the vegetation cover
by summing the vegetated cells using a -cell non-4 # 4
overlapping moving filter along the lattice. We estimated
spatial correlation between neighbors, spatial variance, and
spatial skewness. Spatial correlation between neighbors
was defined as the two-point correlation for all pairs of
neighboring cells using Moran’s coefficient (Legendre and
Fortin 1989). Skewness was estimated as the third moment
about the mean, , where m is the mean of3 3[E(x � m) ]/j
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Table 1: Model parameters and their values

Model parameter Definition Value and unit

Local positive feedback model:a

wi, j Water moisture level in each grid cell (i, j) mm
Bi, j Vegetation biomass in each grid cell (i, j) g
D Exchange rate .05 day�1

l Water consumption rate by vegetation .12 g�1 day�1

r Maximum vegetation growth rate day�1

Bc Vegetation carrying capacity 1 g
m Maximum grazing rate 2 day�1

BO Half-saturation constant of vegetation consumption 1
R Mean annual rainfallb .8–2 mm day�1

jW Standard deviation of white noise on water moisture .01
jB Standard deviation of white noise on vegetation biomass .25
dWi, j White noise; uncorrelated in each grid cell (i, j)

Local facilitation model:c

w{0, �} Colonization probability of an unoccupied site
w{�, 0} Regeneration probability of a degraded site
w{�, 0} Mortality probability of an occupied site
w{0, �} Degradation probability of an unoccupied site
r� Density of vegetated sites
qiFj Clustering vegetation intensity probability of finding a site j in state i

(�, 0, �)
m Mortality probability of a vegetated site .1
f Local facilitation strength: maximum effect of a neighboring vegetated site

on the regeneration of a degraded site
.9

b Intrinsic seed production rate per vegetated site; “survival probability,”
“germination probability”

� Establishment probability of seeds on {0} site in a system without
competition

b Measures the severity of the environmental conditions (pb�); a lower b
value reflects a higher aridity levelb

.3–1

d Fraction of seeds globally dispersed .1
g Competitive effect of the global density of {�} sites on the establishment

of new individuals
c bg .3
r Regeneration probability of a {�} site without vegetated sites in its

neighborhood
.0001

d Degradation probability of {0} sites .2
Scale-dependent feedback model:d

P Plant density g m�2

W Soil water mm
O Surface water mm
c Conversion of water uptake to plant growth 10 g mm�1 m�2

gmax Maximum specific water uptake .05 mm g�1 m�2 day�1

k1 Half-saturation constant of specific plant growth and water uptake 5 mm
Dp Plant dispersal .1 m�2 day�1

a Maximum infiltration rate .2 day�1

k2 Saturation constant of water infiltration 5 g m�2

WO Water infiltration rate in the absence of plants .2
rW Specific water loss due to evaporation and drainage .2 day�1

DW Diffusion coefficient of soil water .1 m2 day�1

DO Diffusion coefficient of surface water 100 m2 day�1

d Specific loss of plant density due to mortality .25 day�1

D Laplacian operator for diffusion
R Rainfallb .05–2 mm day�1

j Standard deviation of white noise .01
dW White noise

a Equations (1); modified from Guttal and Jayaprakash (2007).
b Control parameter that determines the collapse of vegetation at a critical value.
c Equations (2); from Kéfi et al. (2007a).
d Equations (3); modified from Rietkerk et al. (2002).
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Figure 3: Critical slowing down approximated by recovery time before the collapse of vegetation in all three models. Recovery time was
estimated by a pulse perturbation experiment as the time for mean plant density to recover back to equilibrium after a 10% reduction in
plant densities in the whole lattice. Results based on simulations in a -cell lattice for the local positive feedback and scale-dependent64 # 64
feedback models. All other parameters are as presented in the text.

x, j is the standard deviation of x, and E(.) is the expec-
tation operator.

In addition to spatial indicators, we also followed the
evolution of temporal correlation, variance, and skewness.
To this end, for each level of control parameter, we esti-
mated autocorrelation at lag 1, variance, and skewness of
total vegetation biomass, cover, or density from the last
1,000 points of the produced time series. We calculated
autocorrelation at lag 1 by fitting an autoregressive model
of first order using the arfit package in MATLAB (Neu-
maier and Schneider 2001). To compare the performance
of both spatial and temporal indicators, we quantified their
trends using the nonparametric Kendall t rank correlation
of the control parameter and the spatial and temporal
correlation estimates. A Kendall t coefficient that was sig-
nificantly different from 0 ( ) specified whether theP ! .025
indicators increased or decreased before each transition
point.

All simulations and statistical analyses were performed
in MATLAB (ver. 7.1.0246; Mathworks). We solved the
stochastic equations of the local positive feedback model
in a -cell lattice using an Euler-Murayama in-100 # 100
tegration method with Ito calculus. We used a stochastic
asynchronous update algorithm for the local facilitation
model in a -cell lattice. The scale-dependent400 # 400
feedback model was implemented in a -cell lat-128 # 128
tice and solved using a semi-implicit method (Janssen et
al. 2008). The stochastic part of the scale-dependent feed-
back model was solved using an Euler-Murayama inte-
gration method with Ito calculus. We assumed periodic
boundaries in all models.

Results

Critical Slowing Down before Transitions

We first checked whether critical slowing down was present
before each transition point in all models. In all models,
we found an increase in time needed for recovery as the
ecosystem approached the critical point of collapse to a
desert state (fig. 3). Similarly, recovery times increased
before the Turing instability point in the scale-dependent
feedback model (fig. 3C). All these points belong to the
type of transitions where critical slowing down is expected
to occur; they represent local bifurcations of stable equi-
libria that become unstable (Judd and Silber 2000; Kéfi et
al. 2007b; Dakos et al. 2010). Interestingly, critical slowing
down also occurred before the vegetation collapse in the
scale-dependent feedback model, despite the fact that this
transition represents a more complicated kind of bifur-
cation. Specifically, it corresponds to a global bifurcation,
where a stable spatial periodic attractor (the regular veg-
etation patterns) collapses to a uniform desert state. Ob-
viously, the percolation point in the local facilitation model
cannot be detected by critical slowing down, since this
point does not correspond to a bifurcation that would
imply a change in the stability of the ecosystem.

Spatial Leading Indicators before Transitions

For the transitions where critical slowing down was at play,
we tested whether spatial correlation, variance, and skew-
ness also increased (see table A1). In the local positive
feedback model, all of these spatial indicators showed clear
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Figure 4: Spatial variance, spatial skewness, and spatial correlation between neighbors as a function of increasing harshness in the environment
up to desertification (shaded area). Spatial indicators are estimated using final values of all cells at the end of the simulation for each level
of the control parameter (rainfall in local positive feedback and scale-dependent feedback models; aridity in local facilitation model). Open
circles indicate the point at which vegetation shifts to a barren state in the local positive feedback model (fold bifurcation; A1–A3), the
point at which patches of vegetation that span the lattice from one edge to the other disappear in the local facilitation model (percolation
point; B1–B3), and the onset of regular vegetation patterning in the scale-dependent feedback model (Turing instability; C1–C3).

positive trends before the transition (fig. 4, A1–A3), similar
to those observed in previous studies (Guttal and Jaya-
prakash 2009; Dakos et al. 2010). Close to collapse, slowly
decaying fluctuations of vegetation resulted in an increase
in spatial variance. Because these fluctuations took place
in an increasingly asymmetric basin of attraction, spatial
skewness changed as well (it became negative because veg-
etation biomass distributions skewed toward low biomass
values).

In the local facilitation model, the three spatial indi-
cators behaved more or less the same as in the local positive
feedback model (fig. 4, B1–B3). Far from the transition,
environmental conditions sustained large areas of vege-
tation cover, leading to low spatial variance (fig. 4, B1).
Spatial skewness was negative, since distributions of veg-

etation cover were skewed toward low values (fig. 4, B2).
As aridity increased, areas of high vegetation cover broke
into smaller parts; vegetation cover distributions became
symmetric, and therefore variance increased and skewness
became zero. Approaching the transition, skewness turned
positive, because now areas of high vegetation cover be-
came scarce. Variance of vegetation cover also rose toward
the transition, only to drop just before the shift. Spatial
correlation between neighbors gradually increased up to
the transition (fig. 4, B3). As expected, no special change
occurred before the percolation point. In addition to spa-
tial correlation, variance, and skewness, changes in patch
size distributions also indicated proximity to desertifica-
tion (fig. 5A).

In the scale-dependent feedback model, the onset of
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Figure 5: System-specific indicators. A, Local facilitation model: evolution of patch size distributions. As conditions become harsher, big
vegetated patches disappear, and their distribution is characterized by a truncated power law. Statistical properties of the changing distributions
are summarized in figure A1. B, Scale-dependent feedback model: spatial configuration of vegetation before the Turing instability for
decreasing rainfall (R). Note the slight emergence of patterns before the Turing instability ( ; scale in all panels is comparable). C,R ≈ 1.25
After the Turing instability, there is a specific sequence of pattern shapes: gaps, labyrinth, spots, and the gradual loss of spots until the
system collapses.

pattern formation at the Turing instability point was again
announced by an increase in spatial correlation between
neighbors and variance (fig. 4, C1–C3), as would be ex-
pected in view of the critical slowing down we found (fig.
3C). Spatial skewness remained constant (fig. 4, C2), since
there is no alternative attractor (bare ground) before the

onset of pattern formation. Despite the presence of critical
slowing down, spatial correlation or variance did not in-
crease before the collapse of vegetation in the scale-
dependent feedback model (fig. 4, C1–C3). There was an
increase in spatial skewness. However, this was driven by
the increasing number of bare cells in the lattice due to
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Figure 6: Temporal variance, temporal skewness, and temporal autocorrelation (at lag 1) as functions of increasing harshness in the
environment up to desertification (shaded area). Temporal indicators are estimated from the last 1,000 points of total vegetation biomass,
cover, or density for each level of control parameter (rainfall in local positive feedback and scale-dependent feedback models; aridity in
local facilitation model). Open circles indicate the point at which vegetation shifts to a barren state in the local positive feedback model
(fold bifurcation; A1–A3), the point at which patches of vegetation that span the lattice from one edge to the other disappear in the local
facilitation model (percolation point; B1–B3), and the onset of regular vegetation patterns in the scale-dependent feedback model (Turing
instability; C1–C3).

the gradual loss of vegetation rather than to an asymmetric
basin of attraction. Spatial variance stayed high as patterns
evolved from gaps to labyrinths but decreased when spots
emerged and dropped just before the ecosystem turned
into desert (fig. 4, C1). Spatial correlation of vegetation
density was high and dropped only shortly before the col-
lapse, when the regularity in the shape of the patterns
became weaker (fig. 4, C3). While spatial correlation and
variance did not change as the ecosystem approached this
transition, the sequence in the shape of vegetation patterns
clearly indicated the upcoming collapse (fig. 5C).

Temporal Leading Indicators before Transitions

In addition to spatial correlation, variance, and skewness,
we estimated temporal autocorrelation (at lag 1), variance,

and skewness for the total vegetation cover in all models
(fig. 6). In the local positive feedback and local facilitation
models, autocorrelation (at lag 1) and variance increased
toward the transition (fig. 6, A1, A3, B1, B3). Temporal
skewness did not change in any of the two models (fig. 6,
A2, B2). In the scale-dependent feedback model, all tem-
poral indicators failed to signal upcoming desertification
(fig. 6, C1–C3). Peaks in variance of total vegetation den-
sity after the Turing instability occurred almost when pat-
terns changed from gaps to labyrinths to spots (fig. 6, A1).
Similarly but less clearly, peaks in skewness after the Turing
instability were related to transitions in the sequence of
patterns (fig. 6, C2). Autocorrelation (at lag 1) after the
Turing instability remained high and fluctuated slightly as
more cells became bare before the transition (fig. 6, C3).
Interestingly, the onset of pattern formation at the Turing
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instability was preceded by increasing autocorrelation (at
lag 1; fig. 6, C3). Variance and skewness, however, showed
no trend (fig. 6, C1, C2).

Discussion

Critical transitions are large, self-propelling changes in the
state of a system induced by small changes in external
conditions (Scheffer et al. 2009). Given that critical tran-
sitions occur unexpectedly and may have drastic and ir-
reversible consequences, the ability to estimate their risk
is of utmost societal and economic importance. Early
warning signals for critical transitions offer such oppor-
tunity (Scheffer et al. 2009). If detected early in advance
(Biggs et al. 2009), they can help to navigate away from
unpleasant surprises.

It has been suggested that the universal phenomenon
of critical slowing down close to critical transitions will in
practice translate into early warning signals, that is, a rise
in correlation and variance (Scheffer et al. 2009). In this
study, we show that this is not always true. We found that
the shift of arid ecosystems to desert in a scale-dependent
feedback model with self-organized regular patterns is not
announced by a rise in correlation or variance, despite the
fact that critical slowing down does happen. This was the
only exception. We found a rise in correlation and variance
in space (and less clearly in time) to precede the collapse
of vegetation in the two other arid ecosystem models we
used. Moreover, we identified similar signatures before the
onset of pattern formation that mark the transition of a
complete vegetation cover to regular patches of vegetation
in the scale-dependent feedback model (table 2).

The failure of correlation and variance to announce the
shift to desert in the scale-dependent feedback model sug-
gests that there may be considerable deviations in the be-
havior of generic indicators in this or similar classes of
spatially organized systems when compared with the other
two model systems we studied. These deviations appear
to be associated with the presence of self-organized regular
patterns, which are a consequence of the way feedbacks
operate in space for these classes of systems.

In the local positive feedback model, spatial processes
are governed by diffusion between neighboring sites (fig.
2, A1). Close to transition, random losses of vegetation in
each site take longer to be compensated; the vegetation
dynamics slow down, and diffusion starts to dominate the
patterns. As a result, each site becomes more influenced
by biomass dispersed from its neighbors (Dakos et al.
2010). Such strong neighbor effects lead to increasing spa-
tial clustering of vegetation (fig. 2, A2). This translates into
elevated correlation and variance before a transition.

In the local facilitation model, regeneration of a de-
graded site depends on the presence of vegetation next to

it (fig. 2, B1). When aridity increases, colonization of
empty sites by vegetation becomes more difficult (slows
down), and similar to the local positive feedback model,
the regeneration of vegetation in the degraded sites will
be influenced more strongly by the presence of vegetated
neighbors. As a result, local facilitation becomes the dom-
inant force that leads to clustering around existing irreg-
ular patches (fig. 5A), again translating into an increase
in correlation and variance before transition to
desertification.

Things work differently in the scale-dependent feedback
model, with its distinct regular vegetation patterns (fig.
2C). High regularity of the patterns simply translates into
high correlation and variance. As rainfall decreases toward
the shift, patterns change in shape, but their regularity
remains high, and so do correlation and variance. Only
just before the transition, when the regularity of the pat-
terns starts breaking up, do correlation and variance
decrease.

Although regular pattern formation appears to mask the
performance of variance and correlation as leading indi-
cators in the scale-dependent feedback model, the shape
of the patterns themselves reveals much information on
the proximity to the upcoming transition (Rietkerk et al.
2004). This may be true for the entire class of ecosystems
that exhibit self-organized pattern formation (Rietkerk and
van de Koppel 2008), ranging from bogs (Eppinga et al.
2009) to mussel beds (van de Koppel et al. 2005). Similar
pattern-based indicators specific to certain classes of sys-
tems may be deviations in power laws in systems with
scale-invariant patches (Pascual and Guichard 2005), such
as the ones produced by the local facilitation model (fig.
5A; Kéfi et al. 2007b). Although such pattern-based in-
dicators may sometimes be enough to announce specific
types of transitions, combining them with correlation and
variance may help to reduce the possibility of false alarms.
For example, changes in the statistical properties of patch
size distributions (such as a decrease in skewness of patch
sizes; see fig. A1), together with an increase in skewness
of vegetation cover (fig. 4, B2), may yield a more robust
indicator of an approaching transition than any of those
indicators alone. More importantly, pattern-based and ge-
neric indicators complement each other. In systems with
self-organized regular patterns, changes in the shape of the
patterns can be used for announcing desertification (fig.
5C), whereas generic indicators (in particular, spatial cor-
relation) can signal the onset of pattern formation: the
transition to the appearance of the first degraded sites in
the ecosystem (fig. 4, C3).

The failure of correlation and variance to signal collapse
in systems with self-organized regular patterns suggests
that there may be more cases in which these indirect in-
dicators of resilience can fail to signal the risk of upcoming
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Table 2: Summary of the performance of leading indicators in the three models used

Local positive feedback Local facilitation Scale-dependent feedback

Indicator

Up to
transition

point

Up to
percolation

point
From percolation to

transition point

Up to
Turing

instability

From Turing
instability to

transition point

Critical slowing down � � � � �
Generic:

Spatial correlation � � � � Fails
Spatial variance � � � Fails Fails
Spatial skewness � � � Fails �
Temporal correlation � � � � Fails
Temporal variance � � � Fails Fails
Temporal skewness Fails Fails Fails Fails Fails

System specific:
Patch size distributions NAa � � NAa NAb

Pattern shapes NAc NAd NAd NAc �

Note: NA, not applicable.
a No patches.
b One-size patches.
c No patterns.
d Irregular patterns.

transitions. Obviously, we cannot expect such leading in-
dicators to signal the proximity of transitions that are not
associated to critical slowing down (Scheffer et al. 2009).
However, our results show that even if critical slowing
down is present, it may not be reflected by rising corre-
lation or variance. By contrast, the recovery time required
for the system to return to equilibrium after a disturbance
appears to be a robust indicator of critical slowing down
(fig. 3). Indeed, recent work on a similar model system
with pattern formation confirms that recovery time upon
disturbance increases before desertification (Bailey 2010).

In conclusion, recovery time upon local perturbation
experiments may be the most generic and robust indicator
of critical slowing down before a transition (van Nes and
Scheffer 2007). While elevated correlation and variance
may often serve as indirect indicators of critical slowing
down, the presence of self-organized regular patterns can

suppress change in such indicators. In this particular sit-
uation, changes in the patterns themselves are the best
indicator of an upcoming transition.
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APPENDIX

Supplementary Statistics

Figure A1: Statistical properties of patch size distributions in the local facilitation model. a, Spatial clustering increased (clustering was
estimated as , where is the conditional probability of finding a vegetated cell next to a vegetated cell and is the fraction ofq /r q r�F� � �F� �

vegetated cells in the total grid; van Baalen 2000). b, Patch size variance declined up to the transition point. c, Patch size skewness exhibited
a dual behavior: it rose until the percolation point as the number of large patches decreased and the number of small patches increased.
After the percolation point, skewness dropped as the large patches broke down into small ones. The lack of vegetated patches in the local
positive feedback model and the regularity of the patches in the scale-dependent feedback model make such estimation not feasible in these
two models.
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